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Promoters and enhancers are well-known regulatory elements modulating gene
expression. As confirmed by high-throughput sequencing technologies, these regulatory
elements are bidirectionally transcribed. That is, promoters produce stable mRNA in the
sense direction and unstable RNA in the antisense direction, while enhancers transcribe
unstable RNA in both directions. Although it is thought that enhancers and promoters
share a similar architecture of transcription start sites (TSSs), how the transcriptional
machinery distinctly uses these genomic regions as promoters or enhancers remains
unclear. To address this issue, we developed a deep learning (DL) method by utilizing
a convolutional neural network (CNN) and the saliency algorithm. In comparison with
other classifiers, our CNN presented higher predictive performance, suggesting the
overarching importance of the high-order sequence features, captured by the CNN.
Moreover, our method revealed that there are substantial sequence differences between
the enhancers and promoters. Remarkably, the 20–120 bp downstream regions from
the center of bidirectional TSSs seemed to contribute to the RNA stability. These regions
in promoters tend to have a larger number of guanines and cytosines compared to those
in enhancers, and this feature contributed to the classification of the regulatory elements.
Our CNN-based method can capture the complex TSS architectures. We found that the
genomic regions around TSSs for promoters and enhancers contribute to RNA stability
and show GC-biased characteristics as a critical determinant for promoter TSSs.

Keywords: promoter, enhancer, bidirectional transcript, convolutional neural network, gene regulation

INTRODUCTION

Traditionally, promoters are defined as DNA regions where transcription is initiated (Lenhard et al.,
2012; Haberle and Stark, 2018). The promoters include specific DNA motifs where transcription
factors (TFs) and their complexes can access (Hudson and Quail, 2003). On the other hand,
enhancers are defined as DNA regions that amplify transcription initiation by directly interplaying
with their target promoters (Blackwood and Kadonaga, 1998). Likewise, the enhancer sequences,
distal from their target promoters, contain DNA motifs that act as binding sites for TFs and
cofactors. These historical definitions are dichotomic, which means that promoters and enhancers
are distinct regulatory elements. However, what factors determine the promoter and enhancer
activities remains unclear.
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Recently, researchers have found that transcription occurs
in both the sense and antisense directions of promoters and
enhancers, associating with the alternative transcription start
sites (TSSs) (Andersson et al., 2014). Surprisingly, promoters give
rise to stable mRNAs in the sense direction and produce unstable
RNAs in the upstream antisense direction, while enhancers give
rise to unstable enhancer RNAs in both directions (Weingarten-
Gabbay and Segal, 2014). To explain the different RNA stability
in the sense and antisense directions of promoters, the “U1-
PAS axis” model has been proposed (Almada et al., 2013): the
5′ splice site (SS5) motif is enriched at the downstream of
TSSs of stable transcripts but is depleted at TSSs of unstable
transcripts, and vice versa for the PAS motif. Nonetheless, a
hidden Markov model incorporating these motifs predicted the
transcript stability at a relatively low accuracy (63%) (Core et al.,
2014). As another approach, a support vector machine (SVM)
with hexamer nucleotides improved the separation of promoters
from enhancers, identified by the FANTOM consortium (AUC
0.86) (Colbran et al., 2019). However, the SVM could not find the
sequence features that precisely determine the classification.

In this study, we developed deep learning (DL)-based models
to classify promoters and enhancers by incorporating the
convolutional neural network (CNN) method. We performed
systematic experiments on these datasets to reveal how
the CNN architecture, in particular convolutional filter size
and max-pooling size, influences the performance of the
models. Furthermore, to characterize TSS architectures that
are indispensable for the distinctive regulatory activities, we
employed the saliency map (Simonyan, 2013), extracting the
impactful features.

MATERIALS AND METHODS

Preparing Promoter and Enhancer
Datasets
For building a DL model with CAGE (Cap Analysis Gene
Expression) data, we prepared the enhancer and promoter dataset
defined by the previous study (Colbran et al., 2019), including
38,538 enhancers and 27,227 promoters. These elements have
been defined as flanking 300 base pair (bp) regions for each
midpoint between the bidirectional CAGE peaks.

