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A B S T R A C T   

Phasor measurement units (PMU) are currently considered as an essential step toward the future 
smart grid due to their capability in increasing the power system’s situation awareness. Due to 
their high costs and limited resources, optimal placement of PMUs (OPP) is an important chal-
lenge to compute the minimum number of PMUs and their optimal distribution in the power 
systems for achieving full monitoring. The coronavirus herd immunity optimizer (CHIO) is a 
novel optimization algorithm that emulates the flock immunity strategies for the elimination of 
the coronavirus pandemic. In this research, the CHIO is adapted for the OPP problem for full fault 
observability. The proposed algorithm is implemented on power systems considering the zero 
injection bus impacts. A program is created in MATLAB® environment to implement the proposed 
algorithm. The algorithm is applied to different test systems including; IEEE 9-bus, 14-bus, 30- 
bus, 118-bus, 300-bus, New England 39-bus and Polish 2383-bus. The proposed CHIO-based 
OPP is compared to some exact and metaheuristic-based OPP techniques. Compared to these 
techniques, the promising results have proved the effectiveness and robustness of the proposed 
CHIO to solve the OPP problem for full fault observability.  

Abbreviations  

Abbreviations Nomenclature   
BIP Binary Integer Programming n Problem size for CHIO 
CHIO Coronavirus Herd Immunity Optimizer CL Number of cross-links related to bus j in N-bus system 
CO Cuckoo Optimization Vp,R Voltage at any point p measured from the receiving end 
C-19BOA COVID-19-based optimization algorithm Vp,S Voltage at any point p measured from the sending end 
CVO Coronavirus optimization D Per-unit fault location index 
DE Differential Evolution Zc Characteristic impedance 
GA Genetic Algorithm γ Propagation constant 
GPS Global Positioning System L Transmission line length 
HISS Herd Immunity Search Space x Variable vector defined for the optimization problem 

(continued on next page) 

* Corresponding author. Department of Electrical Engineering, College of Engineering, Shaqra University, Al-Dawadmi, Riyadh, 11911, Saudi 
Arabia. 
** Corresponding author. 

E-mail addresses: malghassab@su.edu.sa (M.A. Alghassab), ahmed_hatata@su.edu.sa (A.Y. Hatata).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e31832 
Received 27 January 2024; Received in revised form 3 May 2024; Accepted 22 May 2024   

mailto:malghassab@su.edu.sa
mailto:ahmed_hatata@su.edu.sa
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e31832
https://doi.org/10.1016/j.heliyon.2024.e31832
https://doi.org/10.1016/j.heliyon.2024.e31832
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e31832

2

(continued ) 

ILP Integer Linear Programming M Number of radial buses in the N-bus system 
MAE Mean Absolute Error BRr Original spreading rate for CHIO 
MILP Mixed Integer Linear Programming MaxAGE Death rate of infected cases 
OPP Optimal Pmu Placement C0 Initial infection rate, default set to 1 
PSO Particle Swarm Optimization PoS Size of studied people 
PMU Phasor Measurement Unit hp Decision variable indexed by p within available e decision variables for a case 
RMSE Root Mean Square Error lb,ub Minimum and maximum limits of hp 

SQP Sequential Quadratic Programming Max Itr Iterations number for CHIO 
TL Transmission Line y, z Sequence admittance and impedance per unit of distance for the TL 
ZIB Zero Injection Bus    

1. Introduction 

In the era of global positioning system (GPS) satellites, digital signal processing, and communication technologies, it is entirely 
possible to observe the electric power systems’ operation [1]. The synchronized signals of the GPS satellite system used by the Phasor 
Measurement Units (PMUs) have evolved into sophisticated tools that are manufactured commercially [2]. Due to their improved 
accuracy and high sampling rate for measuring phase angles, PMUs have been widely accepted in electric power systems for wide-area 
control, protection, and monitoring [3,4]. The advanced applications of PMUs in power systems can improve their reliability and 
security [5]. 

A power system is considered observable if all voltage phase angles and magnitudes at all buses can be uniquely estimated, given a 
finite set of measurements. If the PMUs are located at all buses in the grid, and all measurements are transmitted to the control center, 
then the voltage and current phasors are known for all buses and transmission lines (TLs) [6]. However, the power system can be fully 
monitored in the case that PMUs are located on a definite number of buses whenever the phasor voltages at the buses without PMUs are 
determined by utilizing the power grid parameters and the PMUs’ measurements of the other buses. These buses are called 
quasi-measurement buses [7]. 

It is well known that the overhead TLs and underground cables are subjected to faults continuously. So, minimizing their outage 
periods is essential to ensure power system reliability and continuity. Thus, fast, and accurate fault detection, identification, and 
location should be considered as vital targets for power system operators [8–12]. Nowadays, several algorithms of fault location based 
on the PMU techniques for transmission systems have been conducted [13,14]. These algorithms determine fault location using the 
synchronized phasors’ current and voltage. They can attain very high accuracy in locating TLs’ faults if the PMUs are located on every 
bus [13]. However, for economic and technical considerations, it is impracticable to place the PMUs on all buses of the power system. 
These considerations include some factors such as; measuring channels’ numbers, grounding connections of the power station, vol-
tage/current transformers, and antenna connections, but the major factor restraining the number of PMUs installed is their price and 
the communication equipment cost that may be higher than the PMU itself [14]. Communication limitations and the high price of the 
PMUs have encouraged electrical developers and mathematicians to search for the optimal number and locations of PMUs for different 
desired purposes. 

Optimal PMU Placement (OPP) has been studied by applying different algorithms to attain full observability of power systems 
during normal and abnormal operating conditions [15–27]. A literature review of different optimization techniques applied to solve 
the OPP problem was presented in Ref. [15]. A simple method-based Integer Linear Programming (ILP) was applied for optimal 
placement of PMUs in a power system [16]. To achieve complete power system observability, ILP was used in Ref. [17] to determine 
the OPP. The method was based on the bus-to-bus connection matrix that made the observability of the power system simpler. A 
multi-stage placement procedure of PMUs using the Mixed Integer Linear Programming (MILP) was presented [18]. Two stages; 
dual-stage algorithm and fuzzy decision-making were used to arrange the multiple solutions. The OPP was determined on Oman power 
system using the GAMS under the CPLEX solver and the MILP model [19]. An OPP approach for power system observability 
considering several contingencies was introduced [20]. The effect of both single branch outages and PMU outages on the OPP problem 
was studied. In Ref. [21], a hybrid-optimization technique combined with local search and branch-and-bound procedure based on the 
interior-point method was introduced for solving the OPP problem. 

In power systems, a Zero-Injection-Bus (ZIB) is any bus that has no load or generation connected to it. ZIB’s measurements can be 
obtained non-directly from any other bus connected to it, which may be helpful to provide an additional reduction of the required 
number of PMUs. In Ref. [22], Binary Integer Programming (BIP) was applied to resolve the OPP considering the zero injection buses 
(ZIBs) to achieve topological observability of the power system. An effective solution for the OPP problem by considering the zero 
injection measurements was obtained by applying MILP [23]. An integrated model considering the effects of the ZIBs and conventional 
measurements on PMU placement was presented to obtain a feasible solution [24]. In Ref. [25], a hybrid algorithm of minimum 
spanning tree and genetic algorithm (GA) was applied to compute the minimum installed number of the PMUs for completely 
observing the power system. The minimum spanning tree algorithm was used for modifying the unobservable solution into observable 
solutions, while the GA was applied to fix any unobservable buses of the allocated PMUs. Both Particle Swarm Optimization (PSO) and 
Cuckoo Optimization (CO) were applied to identify the optimal number and placements of the PMUs while achieving associated re-
strictions [26]. Whereas, PSO and Global search optimization techniques were applied to solve the OPP problem [27]. 

