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Polycomb group (PcG) genes are involved in 
cellular memory by maintaining gene silenc-
ing through chromatin modifi cations (1, 2). 
 Recent studies have implicated the role of PcG 
genes in stem cell self-renewal, a process in 
which cellular memory is precisely maintained 
through cell division (2, 3). Among PcG genes, 
Bmi1 plays a central role in the inheritance of 
the stemness of hematopoietic and neural stem 
cells (3–8), and its forced expression promotes 
hematopoietic stem cell (HSC) self-renewal 
(8). These fi ndings highlight the importance of 
epigenetic regulation in stem cell self-renewal.

One of the major Bmi1 targets is the 
Ink4a/Arf locus (9). This locus encodes a cy-
clin-dependent kinase inhibitor, p16Ink4a, and 
a tumor suppressor, p19Arf. p16Ink4a inhibits

the binding of cyclin D to Cdk4/6 and keeps 
retinoblastoma protein (Rb) hypophosphory-
lated. Hypophosphorylated Rb represses E2F-
dependent transcription by sequestrating E2F, 
ultimately leading to cell cycle arrest or 
 senescence. p19Arf inhibits MDM2 and ARF-
BP1, which mediate the ubiquitin-dependent 
degradation of p53, leading to the accumula-
tion of p53 protein. This results in activation 
of the p53 target genes involved in cell cycle 
arrest, apoptosis, or senescence (10). In Bmi1-
 defi cient mice, the expression of Ink4a and Arf 
is markedly increased in hematopoietic cells 
(7, 8), and the enforced expression of Ink4a 
and Arf in HSCs resulted in cell cycle arrest 
and p53- dependent apoptosis, respectively (7). 
Conversely, Bmi1;Ink4a/Arf compound mutant 
mice (hereafter referred to as Bmi1−/−Ink4a-
Arf −/− mice) exhibited a substantial recovery 
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The polycomb group (PcG) protein Bmi1 plays an essential role in the self-renewal of 

hematopoietic and neural stem cells. Derepression of the Ink4a/Arf gene locus has been 

largely attributed to Bmi1-defi cient phenotypes in the nervous system. However, its role 

in hematopoietic stem cell (HSC) self-renewal remained undetermined. In this study, we 

show that derepressed p16Ink4a and p19Arf in Bmi1-defi cient mice were tightly associated 

with a loss of self-renewing HSCs. The deletion of both Ink4a and Arf genes substantially 

restored the self-renewal capacity of Bmi1−/− HSCs. Thus, Bmi1 regulates HSCs by acting 

as a critical failsafe against the p16Ink4a- and p19Arf-dependent premature loss of HSCs. 

We further identifi ed a novel role for Bmi1 in the organization of a functional bone 

marrow (BM) microenvironment. The BM microenvironment in Bmi1−/− mice appeared 

severely defective in supporting hematopoiesis. The deletion of both Ink4a and Arf genes 

did not considerably restore the impaired BM microenvironment, leading to a sustained 

postnatal HSC depletion in Bmi1−/−Ink4a-Arf −/− mice. Our fi ndings unveil a differential 

role of derepressed Ink4a and Arf on HSCs and their BM microenvironment in Bmi1-

defi cient mice. Collectively, Bmi1 regulates self-renewing HSCs in both cell-autonomous 

and nonautonomous manners.
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of hematopoietic cells, as  indicated by restored lymphocyte 
counts (9, 11), as well as of the self-renewal capacity of neural 
stem cells (11, 12). However, the real impact of derepressed 
Ink4a and Arf in self-renewing HSCs has not yet been deter-
mined using a genetic approach.

To address this question, we performed a detailed analysis 
of HSCs in Bmi1−/−Ink4a-Arf −/− mice and identifi ed a criti-
cal role for Bmi1-dependent repression of the p16Ink4a–Rb 
and p19Arf–p53 pathways in the maintenance of self- renewing 
HSCs. We further demonstrated evidence of the  involvement 
of Bmi1 in the regulation of HSCs and their BM micro-
environment in a way that is not associated with the Ink4a 
and Arf locus.