We downloaded the bidirectional TSSs at K562 cells from
the previous study (Core et al., 2014) that used the combination
of GRO-seq (Global Run-On sequencing) and CAGE TSSs;
1,331 stable-stable (SS) pairs, 1,884 unstable-stable (US) pairs,
and 4,978 unstable-unstable (UU) pairs. Because the typical
bidirectional TSS of enhancers is UU and that of promoters
is US (Weingarten-Gabbay and Segal, 2014), we used US and
UU datasets and generated the flanking 250-bp regions for each
midpoint between the bidirectional TSS (hereinafter referred to
as US_UU dataset).

Implementing CNN
Our CNN models take an input matrix that consists of a
one-dimensional one-hot-encoded sequence with four channels.
For instance, each nucleotide in the input DNA sequence is

represented as A = (1, 0, 0, 0), C = (0, 1, 0, 0), G = (0, 0, 1, 0),
and T = (0, 0, 0, 1). Therefore, an input DNA sequence of length
l (l = 500 in US_UU dataset and l = 600 in CAGE dataset) is
converted into an l = 4 matrix.

The model processes the input matrix with two convolutional
layers, a fully connected hidden layer and a fully connected
output layer with one neuron that has sigmoid activations for
binary classification. The first convolutional layer employs 30
filters (i.e., the number of filters) each with a size of 19 (i.e.,
filter size) and a stride of one. The second convolutional layer
employs 128 filters each with a size of 5 and a stride of one.
All convolutional layers incorporate zero-padding to achieve the
same output length as the inputs and are activated by a rectified
linear unit (ReLU), which replaces negative values with zero.
Each convolutional layer is followed by a max-pooling layer with
window size and stride that are equal. The product of the two
max-pooling window sizes is equal to 100. For example, if the
first max-pooling layer has a window size of two, then the second
max-pooling window size is 50. This constraint ensures that the
number of inputs to the fully connected hidden layer is the same
across all models. The fully connected hidden layer employs 512
units with ReLU activation.

The dropout layer, which is a common regularization
technique for deep neural networks, is applied during training
after each convolutional layer and the fully connected hidden
layer with dropout probability of 0.5. The dropout probability
was chosen empirically (data not shown). All models were trained
via mini-batch stochastic gradient descent algorithm with mini-
batch size of 30 sequences for 40 epochs. The parameters are
learned on each mini-batch set by minimizing the cross-entropy
loss function L given as,

L = −
1
N

N∑
i = 1

yi × log zi
(
1− yi

)
× log (1−zi),

where zi is the true label (either 0 or 1) for training data in
the i-th sequence in each mini-batch, yi is the predicted label
produced by a sigmoid function in the i-th sequence in each
mini-batch, and N is the mini-batch size. The loss function L
is updated by Adam algorithm (Kingma and Ba, 2015) with the
recommended parameters: learning rate of 0.0003 and learning
rate decay of 1e-6.

We carried fivefold cross-validation to test the generalization
of the models and evaluated the models with the average area
under the receiver-operator-characteristic (AU-ROC).

Implementing Saliency Algorithm
Saliency map has been derived from the concept of saliency in
images that the most important pixels are highlighted (Simonyan,
2013). Given a well-trained CNN model, the saliency map
visualizes the change of output probability that is caused by slight
alterations on each pixel of the input image, which suggests the
importance of the pixels: the more varying changes mean the
more important pixels. We utilized the saliency algorithm for
detecting the most noticeable features in the input data and for
improving model explainability.
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Concretely, given an input DNA sequence X of certain length
|X|, our CNN model can calculate the score Sc (X) for the class c
at the output layer using a linear function of the first-order Taylor
expansion:

Sc (X) ≈ wTX+ b =
|X|∑
i = 1

wixi + b,

where wi is the weight for the i-th nucleotide x, and b is the
bias of the model. The weights represent the importance of each
nucleotide in the predictive power of the model. The saliency
algorithm alters each nucleotide in the X and calculates the
weights using a one-step back-propagation in the CNN model,
then visualized the weights on the saliency map. More details can
be found from the previous studies (Simonyan, 2013; Lanchantin
et al., 2017). We normalized the scores by dividing the sum of the
scores in each sequence. Furthermore, we defined the important
positions in each sequence with the normalized “importance
score” larger than 1/ |X|; 0.002 in the US_UU dataset and 0.00167
in the CAGE dataset, which reflects the fact that each nucleotide
in a random sequence will contribute equally.