Many researchers have discussed the OPP scheme for locating faults in power systems [28–34]. Ref. [28] presented a proposed fault 
location algorithm that depended on the measurements of the synchronized phasor voltages at both faulted TL terminals and the 
phasor currents fed from one terminal. Although the measurements detected an accurate fault location for the studied system, the 
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manual technique used to detect PMUs’ locations may be difficult for larger power systems. Besides, the possibility of ZIBs in the power 
system was not considered in that study. An OPP algorithm to observe and detect faults was proposed in Ref. [29], but it was not 
comprehensive, and consequently, moreover, it gave inaccurate results. 

It is predicted that the observable power systems during normal operation may be unobservable under faulty conditions due to the 
changes in the system configuration as an extra bus (fault-point) is created in the faulty system. Researchers in Refs. [30–34] have 
discussed this problem to obtain the optimal placement and minimum number of PMUs for full system observability in both normal and 
faulty conditions. In Ref. [30], the located PMUs were used to detect the fault by one terminal current and voltage data. Whereas, in 
Ref. [31] GA was used to calculate the minimum number and optimal locations of the PMUs for wide-area fault locations determined 
from terminal voltage measurement. Moreover, the algorithm was applied to optimize the number of PMUs in order to identify the 
fault points along with the longitude and latitude [32]. A hierarchical clustering technique was applied in Ref. [33] to split the power 
system into coherent areas to determine the most relevant buses to attain complete power system observability during faults. Then the 
optimal PMUs’ locations were determined for every area depending on simple rules. A fault-tolerance-based approach to OPP was 
presented in Ref. [34]. The proposed approach considered the vulnerability and observability of the system and PMUs. 

In late 2019, the world was hit by a severe pandemic (Covid-19) which claimed many lives. Study and analysis of the behavior of 
COVID-19 have inspired a lot of optimization algorithms such as coronavirus optimization algorithm [35], COVID-19-based optimi-
zation algorithm (C-19BOA) [36], Coronavirus optimization (CVO) [37], and coronavirus herd immunity optimizer (CHIO) [38]. 
While these algorithms proved an encouraging execution in treating optimization issues, CHIO may be considered as the most efficient 
because of its flexible and adaptable control parameters which allow effective investigating and exploring of search areas [39]. So, in 
this paper, the CHIO is used to solve the OPP problem considering zero injection buses. The technique is implemented on various IEEE 
standard systems and the results are compared to previously utilized optimization techniques. 

The main contributions of this research can be summarized as:  

1. Define the optimal PMU placement including the objective function and its constraints for achieving a full fault observable 
network.  

2. Apply a novel effective meta-heuristic algorithm, CHIO, to solve the OPP problem for full fault observable transmission networks, 
while studying the enhancement of the optimal solution by considering ZIB impact.  

3. Compare the proposed CHIO-OPP algorithm with other methods (ILP, PSO, Differential Evolution (DE), and Sequential quadratic 
programming (SQP)) based on the PMUs’ optimal number and their locations.  

4. Evaluate statistically the performance of the applied fault location technique compared with another published technique. 

The rest of the paper is structured as follows: Section 2 gives a brief discussion on fault observability analysis based on PMU. Section 
3 formulates the PMU placement problem. Section 4 illustrates the procedures for applying the CHIO. Section 5 presents a proposed 
method for determining the optimal number of PMUs and their locations based on fault observability. Case studies and results are 
presented and discussed in Section 6. Finally, Section 7 concludes the paper. 

2. Fault observability analysis based on PMU 

One of the main features of transmission systems is that they are fault-observable systems. They can detect and locate any occurred 
fault directly based on the available measured data. However, not all observable systems within healthy operating conditions remain 
observable in fault conditions due to the changes in the configuration of the TL under faulty conditions as a new bus is added at the 
fault point. 

2.1. Rules of fully fault-observable transmission networks 

In this study, the following rules are considered in fault observability analysis using PMUs These rules are derived from Refs. [33, 
40,41].  

Rule 1 For any TL to become fault-observable, information on both end buses’ voltage phasors and the phasor of fault current fed from 
its two terminals should be available.  

Rule 2 Whenever a PMU is located at any bus, the phasor voltage of that bus and the phasor currents of all TLs connected to that bus 
are measurable.  

Rule 3 The availability of both current and voltage phasors at any terminal of a TL makes it possible to determine the voltage phasor at 
the other terminal of this line.  

Rule 4 If the voltage phasors of the two terminals of any TL are available, the current phasor in this TL can be determined.  
Rule 5 ZIB is a bus that has no load or generation connected to it. Thus, at any ZIB there are no injected currents into the system, which 

means that the summation of currents flowing through all TLs connected to this bus is zero.  
Rule 6 The voltage phasor of any ZIB can be obtained if both the current and voltage phasors of the other terminal of any TL related to 

this ZIB are available. 
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2.2. Description of the applied fault location algorithm 

The one-line diagram of a two-terminal single-circuit TL is illustrated in Fig. 1. The receiving and sending ends are denoted by 
subscripts R and S respectively [42–45]. 

A symmetrical components transformation matrix is used to split the quantities of a 3-phase TL considering distance variation 
(kilometers) only. The relations between both currents and voltages at the fault location, F, (at distance f from bus R) can be calculated 
by Eqs. (1) and (2). 

∂V012

∂x
= z012 ∗ I012 (1)  

∂I012

∂x
= y012 ∗ V012 (2)  

where y012 and z012 are the sequence admittance and impedance per unit distance correspondingly. It is noticed that both z012 and y012 
matrices are diagonal matrices with diagonal entries (z0, z1, z2) and (y0, y1, y2), respectively. Besides, V012 and I012 represent the 
voltage and current matrices where V012 = [V0 V1 V2 ]

T and I012 = [ I0 I1 I2 ]T. The subscripts 0, 1, and 2 depict the zero, positive, 
and negative sequences, correspondingly. 

The voltage and current at any point p at a distance ‘a’ from bus ‘R’ can be expressed by Eqs. (3) and (4). 

Vp1 =A1 ∗ e(γ∗a) + B1 ∗ e− (γ∗a) (3)  

Ip1 =
1
Zc

[
A1 ∗ e(γ∗a) +B1 ∗ e− (γ∗a)] (4)  

where Zc =
̅̅̅̅̅̅̅̅
z/y

√
and γ =

̅̅̅̅̅̅̅̅̅̅z ∗ y√ are the characteristic impedance and the propagation constant, respectively. The currents and 
voltages at the sending and receiving ends are used as boundary conditions to calculate the constants of the 2nd-order differential 
equations (3) and (4), i.e. A1 and B1. 

The voltage at point p with respect to the sending and receiving ends in (3) can be reformulated as: 

Vp1,R =
V1,R + Zc ∗ I1,R

2
e(γ∗a) +

V1,R − Zc ∗ I1,R

2
e− (γ∗a) (5)  

Vp1,S = e− γ∗LV1,S + Zc ∗ I1,S

2
e(γ∗a) + eγ∗LV1,S − Zc ∗ I1,S

2
e− (γ∗a) (6) 

The positive-sequence quantities are selected to compute the fault locations in this paper as these quantities can react to all types of 
faults. Equations (5) and (6) denote the positive sequence voltage at fault point (F), which are determined with respect to the measured 
(V1,S, I1,S) and (V1,R, I1,R) at both sending and receiving ends, respectively. 