RESULTS AND D I S C U S S I O N 

To clarify the contribution of derepressed Ink4a and Arf to the 
self-renewal defect of Bmi1−/− HSCs, we evaluated the com-
petitive repopulation capacity of Bmi1−/−Ink4a-Arf −/− HSCs. 
Total BM cells from 4-wk-old wild-type, Ink4a-Arf −/−, 
Bmi1−/−, and Bmi1−/−Ink4a-Arf −/− mice (C57BL/6-Ly5.2) 
were infused into lethally irradiated recipients (C57BL/6-
Ly5.1) along with the same number of competitor BM cells 
from C57BL/6-Ly5.1 mice. Bmi1−/−Ink4a-Arf −/− BM cells 
exhibited a mostly normal long-term repopulating activity 
of the recipient BM in both primary and secondary trans-
plantations, whereas Bmi1−/− BM cells did not contribute to 
long-term repopulation at all (Fig. 1, A and B). Bmi1−/−Ink4a-
Arf −/− BM cells fully repopulated recipients’ BM in cellular-
ity (Fig. 1 C) and also manifested a full diff erentiation capacity 
along myeloid and lymphoid lineages (Fig. 1 D). As evident 
in Fig. S1 (available at http://www.jem.org/cgi/content/
full/jem.20052477/DC1), the frequencies of Bmi1−/− and 
Bmi1−/−Ink4a-Arf −/− CD34−c-Kit+Sca-1+lineage marker− 
(KSL) cells, which are highly enriched for long-term repop-
ulating HSCs (13), were comparable with that of the wild 
type. Bmi1−/− mice displayed a HSC frequency no less than 
that of the wild type, and Bmi1−/−Ink4a-Arf −/− mice exhib-
ited almost the same HSC frequency as that of the wild type. 
Thus, the number of HSCs infused was comparable among 
recipients in the competitive repopulation assay. Even with 
10 times more donor cells, Bmi1−/− BM cells did not con-
tribute to the repopulation at all, highlighting a severe de-
fect of Bmi1−/− HSC function (Fig. S2). All of these data 
clearly demonstrate that the defective self-renewal capacity of 
Bmi1−/− HSCs could be substantially rescued by the deletion 
of Ink4a and Arf, thus defi ning the Ink4a/Arf locus as a critical 
Bmi1 target for the maintenance of HSC self-renewal.

The deletion of Arf alone scarcely restored the self-
 renewal defect of Bmi1−/− HSCs, and the chimerism of 
Bmi1−/−Arf −/− hematopoietic cells in peripheral blood grad-
ually decreased with time (unpublished data). This presents a 
striking contrast to the major role of Arf derepression in 
Bmi1−/− phenotypes in neural stem cell self-renewal and cer-
ebellar granule neuron progenitor proliferation (11).

To further evaluate the proliferative and diff erentiation 
capacity of Bmi1−/−Ink4a-Arf −/− HSCs, we purifi ed the 

CD34−KSL HSC fraction, and an in vitro single-cell cul-
ture was performed for 14 d in the presence of stem cell 
factor (SCF), IL-3, thrombopoietin (TPO), and erythropoi-
etin (EPO). Although Bmi1−/− HSCs contained 3.3-fold 
fewer high proliferative potential (HPP) colony-forming 
cells (CFCs) than the wild type, Bmi1−/−Ink4a-Arf −/− HSCs 
contained a comparable number of HPP-CFCs with the 
wild type (Fig. 2 A). We have previously demonstrated that
CFU-neutrophil/macrophage/erythroblast/megakaryocyte 
(nmEM), which retains multilineage diff erentiation capac-
ity, is a major subpopulation among CD34−KSL HSCs but 