Bioinformatics Analysis
We calculated the GC content for a region of interest as
GC Content = (GC)/(ATGC). For comparison purposes,
we prepared the results of the SVM model for the CAGE
dataset from the previous study (Colbran et al., 2019) and
trained SVM models for the US_UU dataset using the
encoding approach in that study; the input vector to SVM
is formed as the frequencies of all the possible combinations
of 6-bp-nucleotides, 4096 dimensions, in each input DNA

sequence. We trained the SVM models by grid search with
C (from −3 to 1) and γ (from −13 to −1) and selected a
model that has the highest AU-ROC. We implemented our
model using Tensorflow 2.1.0 of the programming language
Python 3.7 on the computer that installed the Intel Core
i5 (3.4 GHz, 4cores) and 32GB of main memory. The
training of a US_UU model requires 13–15 min but depends
on the hyperparameter setting. The training of a CAGE
model requires approximately 170 min depending on the
hyperparameter setting. We used the R language for processing
and visualizing.

RESULTS

Overall Structure of the Datasets
To characterize the promoter and enhancer regions, we first
prepared publicly available annotations, which have been based
on GRO-seq (Core et al., 2008) and CAGE tags (Harbers and
Carninci, 2005). The GRO-seq data provide information on the
transcript stability, while the CAGE tags generate TSS clusters at
enhancer and mRNA TSSs. By combining these data, we could
define the bidirectional UU TSS pairs and US TSS pairs, which
correspond to enhancer and promoter regions (Figure 1A). The
distances between UU and US TSS pairs were 91 and 120-bp on
average respectively with 400-bp in maximum (Figure 1B). We
decided to use the flanking 250-bp regions for each from the
center of TSS pairs to cover the downstream regions of TSSs.
In addition, we prepared the CAGE-defined 600-bp regions for
bidirectional enhancer and promoter TSSs (Colbran et al., 2019)
in which the stability of transcripts was not considered (Table 1).

FIGURE 1 | Schematic representation for bidirectional TSSs addressed in this study and for the structure of the proposed deep learning model. (A) The definition of
the promoter and enhancer TSS pairs. (B) Histogram showing the distance distribution between the sense and the antisense TSSs. (C) The overall structure of our
CNN model. TSS, transcriptional start site; CNN, convolutional neural network.
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TABLE 1 | Contents of the dataset used in this study.

Dataset Promoter Enhancer Train Test

CAGE 27,227 38,538 59,189 (90%) 6,576 (10%)

US_UU 1,884 4,978 6,176 (90%) 686 (10%)

We divided the datasets into a training set (90%) and a hold-
out test set (10%). To select the best CNN model, we applied
fivefold cross-validation during the training process, which splits
the dataset into five groups, fits a model with four groups, and
evaluates the model with the remaining one group. To better
test the robustness of the model, we also evaluate the models
with an independent test set for each cross-validation, and we
use the mean AU-ROC of the validation set and the hold-
out test set as the metrics of the models. We fed the DNA
sequences of the promoter regions (positive samples) and of the
enhancer regions (negative samples) into the CNN models by
one-hot encoding (Figure 1C).

Tuning Hyperparameters for the
Convolutional Layer of CNN Models
Previous studies have suggested that the first convolutional
layer learns the representations of sequence motifs (Kelley
et al., 2016; Quang and Xie, 2016). Here, we explored how the
hyperparameters in the first layer contribute to the performance
of the models. We used the hyperparameter setting framework
(Koo and Eddy, 2019).

We systematically modified the max-pool size, while keeping
all other hyperparameters fixed, including the number of filters
and the filter sizes in the first and the second layers (see
section “Materials and Methods”). To minimize the influence of
architecture on classification performance, we coupled the max-
pool size between the first layer and the second layer such that
their products are consistent. This ensures that the size of inputs
into the fully connected hidden layer of CNN models is equal.
The max-pool sizes we employed are (1, 100), (2, 50), (4, 25), (10,

10), (25, 4), (50, 2), and (100, 1), where the numbers represent
(the first layer and the second layer). Note that each CNN model
is denoted with the first max-pool size for simplifying, such as
CNN-1 for (1, 100), CNN-2 for (2, 50), and so on.