Assume that a fault happens at a distance f = D*L (km) from bus R, where “D” and “L” represent the per-unit fault location index 
and TL length. By equalizing the voltages measured from both sending and receiving ends at point “F"; i.e. VF,R = VF,S and equating (5) 
and (6), the index “D" can be determined by Eqs. from (7) to (9). 

D=

ln
(

Q
M

)

2 ∗ γ ∗ L
(7)  

where 

Fig. 1. One-line diagram of a single-circuit TL.  
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M=
1
2
∗
(
(VS+Zc∗IS) ∗ e− γ∗L − (VR+Zc∗IR)

)
(8)  

Q=
1
2
∗
(
(VR− Zc∗IR) − (VS − Zc∗IS) ∗ eγ∗L) (9) 

In this case, whenever the fault point is located between bus R and S of the TL, then D will be within the range [0, 1]. Otherwise; the 
D value will be undefined. As shown in Eqs. from (7) to (9) neither loading conditions, such as source impedance, and loading change, 
nor fault conditions, i.e., occurrence angle, impedance, and type, have any effect on fault location index, D. 

3. Formulation of the OPP problem 

The OPP problem aims to determine the optimal number of the PMUs and their locations which guarantees the full observability of 
a system under any fault condition. 

3.1. Objective function 

The optimization problem objective is to obtain the optimal locations of the PMUs by minimizing their number in the system. 
Equation (10) modeled the objective function, f(x) [40]; 

ƒ(x)=min

(
∑N

i=1
xi

)

i=0, 1,…,N (10)  

where N represents the bus number of the power system, and x is a variable vector defined for the optimization problem whose entries 
as xi. The value of xi (taken as one or zero) indicates whether the PMU is located at bus i or not. 

3.2. Problem constraints 

After formulating the objective function, it is essential to define its linear and nonlinear constraints. Firstly, the types of buses and 
TLs in any power system that are used for OPP problem are: a) Terminal bus is any bus which connected to the rest of the bus system 
through an individual TL, b) Radial buses are the buses connected radially to ZIBs through radial links, and c) Cross-links are the TLs 
that connecting radial buses to each other’s. Then, considering or ignoring the presence of ZIBs will affect the OPP restrictions, as 
illustrated in the following subsections. 

3.2.1. OPP constraints without considering ZIB 
In this case, the rules from 1 to 4 (in section 2.1) are applied, hence the following constraints are considered: 
Constraint 1: For any TL to be fault observable, a PMU must be located at any of its two terminals. So, it is essential to apply the 

same spaced strategy when installing PMUs in the system. Hence for the N-bus system with H transmission lines, the constraint for jth 
TL is represented by (11) as: 

for line hj : xm
⃒
⃒xk ≥1 j= 1,2,….H (11)  

where m and k are the two end buses of the jth TL. 
The inequality (11) denotes that a PMU is installed at either bus m, bus k, or both end buses of line j. This guarantees that at least one 

PMU is installed at any one of the two end busses of each TL. Accordingly, whenever a fault occurs at any TL, both current and voltage 
phasors at one terminal are measured whereas the voltage phasor at the other terminal is obtainable, either measured directly or 
calculated. This condition guarantees the full fault observability of the transmission system. 

Constraint 2: For terminal buses, PMU must be placed directly. Thus, this can be expressed by (12). 

xi =1 (12)  

3.2.2. OPP constraints considering ZIB 
The presence of ZIBs in the transmission system is used as pseudo-information. In this case, the system will be observable during 

faults with a lower number of PMUs compared to the case when the ZIBs are not included. The required number of PMUs is determined 
depending on how the zero-injection buses are connected to the transmission system. In case the ZIBs are considered, all the above- 
mentioned rules from 1 to 6 (in section 2.1) are applied. In addition to the previous two constraints, the next constraints are added. 

Constraint 3: When a ZIB is connected to the network through radial TLs only, the number of PMUs necessitated to observe faults in 
the ZIB area is the same as the number of radial TLs. The reason is that the remote buses connected to the ZIB, i.e., radial buses, are 
considered as terminal buses and a PMU must be installed at each of them. This is the most restraining case. Therefore, for “M" radial 
buses connected to a “j" ZIB, the following constraint is represented by (13): 
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xj +
∑M

i=1
xi ≥ M (13) 

Constraint 4: When cross-links interconnect radial buses, a smaller number of PMUs is required. In this case, the radial buses are not 
considered as terminal buses in the ZIB zone. Hence, in general, the PMUs’ numbers needed for fully observing faults in TLs linked with 
ZIBs will be identical to the radial buses’ numbers minus cross-links. So, in case of the presence of cross-links, the last equation must be 
modified to (14). 

xj +
∑M

i=1
xi ≥ M − CL (14)  

where CL is the number of cross-links related to bus j. 
By employing any optimization technique for solving the former objective function (10) subjected to the constraints specified by 

(11) to (14), the optimal PMUs’ placements are accomplished for achieving fault observability. 

4. Coronavirus herd immunity optimizer 

A rapidly spread respiratory virus, COVID-19, has attacked humanity all over the world since December 2019. Lots of experiments 
have been done to find powerful treatments to eradicate the severe epidemic. Until this happens, flock immunity strategies are still the 
effective way to prevent this fatal virus from being spread. Flock immunity is achieved when many people have received their natural 
protection against COVID-19 infection, and this is done either if they have got vaccines or are naturally infected and treated, as 
illustrated in Fig. 2 [46,47]. The following steps summarize flock immunity:  

1. Some susceptible people get their infection from other already infected people.  
2. Immunity would be gained against coronavirus for the recovered people who represent the largest proportion, while the minority of 

the infected people are being died.  
3. Each human has immunity and would be able to prevent this virus from being spread, and hence all people would get their self-anti- 

coronavirus protection. 

CHIO is a recent meta-heuristic optimization algorithm in which both the COVID-19 spreading phenomenon and flock immunity 
strategies are considered as its main inspiration origin [36]. It consists of two main groups of parameters including controller and 
algorithm parameters. Controller parameters administer the CHIO’s behavior and algorithm parameters establish the search area 
parameters. The CHIO algorithm consists of six procedural stages summarized in the flowchart shown in Fig. 3. 

The six stages can be further explained as follows:  

1. Initialize CHIO parameters: In this stage, both of controller and algorithm parameters of CHIO are initialized. The optimization 
problem is also initialized and can be expressed by Eq. (15). 

Fig. 2. Flock immunity strategy.  
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min
h

f(h), h ∈ (lb, ub) (15)  

where f(h) is the objective function to be solved for each person within the population (or a case) h = (h1, h2,….., he) and hp is the 
decision variable indexed by p within available e decision variables for every case, while lb and ub are the minimum and maximum 
limits of hp.  

2. Search-space generation: In this stage, a random formulation of the herd immunity search space (HISS) of the optimization problem 
is set. HISS can be expressed by an array as illustrated in (16). 

Fig. 3. CHIO algorithm flowchart.  
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HISS=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1
1 h1

2

h2
1 h2

2

⋯ h1
e

⋯ h2
e

⋮ ⋮
hPoS

1 hPoS
2

⋮ ⋮
⋯ hPoS

e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

where every line k represents an individual case hk which is defined by (17). 

hk
p = lbp +

(
ubp − lbp

)
∗ U(0,1),ꓯp=(1, 2,…, e) (17)  

where U(0,1) represents a uniform random number between 0 and 1. 
Equation (15) is applied for all individuals h separately to determine their objective functions (Immune rate), while, for each 

individual case within the HISS, a state vector (SV) is initiated by either 1 or 0. According to the initial infection rate size, C0, ones are 
produced randomly in SV.  