Figure 1. Substantial recovery of the defective repopulation ca-

pacity of Bmi1−/− HSCs by the deletion of Ink4a and Arf. (A) Com-

petitive lymphohematopoietic repopulating assay. 1 × 106 pooled test BM 

cells from 4-wk-old mice (B6-Ly5.2) were mixed with 1 × 106 competitor 

BM cells from 12-wk-old wild-type mice (B6-Ly5.1) and injected into 

lethally irradiated recipient mice (B6-Ly5.1; n = 7). The percent chimerism 

of donor cells in the recipient peripheral blood cells 12 wk after trans-

plantation is presented. (B) Secondary transplantation analysis. 2 × 106 

pooled BM cells from primary recipients were injected into lethally irradi-

ated secondary recipient mice (B6-Ly5.1; n = 7). The percent chimerism 

of donor cells 12 wk after transplantation is presented. (A and B) The 

mean values are indicated as horizontal bars. (C) Hematoxylin and eosin 

staining of sections of decalcifi ed femur from primary recipients that had 

transplanted donor cells of the indicated genotype 12 wk before. Donor 

cell chimerism in the recipient peripheral blood cells was around 90%, as 

depicted in A and D, and the absolute BM cell numbers were comparable 

(4.2 × 107 WT cells, 4.75 × 107 Ink4a-Arf −/− cells, and 4.15 × 107 

Bmi1 −/−Ink4a-Arf −/− cells for one pair of femur and tibia). (D) The 

 percent chimerism of donor cells in each lineage 12 wk after primary 

transplantation is presented as the mean ± SD. WBC, white blood cell.
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not among CD34+KSL multipotential progenitor cells and 
that its frequency is well correlated with that of functional 
HSCs (14). Of note, the morphological analysis of HPP colo-
nies revealed that Bmi1−/− CD34–KSL cells present a dras-
tic reduction in their frequency of CFU-nmEM, whereas 
Bmi1−/−Ink4a-Arf −/− HSCs show a substantial recovery in 
their frequency of CFU-nmEM compared with the wild 
type (Fig. 2 B). In an in vitro culture of pooled CD34−KSL 
HSCs, however, Bmi1−/−Ink4a-Arf −/− HSCs exhibited a 

considerable but only partial recovery of proliferation (Fig. 
2 C). In vitro culture systems are a kind of stringent condi-
tion in which numerous signaling entities are missing that are 
supportive for HSCs and are present in the in vivo micro-
environment. Thus, these fi ndings suggest that the deletion 
of Ink4a and Arf does not completely restore the defective 
proliferative and diff erentiation capacity of Bmi1−/− HSCs.

We next examined hematopoiesis in Bmi1−/−Ink4a-
Arf −/− mice in detail. The peripheral leukocyte count of 
Bmi1−/−Ink4a-Arf −/− mice recovered to the same level as 
that of the wild type (Fig. 3 A). However, the recovery of BM 
cellularity as well as the number of CD34−KSL HSCs was 
incomplete in Bmi1−/−Ink4a-Arf −/− mice, and, unexpect-
edly, their numbers progressively decreased over time (Fig. 3, 
B and C). Histological analysis of femurs showed a severely 
hypoplastic fatty marrow in Bmi1−/− mice as previously de-
scribed (4). This phenotype was not completely rescued by 
the deletion of Ink4a and Arf genes and severely progressed 
even in Bmi1−/−Ink4a-Arf −/− mice (Fig. 3 D). Given that the 
BM repopulation capacity of Bmi1−/−Ink4a-Arf −/− HSCs is 
mostly normal (Fig. 1, A and B), these data indicate defects 
of the BM microenvironment in the absence of Bmi1. This 
possibility was confi rmed by transplanting wild-type BM 
cells into irradiated Bmi1−/− mice. Although the peripheral 
blood leukocyte count and the spleen weight in Bmi1−/− re-
cipients recovered to the wild-type level after transplantation, 
the histological analysis of recipients’ femurs and their BM 
cell counts demonstrated that the Bmi1−/− BM microenvi-
ronment is defective in supporting the BM repopulation by 
wild-type HSCs (Fig. 4, A–D). Surprisingly, the deletion of 
both Ink4a and Arf did not considerably restore the impaired 
capacity of the Bmi1−/− BM microenvironment to support 
hematopoiesis by wild-type HSCs (Fig. 4, A and C).