We compared the AU-ROC curve across the two datasets
(Table 2). We found that the models employing the max-pool
size 10 reach the highest performance. This suggests that the
middle size of the max-pooling can retain more information in
the data, which is helpful to capture the ground truth motifs. In
contrast, the models employing the small (=1) or large max-pool
sizes (=100) showed worse performances. These results imply
that a large down-sampling size either in the first layer or the
second layer causes distortion, which limits the ability of models
to learn motif representations in the enhancers and promoters
in deeper layers.

For investigating the influence of the number of filters in
the model performance, we increased the number of CNN-10
from 30 to 60, 90, and 120, which denoted as CNN-10(60),
CNN-10(90), and CNN-10(120). Upon training each of these
models, we found that increasing the number of filters improves
the performances (Table 2). However, overparameterization such
as CNN-10(120) seems less effective, which is consistent with
previous studies (Koo and Eddy, 2019). These results suggest that
overparameterizing the number of filters results in more filters
that do not learn any motif representations.

Next, for testing the influence of the filter size of each filter in
the first layer, we created two new CNN-10(90) models, CNN9-
10(90) and CNN29-10(90) that employ 9 and 29 for the first-layer
filter size. As a result, all the models share similar performances
(Table 2), which suggests that motif representations are not very
sensitive to the first-layer filter size.

Comparing the Proposed Model With
SVM
In order to compare our model with the SVM of hexamer
nucleotides (Colbran et al., 2019), we selected CNN-10(90), one

TABLE 2 | Performance of CNN models with different hyperparameters.

Model The first layer The second layer AUC

#. Filters Filter size Max-pool size #. Filters Filter size Max-pool size US_UU CAGE

CNN-1 30 19 1 128 5 100 0.903 ± 0.014 0.899 ± 0.007

CNN-2 30 19 2 128 5 50 0.910 ± 0.017 0.905 ± 0.009

CNN-4 30 19 4 128 5 25 0.910 ± 0.018 0.914 ± 0.126

CNN-10 30 19 10 128 5 10 0.915 ± 0.020 0.917 ± 0.014

CNN-25 30 19 25 128 5 4 0.910 ± 0.018 0.913 ± 0.015

CNN-50 30 19 50 128 5 2 0.910 ± 0.016 0.908 ± 0.012

CNN-100 30 19 100 128 5 1 0.901 ± 0.012 0.898 ± 0.005

CNN-10(60) 60 19 10 128 5 10 0.930 ± 0.018 0.925 ± 0.014

CNN-10(90) 90 19 10 128 5 10 0.932 ± 0.018 0.932 ± 0.015

CNN-10(120) 120 19 10 128 5 10 0.931 ± 0.017 0.934 ± 0.017

CNN9-10(90) 90 9 10 128 5 10 0.928 ± 0.021 0.935 ± 0.016

CNN29-10(90) 90 29 10 128 5 10 0.934 ± 0.021 0.931 ± 0.016

Bold value represents the maximum in the column.
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TABLE 3 | Comparison of the proposed model with SVM.

Dataset Model Performance (AUC)

Train Test

CAGE SVM 0.86 0.87

CNN-10(90) 0.95 0.91

US_UU SVM 0.81 0.82

CNN-10(90) 0.96 0.89

Bold value represents the maximum in the column.

of the best models that less vary the performance. We tuned the
hyperparameters of SVM by applying the grid search.

As a result, both the SVM and the CNN model exhibited
higher AUC values overall, which suggests that the feature
of DNA sequences is the primary choice for distinguishing
promoters and enhancers (Table 3). Notably, the CNN model
showed better performance than the SVM model. This result
implies the importance of higher-order sequence information for
distinguishing these regulatory elements more precisely.

Detecting Important Sequence Positions
in the Classification
Given an input DNA sequence for testing, we calculated the
gradient of the output probability by modifying the nucleotides in
the input sequence: the greater the predicted probability changes
at a position, the more important the nucleotide at this position.
Using the saliency algorithm (Lanchantin et al., 2017), we defined
the probability changes as a normalized “importance score” S.