3. Evolving of herd immunity: This is the main improvement loop of CHIO. Based on the original spreading rate, BRr, decision variables 
can still be constant or be affected (reduced by a factor) due to social spacing according to 3 scenarios as expressed by (18). 

hk
p(t+1)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk
p(t),α ≥ BRr (No changes)

hk
p(t) + α ∗

(
hk

p(t) − hF
p(t)
)
,α ∈

(

0,
BRr

3

)

(Infected)

hk
p(t) + α ∗

(
hk

p(t) − hS
p(t)
)
,α ∈

(
BRr

3
,
2 ∗ BRr

3

)

(Susceptible)

hk
p(t) + α ∗

(
hk

p(t) − hI
p(t)
)
,α ∈

(
2 ∗ BRr

3
,BRr

)

(Immuned)

(18)  

where α is a random number ∈ (0,1). For infected cases, hF
p(t) is spontaneously chosen based on the SV from each infected case hF, 

hence F = {p|SV(p) = 1}. For susceptible cases, hS
p(t) is spread randomly from each susceptible individual hS, and is centralized within 

SV, S = {p|SV(p) = 0}. For immunized cases, hI
p(t) represents the perfect protected individual hI within SV such that f

(
hI
)

=

min
k∼{K|SV(K)=2}

f
(

hk
)

.  

4. Search-space update: Determination of the objective function (Immune rate) is done for every produced case, the new solution 
replaces the previous one only if the immunity is enhanced, i.e., f

(
Ik(t + 1)

)
< f
(
Ik(t)

)
. If a solution is replaced, then its Age value 

Ak would be incremented by 1 in case of SVk = 1, i.e., infected case. Also, the SV would be updated for the produced solution 
according to (19) as follows: 

SVk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if f
(

hk(t + 1)
)
<

f(h)k
(t + 1)

Δf(h)
Ʌ SVk = 0 Ʌ Cor vir

(
hk(t + 1)

)

2 if f
(

hk(t + 1)
)
<

f(h)k
(t + 1)

Δf(h)
Ʌ SVk = 1

(19)  

where Cor vir
(

hk(t+1)
)

represents a binary value set to 1 via inheritance of hk(t+1) from infected individuals, and Δf(h) denotes the 

individuals’ fitness average rate which is expressed as Δf(h) =

∑PoS
p=1

f(hp)
PoS .  

5. Decease stage: In this stage the age of each infected case, i.e., hk(t + 1) Ʌ SVk = 1), is put in a comparison with the death rate of 
infected cases. If (Ak ≥ MaxAGE), this solution will be removed and that case will be considered dead. Then a regeneration process of 
a newer solution is done with setting (Ak = 0) and (SVk = 0).  

6. Stoppage criteria: The 3rd, 4th, and 5th stages are repeated until the pre-determined iterations number (Max Itr) is reached. By 
reaching this condition, only immunized and susceptible individuals would appear in the search space with the elimination of those 
who are infected. 
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5. Proposed CHIO for OPP 

The CHIO is used to determine the minimum number of PMUs in an N-bus power system and their optimal placements for full 
observability. On applying the CHIO for OPP the following items are considered:  

- The CHIO search agents are the buses on which the PMUs will be installed and these search agents are represented by the “N” 
dimension.  

- The total number of the PMUs is chosen to represent the fitness function in the OPP problem. 

The following steps summarize the procedure optimal PMUs placement-based CHIO for full TL observability whereas Fig. 4 depicts 
a flowchart to illustrate these steps.  

Step 1 Collect the system data: Create both bus and branch matrices for the studied system. The bus matrix detects the total system buses 
and the locations of both generation and load buses. Whereas, the branch matrix identifies the TLs interconnecting buses and 
their number.  

Step 2 Prepare the required data for optimization: Both bus and branch matrices are coded in the computational environment, which 
produces terminal buses, ZIBs, radial buses, and cross-links.  

Step 3 Detect terminal buses: Each terminal bus should have a PMU installed on it, i.e., xi = 1.  
Step 4 Detect ZIBs: When considering the ZIB effect, apply the constraint of, xj ≥ (radial TLs – cross-links) for any zero-injection bus, j, 

considering the cross-links related to that bus (if presented).  

Step 5 Check fault observability: Ensure that any TL has at least one PMU located at each of its buses for fault observability, i.e., xm + xk 
≥ 1 where m and k are the two end buses of the TL unless this line is radial (only when considering ZIB effect).  

Step 6 Obtain the correct optimal solution: Apply the proposed CHIO-based method to solve the OPP problem and detect the optimal 
number and placement of PMUs adequate for full fault observability.  

Step 7 Ensure that the obtained solution is correct: The optimal solution is not approved unless the values of the objective function are 
constant for a pre-specified number of iterations, at least. 

6. Results and discussion 

To evaluate the proposed CHIO-based technique for solving the OPP problem, it is applied to different networks including small 6- 
bus, IEEE 9-bus, 14-bus, 30-bus, 118-bus, 300-bus, New England 39-bus, and Polish-2383 bus test systems and the results are 
investigated and discussed. 

6.1. Apply the proposed method to a small 6-bus system 

To illustrate the OPP objective function and constraints, the proposed technique is applied to the hypothetical 6-bus system 
illustrated in Fig. 5. 

Fig. 4. Flowchart of optimal PMUs placement-based CHIO for full TL observability.  

Fig. 5. Hypothetical 6-bus transmission test system.  
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In this test system, bus 3 is assumed as a ZIB, and buses (2, 4, 5, and 6) form radial buses. The cross-links are defined as L3 (between 
buses 2, and 4), and L8 (between buses 5, and 6). Meanwhile, L7 is not considered a cross-link, as each of the buses (4, and 5) forms its 
cross-link. In this case, the presence of ZIB, in the system will modify the optimization problem constraints as expressesd by (20). 

f(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = 1
x1 | x2 ≥ 1
x2 | x4 ≥ 1
x4 | x5 ≥ 1
x5 | x6 ≥ 1

x2 + x3 + x4 + x5 + x6 ≥ 2

(20) 

Firstly, the CHIO technique is applied to solve the optimization problem for this test system without considering the ZIB effect, i.e., 
without taking constraints 3 and 4 into account. The optimum number of PMUs is four units, and the optimum locations for installing 
them are at buses 1, 2, 3, and 5. 

It is necessary to notice that this solution provides the readability of the voltage at any bus, i.e., if a fault occurs at any TL, the 
voltage value of each bus in the system is available either by direct measurement or by calculation. Assume that a fault occurs in L3, the 
voltage at buses (1, 2, 3, and 5) can be measured directly by their own PMUs, while the voltage at bus-4 can be determined via the 
measured voltage at bus-3 and the current in L4 that measured by PMU at bus 3. Likewise, the voltage at bus 6 can be determined by 
utilizing PMU measurements at either bus 3 or bus 5. This means that the system is a full fault observable. 

On the other hand, applying the CHIO technique to solve the OPP problem considering the ZIB effect, gives three PMUs as an 
optimum number and buses 1, 4, and 6 as optimum locations. The three PMUs in this case, are adequate to make the system fully 
observable. It is important to record that a further solution is obtained by applying the WAO. The other solution states that the PMUs 
can be installed on buses 1, 4, and 5 and it also achieves full fault observability to the studied system. The results of this case study are 
summarized in Table 1. 

6.2. OPP problem solution for different test systems 

The proposed OPP-based-CHIO is represented using MATLAB® programming language and then implemented on several systems 
including IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus, in addition to New England 39-bus and Polish 2383-bus test systems. 
Systems’ information and single-line diagrams for all these test systems are available in detail [48,49]. The simulation results for 
calculating the optimal number of the PMUs and their locations in case of ignoring the ZIB effect are given in Table 2, whereas the 
results when considering the ZIB effect are shown in Table 3. The optimal solution should be constant for 250 iterations. 