The regulation of self-renewal and diff erentiation of 
HSCs requires a specifi c BM microenvironment. In BM, a 
subpopulation of osteoblasts has been implicated as an impor-
tant component of the HSC niche, indicating that the bone 
surface is the major HSC niche (15–17). The size of the os-
teoblastic niche is largely dependent on the amount of tra-
becular bone (15, 16). In Bmi1−/− BM, development of the 
trabecular bone was severely impaired, particularly in the 
metaphyseal area (Fig. 4 E). This indicates a profound reduc-
tion in the osteoblastic niche and raises the possibility of an 
insuffi  cient production of osteoblasts.

To further characterize the role of Bmi1 in osteoblasts 
as niche cells, we analyzed primary cultured Bmi1−/− osteo-
blasts. Bmi1−/− osteoblasts showed a normal level of alka-
line phosphatase activity, which is one of the representative 
osteoblastic diff erentiation markers (Fig. S3 A, available at 
http://www.jem.org/cgi/content/full/jem.20052477/DC1). 
RT-PCR analysis of the osteoblast-specifi c marker genes 
(Osteopontin, Osteocalcin, Runx2, Ostetix, and Col1a1) as 
well as known HSC niche factor genes (N-cadherin, Angio-
poietin-1, -2, Jagged-1, and SCF) was unable to discern any 
gross diff erence between the wild-type and Bmi1−/− osteo-
blasts, although p16Ink4a and p19Arf were also derepressed in 

Figure 2. The deletion of Ink4a and Arf largely restores the pro-

liferative and differentiation capacity of Bmi1−/− HSCs in vitro. 

(A) Single HSC growth assay. 96 individual CD34–KSL HSCs were sorted 

clonally into 96-well microtiter plates in the presence of SCF, IL-3, TPO, 

and EPO. The numbers of high (HPP) and low proliferative potential (LPP) 

CFCs were retrospectively evaluated by counting colonies on day 14 

(HPP- and LPP-CFCs, colony diameters of >1 and <1 mm, respectively). 

The results are shown as the mean ± SD (error bars) of triplicate cul-

tures. (B) Frequency of each colony type. Colonies derived from HPP-

CFCs were recovered and morphologically identifi ed as neutrophils (n), 

macrophages (m), erythroblasts (E), or megakaryocytes (M). (C) Growth of 

CD34–KSL HSCs in vitro. 50 freshly isolated CD34–KSL cells were cultured 

in the presence of SCF, IL-3, and TPO. The results are shown as the mean 

± SD of triplicate cultures. 
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Bmi1−/− osteoblasts (Fig. S3 B). We then took advantage of 
the Bmi1 knockdown technique. Osteoblasts were infected 
with a lentivirus expressing short hairpin RNA (shRNA) 
against Bmi1, which effi  ciently inhibited the transcription 
of Bmi1 (Fig. 4 F). Consistent with in vivo trabecular bone 
formation, Bmi1 knockdown led to a reduced osteoblast 
proliferation (Fig. 4 F). Nonetheless, Bmi1 knockdown os-
teoblasts similarly supported the survival and multilineage 
diff erentiation capacity of CD34−KSL HSCs during a 5-d 
ex vivo culture (Fig. S3 C). Collectively, these fi ndings suggest 
that Bmi1 controls the BM microenvironment, at least in 
part, by regulating osteoblast niche size. In contrast with the 
case of HSCs, however, the deletion of both Ink4a and Arf 
again did not substantially restore the impaired development 
of the trabecular bone (Fig. 4 E) or the impaired prolifera-
tion of Bmi1 knockdown osteoblasts (Fig. 4 F), confi rming 
that the Ink4a and Arf genes are not the major targets for 
Bmi1 in the maintenance of the BM microenvironment, as 
demonstrated in Fig. 4 (A and C). The BM microenviron-
ment consists of not only osteoblasts but also stromal cells, 
endothelial cells (18), and so on. It would be intriguing to ask 
whether Bmi1 also functions in the other components of the 
BM microenvironment.

Our fi ndings in this study clearly demonstrate that the 
derepression of Ink4a and Arf genes is responsible for defec-
tive HSC self-renewal. However, we have previously re-

ported that Bmi1−/− HSCs undergo the fi rst cell division in a 
fashion similar to that of the wild type and showed no apop-
tosis in a single HSC culture. In addition, cell cycle analysis 
of BM primitive hematopoietic cells (KSL and Lin− cells) did 
not detect any diff erence between the wild-type and Bmi1−/− 
mice (8). These fi ndings indicate that the derepression of 
Ink4a and Arf genes in Bmi1−/− mice do not grossly aff ect the 
cell cycle or survival of HSCs.