We investigated the distribution of the score S by focusing on
the sequences predicted with higher probability (>0.95, resulted

in 50 sequences). As shown in Figure 2A, the saliency map for
the predicted US sequences in the US_UU dataset indicated that
+20–120 bp regions strongly contribute to the classification. This
result is consistent with a previous study, in which the motifs
located downstream of TSSs affect RNA stability (Almada et al.,
2013). In contrast, the saliency map for the predicted promoters
in the CAGE dataset (Figure 2B) visualized that the important
nucleotides for the classification of CAGE-defined promoters and
enhancers are rather scattered than those observed in Figure 2A.

These results suggest that there exist substantial sequence
differences between promoters and enhancers and indicate that
the promoter architecture differs in regulating stable transcripts
and promiscuous transcripts.

Characterizing Sequence Compositions
in the Regulatory Elements
It has been known that CpG island is an important feature
of promoters but not of enhancers (Andersson et al., 2014).
To confirm whether our models learned this distinction or
not, we calculated GC contents of the promoter and enhancer
regions, as well as those of the important positions predicted by
the saliency maps.

As shown in Figure 3A, on average, G and C accounted
for 63% in the US TSS pairs, whereas for 50% in the UU TSS
pairs, which is consistent with the observation in the previous
studies (Fenouil et al., 2012; Andersson et al., 2014). For the
+20–120 bp regions, this trend where the US TSS pairs present
higher GC content than UU TSS pairs was also observed: 67%
in US and 51% in UU. The important positions (>0.002 in the
score S) in the saliency map (Figure 2A) showed 68%. Similarly,
as shown in Figure 3B, the CAGE-defined promoters showed

FIGURE 2 | Results of the saliency map showing the importance score of each nucleotide in the top 50 predicted promoter regions with US_UU dataset (A) and
CAGE dataset (B). The x-axis represents relative positions from the midpoint between the bidirectional transcriptional start site (TSS). The color scale corresponds to
the normalized importance score; US, unstable-stable TSS pair; UU, unstable-unstable TSS pair.
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FIGURE 3 | Distribution of GCs in the regulatory regions and in the predicted important positions, which presents GC-biased characteristics in US TSS pairs (A) and
in CAGE-defined promoters (B). G, guanine; C, cytosine; TSS, transcriptional start site; US, unstable-stable TSS pair.

higher GC content (61%) than the CAGE-defined enhancers
(45%). Remarkably, the important positions (>0.00167 in the
score S) presented 74% (Figure 2B).

These results suggest that the CNN model achieves high
predictive performance by incorporating the distinctive GC
content in the regulatory regions, which is a potential
determinant for promoter and enhancer activities.

DISCUSSION

In this study, we sought to decipher the characteristics of
bidirectional TSS architectures of promoters and enhancers. In
this regard, previous studies have focused on the SS5 and PAS
motifs at the downstream of TSSs that are potentially associated
with RNA stability (Almada et al., 2013; Wu and Sharp, 2013).
Due to the use of such simple and limited motif patterns, the
previous model was not enough to explain the differences (Core
et al., 2014). Here we extended the focused regions by developing
a CNN-based DL model and estimating the importance of each
nucleotide in the regions.

We tested the CNN models with different sets of
hyperparameters and found that the max-pool size and the
filter number affect the performance, rather than the size of
each first-layer filter. By employing a set of tuned parameters,
we performed the proposed model and an SVM-based model
for reference. The results suggested that the sequences around
the bidirectional TSS regions possess information to distinguish
promoters from enhancers. Compared to the SVM-based
model employing k-mer patterns, the CNN model presented
better predictive performance, suggesting that the high-order
sequence features are indispensable to precisely characterize
these regulatory regions.

Interestingly, the promoter regions presented a different
distribution of key nucleotides for the classification. Particularly,
when we focused on the promoters regulating genes that
produce stable transcripts, we found that approximately 100-bp
continuous sequences have GC-biased characteristics, which is a
potential determinant for promoter and enhancer activities.

Although we could not observe statistically significant TF-
binding motifs within the important regions, there may have

signatures that specify the crosstalk with other genetic and
epigenetic factors to be studied as future work.
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