It can be noticed from Table 2 that the optimal number of PMUs is in the range of approximately 56 % of the total number of buses 
for all the test systems. The exception is for the IEEE 9-bus system with the optimal number of PMUs equal to 2/3 of the total number of 
buses as it is a small system with restricted constraints. 

6.3. Fault location evaluation 

In this section, the fault observability within the OPP solution is evaluated. For this purpose, simulations are performed for the IEEE 
14-bus system illustrated in Fig. 6. 

6.3.1. Fault observability evaluation 
Consider a three-phase fault occurs at L12-13 (the TL connected bus 12 to bus 13) at 40 % of TL length from bus 13. To accurately 

locate this fault, the current and voltage at the two ends of the TL should be available. 
In the case of ignoring the ZIB effect, the optimum locations of PMUs are explained in Fig. 6-a according to results obtained in 

Table 2. In this case, both V13 and I13-12 are measured directly by the PMU installed at bus 13. While V12 is determined using the 
measured voltage at bus 6, and the measured current at L6-12. Also, I12-13 can be calculated by the current I6-12 measured from PMU 
installed at bus 6. By applying the resulting V12, I12-13, V13, and I13-12 into (7), the index, D, of the fault location is 0.4018 which locates 
the fault with an accuracy of 99.8274 %. 

In the case of considering the ZIB effect, the optimum locations of PMUs are explained in Fig. 6-b according to results obtained in 
Table 3. In this case, V12, I12-13, V13, and I13-12 can be measured directly from PMUs installed at buses 12, and 13. 

Table 4 demonstrates the PMUs responsible for measuring or determining both terminal voltages Vi and Vj and the currents Ii-j and 
Ij-i for any TLi-j in the IEEE 14-bus system. The results prove that the system is fully observable by installing the optimum number of 
PMUs obtained by the proposed CHIO. 

Table 1 
OPP for the 6-bus test system.   

Optimal PMU number Optimal PMU location 

Ignoring ZIB effect 4 1, 2, 3 & 5 
Considering ZIB effect 3 1, 4 & 6 

3 1, 4 & 5  
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6.3.2. Statistical evaluation 
Many cases are applied to the IEEE 14-bus test system at various fault conditions. These conditions are comprised of different fault 

types (phase to phase, single-phase to ground, phase to phase to ground and three-phase faults), source impedances, fault resistances 
(0.1, 10, and 1000 Ohms), fault inception angles (0◦, 30◦, and 90◦), and fault locations (10 %, 50 %, 90 %) of each transmission line. 
The total number of these cases is 540. The proposed method is evaluated by estimating the percentage error of fault location using Eq. 
(21). 

Error%=
|Estimated fault location − Real fault location|

Total length of transmission line
∗ 100% (21) 

Moreover, several performance indices are used in this study to analyze the performance and the assessment of the proposed method 
is compared with the application of a phasor domain technique based on the fundamental frequency method for fault location described 
in Ref. [43]. These indices include Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The maximum and average fault 
location errors are illustrated in Table 5. Moreover, the average values of the performance indices are illustrated in Fig. 7. It can be 
observed that; the proposed algorithm has a good result for wide-range fault conditions with slightly average errors of 0.2312 %. 

Table 2 
OPP results of the proposed CHIO ignoring the ZIB effect.  

Test system Optimal PMU 
number 

Optimal PMU locations 

IEEE 9-bus 6 1,2,3,5,6,8 
IEEE 14-bus 8 2,4,5,6,8,9,10,13 
IEEE 30-bus 16 1,4,5,6,9,10,12,15,17,19,21,24,26,27,28,29 
New England 39- 

bus 
20 2,3,4,6,8,10,12,14,16,17,19,20,21,22,24,25,26,29,36,39 

IEEE 118-bus 64 1, 5, 6, 8, 10, 11, 12, 15, 17, 19, 21, 23, 26, 27, 29, 32, 36, 37, 38, 40, 42, 43, 44, 46, 47, 49, 50, 51, 52, 54, 56, 59, 61, 62, 
64, 66, 68, 70, 72, 73, 75, 77, 79, 80, 83, 85, 87, 89, 90, 92, 94, 96, 100, 102, 103, 105, 107, 109, 111, 112, 114, 116, 117, 
118 

IEEE 300-bus 168 2, 3, 5, 8, 10, 13, 15, 18, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 55, 56, 59, 63, 65, 
66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 83, 84, 89, 92, 93, 94, 95, 96, 99, 101, 102, 103, 105, 106, 108, 109, 111, 112, 
118, 120, 124, 126, 127, 128, 129, 130, 136, 137, 142, 143, 145, 146, 148, 149, 156, 160, 162, 166, 167, 168, 169, 171, 
174, 175, 181, 182, 183, 185, 187, 189, 191, 196, 198, 199, 204, 207, 211, 212, 213, 215, 219, 220, 221, 222, 225, 227, 
228, 230, 231, 233, 234, 236, 238, 239, 240, 241, 242, 244, 245, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 
260, 261, 262, 267, 269, 270, 271, 272, 274, 275, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 
291, 292, 294, 295, 296, 297, 298, 299, 300 

Polish 2383-bus 
system 

1428 Appendix A  

Table 3 
OPP results of the proposed CHIO by considering the ZIB effect.  

Test system ZIB locations Optimal 
number 

Optimal PMU locations 

IEEE 9-bus 4, 7, 9 6 1, 2, 3, 5, 6, 8 
IEEE 14-bus 7 8 2, 4, 5, 8, 9, 11, 12, 13 
IEEE 30-bus 6, 9, 22, 25, 27, 28 14 1, 2, 5, 9, 10, 15, 16, 19, 21, 24, 25, 27, 28, 29 
New England 

39-bus 
1, 2, 5, 6, 9, 10, 11, 13, 14, 17, 19, 22 23 1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 

27, 28, 29, 30 
IEEE 118-bus 5, 9, 30, 37, 38, 63, 64, 68, 71, 81 55 1, 8, 10, 12, 15, 17, 19, 21, 23, 26, 30, 31, 34, 36, 40, 41, 45, 

46, 49, 51, 54, 55, 57, 58, 59, 60, 62, 64, 65, 67, 69, 70, 73, 79, 
80, 82, 84, 85, 87, 91, 92, 96, 100, 102, 104, 105, 109, 110, 
111, 112, 113, 114, 116, 117, 118 

IEEE 300-bus 4, 7, 12, 16, 19, 24, 34, 35, 36, 39, 42, 45, 46, 60, 62, 64, 69, 
74, 78, 81 82, 85, 86, 87, 88, 100, 115, 116, 117, 128, 129, 
130, 131, 132, 133, 134, 144, 150, 151, 158, 160, 164, 165, 
166, 168, 169, 174, 193, 194, 195, 210, 212, 219, 226, 237, 
240, 244, 263, 267, 268, 269, 270, 273, 278, 290 

157 5, 9, 11, 14, 18, 20, 21, 28, 29, 30, 31, 32, 34, 35, 37, 38, 42, 
44, 45, 47, 48, 50, 51, 55, 56, 59, 62, 65, 66, 67, 68, 69, 73, 74, 
75, 78, 81, 83, 84, 89, 93, 94, 95, 96, 97, 99, 101, 106, 108, 
109, 111, 112, 115, 119, 124, 125, 126, 127, 128, 129, 131, 
134, 136, 142, 143, 145, 149, 153, 155, 156, 159, 162, 163, 
166, 169, 171, 172, 175, 176, 178, 181, 182, 185, 188, 189, 
190, 191, 198, 199, 204, 206, 207, 211, 212, 213, 217, 220, 
221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 239, 
240, 241, 244, 245, 247, 248, 250, 251, 252, 253, 254, 255, 
256, 257, 258, 259, 260, 261, 262, 267, 269, 270, 271, 272, 
274, 275, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 
287, 288, 289, 291, 292, 294, 295, 296, 297, 298, 299, 300 

Polish 2383- 
bus 
system 

Appendix A 1368 Appendix A  
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6.4. OPP result analysis 

In this study, a simple, flexible, and fast convergence algorithm is proposed to solve the OPP problem and obtain the optimal PMUs 
number and their locations in the power systems considering full observability. The impacts of ZIBs and cross-links on the optimal 
number and locations of the PMUs are studied. Table 6 summarizes the impact of considering the ZIB effect on the optimal PMU 
number. 