It has been well recognized that the activated p16Ink4a–Rb 
and p19Arf–p53 pathways are profoundly associated with cellu-
lar senescence (19). Cellular senescence is a program activated 
by normal cells in response to various types of stress. These 
include telomere attrition, DNA damage, oxidative stress, 
oncogenic stress, and others. Senescence of HSCs is supposed 
to be induced by telomere-dependent and - independent 
pathways (20, 21). We fi rst measured the telomere length 
of wild-type and Bmi1−/− lineage marker− immature cells 
and lineage marker+ diff erentiated cells by fl uorescence in 
situ hybridization. The loss of Bmi1 did not alter the telomere 
length at all (Fig. 5 A). In the absence of Bmi1, the derepres-
sion of Ink4a and Arf genes causes the premature senescence 
of mouse embryonic fi broblasts (9). Bmi1 knockdown osteo-
blasts indeed exhibited a higher senescence-associated (SA) 
β-galactosidase activity, which was canceled in the absence 
of Ink4a and Arf genes (Fig. S4, available at http://www.jem.
org/cgi/content/full/jem.20052477/DC1), suggesting that 

Figure 3. Incomplete recovery of defective hematopoiesis in 

Bmi1−/−Ink4a-Arf −/− mice. (A) Peripheral blood leukocyte count in 

8-wk-old mice (n ≥ 4). (B) BM mononuclear cell count per body weight 

(n ≥ 3). (C) Quantifi cation of the number of CD34−KSL cells per body 

weight (n ≥ 3). All data were normalized relative to the wild type and are 

shown as the mean ± SD (error bars). (D) Hematoxylin and eosin staining 

of sections of decalcifi ed femur from 8- and 12-wk-old mice.
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Bmi1 controls the cellular senescence of osteoblasts by regu-
lating the expression of Ink4a and Arf genes. We then analyzed 
freshly isolated Bmi1−/− CD34−KSL HSCs in terms of the 
SA–β- galactosidase activity and SA gene expression profi les, 
but all appeared negative (unpublished data). It is possible that 
the senescent HSCs do not express specifi c combinations of 
marker antigens for HSC identifi cation any more. Thus, the 
possibility that derepressed Ink4a and Arf genes facilitate the 
premature senescence of HSCs remains to be determined.

In contrast to the strong impact of derepressed p16Ink4a 
and p19Arf on HSC self-renewal, the loss of p16Ink4a and 
p19Arf has been reported to have a limited role in this pro-
cess (22). In our analyses, freshly isolated Ink4a-Arf −/−HSCs 
did not show any advantages in competitive BM repopu-
lation assays either. However, Ink4a-Arf −/− HSCs retained 

their self- renewal capacity better than the wild type during 
long-term ex vivo culture (unpublished data). These fi nd-
ings suggest that a tight repression of Ink4a and Arf genes 
by Bmi1 accounts for a positive eff ect of forced Bmi1 ex-
pression on HSC self- renewal and multipotential progenitor 
expansion (8). To confi rm this, we transduced Ink4a-Arf −/− 
HSCs with a Bmi1 retrovirus, cultured for 10 d in the 
presence of SCF and TPO, and subjected the cells to colony 
assays. Unexpectedly, the overexpression of Bmi1 in Ink4a-
Arf −/− HSCs again induced a similar mode of multipotential 
progenitor expansion to that in wild-type HSCs (Fig. 5 B). 
These data, together with the incomplete recovery in the 
proliferative capacity of Bmi1−/−Ink4a-Arf −/− HSCs in  vitro, 
indicate that additional targets for Bmi1 exist other than 
Ink4a and Arf genes, which are implicated in the regulation of 

Figure 4. Impaired BM microenvironment in Bmi1−/− mice. (A–D) 

Wild-type, Ink4a-Arf −/−, Bmi1−/−, and Bmi1−/−Ink4a-Arf −/− recipient 

mice were transplanted with 2 × 106 wild-type BM cells. At 4 wk after 

transplantation, recipient mice were analyzed on their BM cellularity (fe-

mur, A), peripheral blood leukocyte count (B), BM cell number per body 

weight (C), and spleen weight per body weight (D). Donor cell chimerism 

in recipient peripheral blood mononuclear cells was 80.1 ± 4.2, 78.7 ± 

2.4, 98.8 ± 0.38, and 82.5 ± 10.1% with wild-type, Ink4a-Arf −/−, 

Bmi1−/−, and Bmi1−/−Ink4a-Arf −/− recipients, respectively (n ≥ 3). 

(E) Hematoxylin and eosin staining of sections of decalcifi ed distal femur 

from 8-wk-old mice. (F) Analyses of Bmi1 knockdown osteoblasts. Primary 

cultured wild-type and Ink4a-Arf −/− osteoblasts were infected with lenti-

viruses expressing shRNA against either luciferase (Luc; control) or Bmi1. 

The infection effi ciency was almost 100% in all knockdown experiments. 

The knockdown effi ciencies were evaluated by detecting Bmi1 mRNA 

expression by RT-PCR analysis (top), and their growth was monitored at 

day 5 of culture (bottom). The results are shown as the mean ± SD (error 

bars) of triplicate cultures.
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HSC self-renewal and multipotential progenitor  expansion, 
although they are largely dispensable in vivo.

Together, all of these observations implicate Bmi1 in both 
the cell-autonomous and nonautonomous regulation of the 
HSC system. Similar to BM hematopoiesis, an incomplete 
recovery of lymphocyte numbers in Bmi1−/−Ink4a-Arf −/− 
mice could be ascribed to certain defects in the Bmi1−/− mi-
croenvironment of the spleen and thymus (9, 11). Our fi nd-
ings further unveiled the diff erential impact of derepressed 
Ink4a and Arf on HSCs and their BM microenvironment in 
Bmi1-defi cient mice, thus defi ning Ink4a and Arf as the major 
targets for Bmi1 in the maintenance of HSC self-renewal but 
not of the BM microenvironment.

Finally, Bmi1 has been demonstrated to be essential for 
the maintenance of leukemic stem cells in a mouse model of 
acute myelogenous leukemia induced by the Hoxa9-Meis1 
fusion gene (5). It has also been demonstrated that the Rb 
and p53-dependent cellular senescence plays a critical role to 
oppose neoplastic transformation triggered by the activation 
of oncogenic pathways (19). It will be important to investi-
gate whether the up-regulation of Bmi1 contributes to re-
pression of the oncogene-induced senescence pathway in the 
leukemic transformation and maintenance of the self-renewal 
capacity of leukemic stem cells.

MATERIALS AND METHODS
Mice. Bmi1+/− mice and Ink4a-Arf −/− mice (provided by R.A. DePinho, 

Harvard Medical School, Boston, MA) that had been backcrossed at least 

eight times onto a C57BL/6 (B6-Ly5.2) background were used. Mice con-

genic for the Ly5 locus (B6 Ly5.1) were bred and maintained at the Animal 

Research Center of the Institute of Medical Science (University of Tokyo). 

All experiments using mice received approval from the Tokyo University 

Administrative Panel for Animal Care.

Competitive repopulation assay. Hematopoietic cells from B6-Ly5.2 

mice were mixed with BM competitor cells (B6-Ly5.1) and were trans-

planted into B6-Ly5.1 mice irradiated at a dose of 9.5 Gy. Donor cell chi-

merism in the recipient peripheral blood cells was evaluated as previously 

described (8). The ability of the Bmi1−/− microenvironment to support 

hematopoiesis was evaluated by transplanting 2 × 106 wild-type BM cells 

(B6-Ly5.1) into 4-wk-old mutant mice (B6-Ly5.2) sublethally irradiated 

(Bmi1−/− and Bmi1−/−Ink4a-Arf −/− mice, 4.5 Gy; others, 6.5 Gy).