Fig. 6. Distribution of PMUs in the IEEE 14 buses test system.  
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By considering the ZIB effect, the optimal number of PMUs for IEEE 30-bus, 118-bus, 300-bus, and Polish 2383-bus systems is 
reduced by 12.5 %, 14 %, 6.5 %, and 4.2 % respectively. This is mainly due to the presence of cross-links related to the ZIB in these 
systems which allows less required number of PMUs. While for the New England 39-bus system, the optimal number of PMUs required 
for fault observability is increased because it has no cross-links. For both the IEEE 9-bus and 14-bus systems, there is no change in the 
optimal number of PMUs needed for fault observability when considering or ignoring the ZIB effect due to their small sizing. However, 
the optimal locations are changed for the IEEE 14-bus system when considering the ZIB effect. 

The results acquired by applying CHIO for the OPP problem are compared with the PSO, ILP [40], DE [50], and SQP [51] based 
methods. In the literature, few methods were applied to large-scale power systems due to their complexity and slow coverage in 
contrast to the proposed algorithm. Table 7 gives a comparison between the proposed CHIO and other methods. The comparison is 
executed for the two cases with and without considering the ZIB effect. The results demonstrate that the CHIO effectively reaches the 
best optimal solution for all the studied systems which can be added to the above-mentioned advantages of applying the CHIO. 

Table 4 
Fault observability confirmation for IEEE-14 bus system under OPP solution.  

Faulty TL Without ZIB With ZIB 

Vj Vi Ij-i Ii-j Vj Vi Ij-i Ii-j 

1–2 PMU2 PMU5 PMU2 PMU5 PMU2 PMU5 PMU2 PMU5 
1–5 PMU5 PMU2 PMU5 PMU2 PMU5 PMU2 PMU5 PMU2 
2–3 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 
2–4 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 
2–5 PMU5 PMU2 PMU5 PMU2 PMU5 PMU2 PMU5 PMU2 
3–4 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 PMU4 PMU2 
4–7 PMU8/9 PMU4 PMU8/9 PMU4 PMU8/9 PMU4 PMU8/9 PMU4 
4–5 PMU5 PMU4 PMU5 PMU4 PMU5 PMU4 PMU5 PMU4 
4–9 PMU9 PMU4 PMU9 PMU4 PMU9 PMU4 PMU9 PMU4 
5–6 PMU6 PMU5 PMU6 PMU5 P11/12/13 PMU5 PMU11,12,13 PMU5 
6–11 PMU10 PMU6 PMU10 PMU6 PMU11 PMU12/13 PMU11 PMU5,12,13 
6–12 PMU13 PMU6 PMU13 PMU6 PMU12 PMU11/13 PMU12 PMU5,11,13 
6–13 PMU13 PMU6 PMU13 PMU6 PMU13 PMU11/12 PMU13 PMU5,11,12 
7–8 PMU8 PMU4/9 PMU8 PMU4/9 PMU8 PMU4/9 PMU8 PMU4/9 
7–9 PMU9 PMU4/8 PMU9 PMU4/8 PMU9 PMU4/8 PMU9 PMU4 or 8 
9–10 PMU10 PMU9 PMU10 PMU9 PMU11 PMU9 PMU11 PMU9 
9–14 PMU13 PMU9 PMU13 PMU9 PMU13 PMU9 PMU13 PMU9 
10–11 PMU6 PMU10 PMU6 PMU10 PMU11 PMU9 PMU11 PMU9 
12–13 PMU13 PMU6 PMU13 PMU6 PMU13 PMU12 PMU13 PMU12 
13–14 PMU9 PMU13 PMU9 PMU13 PMU9 PMU13 PMU9 PMU13  

Table 5 
Statistical evaluation of studied fault cases in IEEE 14-bus system.  

Line Fault location performance indices % 

Proposed method Method in Ref. [43] 

Max. error Avg. error RMSE MAE Max. error Avg. error RMSE MAE 

1–2 0.3119 0.2356 0.2405 0.1719 0.4060 0.2903 0.2211 0.2903 
1–5 0.2531 0.1912 0.1952 0.1395 0.3766 0.2681 0.1852 0.2681 
2–3 0.2901 0.2204 0.2248 0.1601 0.3951 0.2827 0.2378 0.2827 
2–4 0.3524 0.2683 0.2735 0.1946 0.4262 0.3067 0.2772 0.30665 
2–5 0.3011 0.2305 0.2348 0.1665 0.4006 0.2878 0.2569 0.28775 
3–4 0.3732 0.2837 0.2893 0.2060 0.4366 0.3144 0.2721 0.31435 
4–7 0.3395 0.2527 0.2586 0.1863 0.4198 0.2989 0.26134 0.29885 
4–5 0.2725 0.2124 0.2158 0.1515 0.3863 0.2787 0.2245 0.2787 
4–9 0.3124 0.2333 0.2386 0.1716 0.4062 0.2892 0.2307 0.28915 
5–6 0.3832 0.2879 0.2941 0.2109 0.4416 0.3165 0.2821 0.31645 
6–11 0.3312 0.2549 0.2594 0.1835 0.4156 0.3000 0.2432 0.29995 
6–12 0.2903 0.2125 0.2181 0.1586 0.3952 0.2788 0.2278 0.27875 
6–13 0.3413 0.2235 0.2356 0.1812 0.4207 0.2843 0.2227 0.28425 
7–8 0.2981 0.2199 0.2254 0.1632 0.3991 0.2825 0.2359 0.28245 
7–9 0.2837 0.1921 0.2006 0.1519 0.3919 0.2686 0.2256 0.26855 
9–10 0.3423 0.2417 0.2499 0.1853 0.4212 0.2934 0.2505 0.29335 
9–14 0.3152 0.2119 0.2217 0.1685 0.4076 0.2785 0.2389 0.27845 
10–11 0.3009 0.2233 0.2286 0.1650 0.4005 0.2842 0.2220 0.28415 
12–13 0.2387 0.1957 0.1976 0.1346 0.3694 0.2704 0.18976 0.27035 
13–14 0.3112 0.2325 0.2378 0.1710 0.4056 0.2888 0.2671 0.28875  
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7. Conclusion 

A novel PMU placement algorithm for observing the faults in power systems has been presented. Simple rules were used to avoid 
the complications of the numerical analysis. The proposed technique addressed the PMUs’ location as an optimization problem. The 
optimization algorithm based-CHIO was applied to attain the optimum locations and minimum number of PMUs in the power system. 
The effect of ZIBs’ information on the solution of the OPP problem has been investigated. The proposed CHIO was successfully applied 
to different IEEE test systems including IEEE-9 bus, 14-bus, 30-bus, 118-bus, and 300-bus, New England 39-bus, and Polish 2383-bus 
systems. Simulation results showed that any fault in any TL can be located using a limited number of PMUs which is fewer than the 
total bus number of the power system. Less number of PMUs needed for full fault observability was achieved compared to both PSO and 
ILP-based techniques as confirmed by the results. The results proved that the system was fully observable by installing the optimum 
number of PMUs as determined by the proposed CHIO and the fault has been located with a precious accuracy of more than 99 %. 
Therefore, the proposed method is applicable to electrical power systems that are required to be fully observable. The uncertainty of 
network parameters and PMU communication channels are additional factors that should be considered in future work. 
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Fig. 7. Accuracy evaluation of the proposed method on studied fault cases in IEEE 14-bus system.  