Purifi cation of mouse HSCs and single-cell colony assay. Mouse 

HSCs (CD34–KSL cells) were purifi ed from BM cells of 8-wk-old mice on 

a fl ow cytometry system (FACSVantage; Becton Dickinson) as previously 

described (8). Single CD34–KSL cells were sorted clonally into 96-well 

plates containing 200 μl SF-O3 (Sanko Junyaku) supplemented with 5 × 

10−5 M 2-β-mercaptoethanol, 2 mM l-glutamine, 10% FBS, 20 ng/ml of 

mouse SCF, 20 ng/ml of mouse IL-3, 50 ng/ml of human TPO, and 

1 unit/ml of human EPO (PeproTech).

Primary BM-derived osteoblast culture and Bmi1 knockdown. Fe-

murs and tibiae were cut into small pieces after BM cells were fully fl ushed 

out. Then, bone fragments were cultured in α-MEM supplemented with 2 

mM l-glutamine, 10% FCS, and 5 × 10−5 M 2-β-mercaptoethanol. Suspen-

sion cells were removed by replacing the medium. Osteoblastic phenotypes 

were evaluated by the expression of alkaline phosphatase. A lentivirus vec-

tor (CS-H1-shRNA-EF-1α-EGFP) expressing shRNA against mouse Bmi1 

(target sequence T A A A G G A T T A C T A C A C G C T A A T G ) and Luciferase was 

prepared, and the viruses were produced as previously described (23).

RT-PCR. Semiquantitative RT-PCR was performed using normalized 

cDNA with quantitative PCR using TaqMan rodent GAPDH control re-

agent (PerkinElmer) as previously described (8).

Quantifi cation of telomere length. Telomere length was quantifi ed on a 

fl ow cytometer (FACSCalibur; BD Biosciences) using fl ow fl uorescence 

in situ hybridization with a Telomere PNA Kit/FITC for fl ow cytometry 

(DakoCytomation).

Transduction of CD34–KSL cells. The retrovirus vector pGCDNsam-

ires-EGFP (provided by M. Onodera, University of Tsukuba, Ibaraki, 

 Japan), the production and concentration of recombinant retrovirus, and the 

transduction of CD34–KSL cells have been described previously (8). After 

transduction, the cells were further incubated for 9 d in S-Clone SF-O3 

supplemented with 5 × 10−5 M 2-β-mercaptoethanol, 2 mM l-glutamine, 

1% FBS, 50 ng/ml SCF, and 50 ng/ml TPO and subjected to in vitro colony 

assay using a methylcellulose medium (StemCell Technologies Inc.) supple-

mented with 20 ng/ml of mouse SCF, 20 ng/ml of mouse IL-3, 50 ng/ml 

of human TPO, and 1 unit/ml of human EPO. GFP+ colony numbers were 

counted on day 10. Colonies derived from HPP-CFCs (colony diameter of 

>1 mm) were recovered and morphologically examined. The transduction 

effi  ciency was >80% as judged from the GFP expression.

Online supplemental material. Fig. S1 provides data for fl ow cytomet-

ric profi les and frequencies of HSCs in mutant mice. Fig. S2 provides data 

for the competitive BM repopulating assay using 10 times more test cells 

than the competitor cells. Fig. S3 provides data for diff erentiation and the 

HSC-supporting capacity of osteoblasts in the absence of Bmi1. Fig. S4 

provides data for the senescence of Bmi1 knockdown osteoblasts. Online 

supplemental material is available at http://www.jem.org/cgi/content/full/

jem.20052477/DC1.
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Figure 5. Additional targets for Bmi1 exist other than Ink4a and 

Arf genes in the maintenance of HSCs. (A) The relative telomere length 

of the BM lineage− and lineage+ cells measured by fl ow fl uorescence in 

situ hybridization. (B) CD34–KSL cells were transduced with either GFP 

control or Bmi1 retroviruses and were cultured in the presence of SCF and 

TPO. At day 10 of culture, colony assays were performed to evaluate the 

content of HPP-CFCs in culture. GFP+ colonies derived from HPP-CFCs 

were examined as to their colony types with morphological analysis. The 

results are shown as the mean ± SD (error bars) of triplicate cultures. 

Neutrophils, n; macrophages, m; erythroblasts, E; megakaryocytes, M. 
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