Table 6 
Impact of ignoring/considering the ZIB effect on the optimal PMUs number.   

IEEE 
9-bus 

IEEE 
14-bus 

IEEE 
30-bus 

New Eng. 
39-bus 

IEEE 
118-bus 

IEEE 
300-bus 

Polish 2383-bus 

Ignoring ZIB effect 6 8 16 20 64 168 1428 
Considering ZIB effect 6 8 14 23 55 157 1368  

Table 7 
Comparison between the proposed CHIO and other methods.  

System Ignoring the ZIB effect Considering the ZIB effect 

Method 

CHIO PSO SQP DE ILP CHIO PSO SQP DE ILP 

IEEE 9-bus 6 6 6 N/A N/A 6 6 6 N/A N/A 
IEEE 14-bus 8 8 8 8 8 8 8 8 8 8 
IEEE 30-bus 16 16 17 17 17 14 14 14 14 14 
New England 39-bus 20 20 N/A N/A N/A 23 23 23 N/A N/A 
IEEE 118-bus 64 64 64 N/A N/A 55 55 N/A N/A N/A 
IEEE 300-bus 168 N/A N/A N/A N/A 157 N/A N/A N/A N/A 

*N/A: Not available. 
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Appendix  

Appendix 
OPP results of applying the proposed CHIO on the Polish 2383-bus system ignoring/considering the ZIB effect  

Number of Terminal 
buses 

500 

Location of Terminal 
buses 

57,58,72,97,109,110,119,122,136,137,146,153,180,181,185,196,197,204,205,231,232, 
251,252,268,270,271,276,292,301,302,313,327,328,329,330,331,358,362,382,383,390, 
391,397,398,399,400,402,403,414,418,419,421,422,435,436,449,450,453,454,466,469, 
470,479,480,495,496,498,499,513,521,522,541,561,562,574,580,597,599,608,673,681, 
761,767,786,787,788,789,790,791,793,800,801,803,805,806,810,811,816,818,823,824, 
828,831,832,841,842,843,844,845,846,847,848,853,854,863,867,868,873,875,880,881, 
884,897,902,907,922,925,927,930,931,933,934,935,937,940,941,945,946,950,951,952, 
955,956,958,960,969,970,976,977,980,983,984,987,988,1000,1001,1002,1005,1006, 
1009,1010,1013,1014,1015,1016,1022,1023,1027,1028,1029,1032,1033,1034,1035, 
1036,1037,1038,1041,1042,1046,1047,1048,1056,1060,1061,1062,1064,1067,1068, 
1072,1073,1080,1085,1090,1091,1100,1109,1110,1116,1118,1124,1125,1126,1128, 
1130,1134,1135,1137,1150,1152,1157,1159,1160,1164,1165,1172,1173,1174,1176, 
1177,1180,1186,1187,1197,1198,1208,1210,1211,1218,1221,1224,1225,1238,1242, 
1246,1247,1252,1254,1255,1258,1263,1264,1270,1272,1273,1280,1281,1286,1287, 
1296,1297,1299,1300,1302,1304,1305,1314,1316,1317,1321,1322,1324,1327,1332, 
1333,1340,1341,1349,1350,1352,1361,1364,1370,1377,1386,1387,1391,1395,1396, 
1400,1404,1405,1406,1409,1412,1428,1429,1433,1434,1437,1438,1441,1442,1446, 
1447,1455,1456,1457,1458,1464,1465,1466,1471,1472,1473,1474,1480,1481,1493, 
1496,1497,1509,1510,1516,1519,1521,1529,1530,1541,1542,1547,1550,1551,1554, 
1555,1558,1559,1567,1568,1588,1590,1591,1596,1597,1604,1611,1614,1615,1621, 
1626,1627,1630,1631,1636,1648,1665,1670,1671,1672,1677,1678,1685,1692,1695, 
1696,1698,1699,1706,1707,1708,1710,1711,1713,1714,1718,1721,1722,1725,1732, 
1738,1740,1741,1749,1750,1751,1754,1765,1768,1769,1770,1771,1774,1779,1780, 
1785,1792,1798,1799,1800,1803,1805,1806,1808,1811,1813,1815,1816,1817,1821, 
1841,1842,1849,1851,1852,1857,1858,1866,1870,1872,1879,1887,1890,1896,1899, 
1905,1908,1909,1915,1928,1936,1937,1938,1940,1941,1954,1958,1961,1972,1973, 
1979,1980,1982,1994,1997,2003,2004,2005,2008,2009,2016,2017,2019,2024,2026, 
2028,2030,2031,2039,2040,2051,2053,2057,2062,2063,2081,2082,2083,2094,2109, 
2110,2111,2115,2128,2130,2144,2148,2149,2153,2162,2163,2176,2181,2182,2183, 
2189,2201,2207,2219,2252,2253,2266,2277,2289,2291,2297,2301,2302,2307,2312, 
2314,2315,2320,2325,2337,2346,2364,2369,2370,2371,2373 

Number of ZIB 557 
Location of ZIB 1,2,3,4,5,6,7,8,9,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,32,33,34,35,36,37,38, 

39,40,46,47,48,49,50,51,52,53,54,55,56,59,60,61,62,66,68,69,70,71,72,73,74,75,76, 
77,78,79,80,81,82,88,89,90,91,92,94,96,98,99,100,101,102,106,107,108,112,113,114, 
115,116,117,118,119,120,121,122,128,129,130,133,134,135,136,137,138,141,142,143, 
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163, 
164,165,166,167,168,169,170,171,172,173,174,175,178,179,181,182,194,204,243,280, 
309,310,312,321,322,332,336,355,361,362,374,375,449,450,470,513,516,517,518,519, 
539,546,564,565,568,569,576,587,614,617,634,644,645,662,663,682,726,727,734,751, 
777,786,789,791,797,799,800,801,806,807,812,817,819,821,822,825,826,829,833,836, 
840,844,848,854,855,856,863,864,869,874,876,879,880,881,885,893,898,903,915,916, 
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Number of Terminal 
buses 

500 

921,923,924,926,927,928,931,932,933,934,936,937,938,940,941,946,953,956,966,967, 
969,971,972,977,981,984,985,986,987,989,990,991,1003,1006,1007,1008,1013,1017, 
1018,1019,1021,1023,1025,1031,1040,1043,1044,1047,1048,1049,1050,1052,1057, 
1062,1063,1065,1069,1070,1081,1085,1092,1093,1095,1096,1098,1101,1108,1111, 
1112,1114,1115,1119,1120,1121,1123,1127,1129,1131,1135,1151,1152,1153,1157, 
1158,1159,1161,1162,1164,1166,1167,1178,1180,1188,1189,1196,1199,1200,1208, 
1209,1212,1213,1219,1222,1225,1226,1227,1230,1231,1239,1243,1248,1252,1253, 
1256,1257,1261,1264,1265,1271,1274,1275,1279,1281,1288,1298,1299,1300,1305, 
1306,1307,1315,1318,1319,1321,1323,1334,1335,1341,1343,1344,1350,1353,1362, 
1365,1370,1371,1376,1378,1382,1383,1384,1392,1394,1396,1397,1400,1401,1407, 
1412,1413,1423,1431,1432,1439,1440,1443,1448,1449,1455,1456,1459,1460,1465, 
1466,1468,1470,1484,1491,1494,1498,1499,1502,1503,1511,1520,1522,1523,1524, 
1531,1532,1539,1548,1560,1561,1562,1563,1564,1569,1570,1577,1581,1583,1589, 
1591,1592,1601,1618,1621,1631,1632,1636,1647,1648,1649,1650,1665,1670,1681, 
1695,1713,1732,1736,1740,1747,1748,1762,1774,1775,1777,1780,1783,1790,1797, 
1802,1811,1812,1814,1822,1823,1835,1840,1846,1851,1865,1872,1877,1878,1880, 
1881,1885,1887,1896,1899,1902,1903,1906,1907,1914,1919,1920,1922,1944,1948, 
1956,1958,1972,1982,1987,2009,2014,2017,2019,2025,2031,2059,2060,2061,2062, 
2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077, 
2078,2079,2080,2081,2089,2090,2092,2109,2111,2112,2113,2133,2134,2157,2158, 
2163,2165,2166,2169,2170,2181,2186,2187,2188,2204,2227,2257,2258,2261,2280, 
2314,2325,2340,2357,2362,2365,2366,2367,2377,2378,2380,2381 

Ignoring ZIB effect 

Optimal number of 
PMU 

1428 

Optimal locations of 
PMU 

1,4,5,6,9,10,11,12,13,17,21,23,26,29,30,34,36,42,48,49,51,53,56,57,58,60,61,65,68,69,70, 
72,74,76,77,79,80,81,86,88,92,97,99,101,104,105,106,108,109,110,113,116,117,119,122, 
128,129,131,133,135,136,137,138,139,142,144,146,147,151,153,154,157,158,159,160,161, 
162,165,166,168,169,171,172,178,180,181,182,183,185,186,187,192,193,194,196,197,198, 
199,201,202,204,205,207,215,217,219,222,223,224,225,226,227,228,229,231,232,233,237, 
249,250,251,252,254,255,256,257,259,260,264,268,269,270,271,275,276,277,280,282,284, 
285,287,290,291,292,296,297,299,301,302,304,305,307,308,309,310,312,313,314,318,321, 
322,323,324,326,327,328,329,330,331,333,334,335,336,337,344,345,346,349,352,353,355, 
357,358,361,362,363,364,366,369,370,371,372,373,374,378,379,380,382,383,384,388,390, 
391,394,397,398,399,400,402,403,408,409,412,414,415,418,419,420,421,422,423,425,430, 
431,432,433,434,435,436,438,441,442,444,446,449,450,452,453,454,455,456,459,460,462, 
464,466,467,468,469,470,472,473,474,475,476,477,479,480,481,484,485,487,490,491,492, 
493,494,495,496,498,499,500,502,505,508,511,512,513,516,517,521,522,526,527,531,534, 
536,539,541,542,545,547,556,557,558,561,562,565,572,574,576,577,580,581,582,583,587, 
588,591,592,593,594,596,597,599,600,601,603,605,607,608,611,612,613,614,617,618,620, 
621,625,626,627,629,631,632,634,635,640,643,647,649,650,651,653,654,655,658,659,666, 
667,669,670,672,673,674,676,677,678,679,681,682,683,685,686,689,690,691,692,695,696, 
697,698,699,700,704,705,708,710,711,712,714,715,717,718,720,722,723,724,727,728,730, 
731,733,734,735,737,738,739,740,741,742,745,746,747,750,751,752,755,758,759,761,762, 
763,765,766,767,769,770,771,773,776,778,780,781,782,785,786,787,788,789,790,791,792, 
793,797,798,799,800,801,803,805,806,807,808,810,811,812,813,815,816,817,818,819,820, 
821,823,824,825,826,827,828,830,831,832,833,835,836,838,839,841,842,843,844,845,846, 
847,848,849,851,852,853,854,857,859,860,862,863,864,866,867,868,870,871,873,875,880, 
881,883,884,885,887,888,890,891,897,898,902,905,906,907,909,911,913,916,921,922,923, 
925,927,929,930,931,932,933,934,935,937,940,941,942,945,946,947,948,949,950,951,952, 
954,955,956,957,958,960,963,965,966,967,968,969,970,973,974,975,976,977,979,980,983, 
984,985,987,988,989,991,992,993,995,996,1000,1001,1002,1004,1005,1006,1008,1009, 
1010,1011,1012,1013,1014,1015,1016,1018,1019,1020,1021,1022,1023,1027,1028,1029, 
1031,1032,1033,1034,1035,1036,1037,1038,1039,1041,1042,1043,1044,1046,1047,1048, 
1051,1052,1053,1055,1056,1057,1059,1060,1061,1062,1064,1066,1067,1068,1072,1073, 
1074,1075,1076,1077,1080,1081,1083,1084,1085,1086,1088,1090,1091,1092,1095,1096, 
1097,1098,1100,1102,1103,1104,1106,1107,1108,1109,1110,1111,1114,1115,1116,1118, 
1119,1121,1124,1125,1126,1127,1128,1130,1134,1135,1136,1137,1138,1139,1140,1141, 
1144,1147,1148,1149,1150,1152,1153,1154,1156,1157,1158,1159,1160,1162,1164,1165, 
1168,1171,1172,1173,1174,1176,1177,1178,1180,1181,1183,1185,1186,1187,1188,1189, 
1190,1194,1196,1197,1198,1201,1202,1205,1206,1207,1208,1209,1210,1211,1212,1213, 
1214,1218,1219,1220,1221,1224,1225,1226,1229,1230,1231,1232,1233,1234,1235,1237, 
1238,1240,1241,1242,1244,1245,1246,1247,1248,1249,1252,1254,1255,1257,1258,1260, 
1262,1263,1264,1266,1268,1269,1270,1271,1272,1273,1274,1275,1277,1279,1280,1281, 
1285,1286,1287,1289,1290,1292,1294,1296,1297,1298,1299,1300,1301,1302,1304,1305, 
1307,1309,1312,1313,1314,1316,1317,1318,1321,1322,1323,1324,1325,1327,1328,1331, 
1332,1333,1335,1337,1338,1339,1340,1341,1344,1346,1349,1350,1352,1353,1357,1360, 
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Number of Terminal 
buses 

500 

1361,1362,1364,1365,1367,1370,1373,1375,1377,1378,1385,1386,1387,1388,1391,1394, 
1395,1396,1398,1399,1400,1402,1404,1405,1406,1407,1409,1410,1411,1412,1416,1417, 
1418,1422,1423,1425,1426,1428,1429,1432,1433,1434,1435,1436,1437,1438,1439,1440, 
1441,1442,1443,1445,1446,1447,1448,1449,1451,1455,1456,1457,1458,1461,1463,1464, 
1465,1466,1467,1469,1470,1471,1472,1473,1474,1477,1479,1480,1481,1484,1485,1487, 
1491,1492,1493,1495,1496,1497,1499,1501,1504,1505,1508,1509,1510,1511,1515,1516, 
1519,1521,1522,1525,1526,1528,1529,1530,1531,1536,1541,1542,1543,1547,1548,1550, 
1551,1552,1553,1554,1555,1556,1558,1559,1560,1561,1562,1563,1565,1567,1568,1569, 
1571,1575,1582,1587,1588,1590,1591,1592,1593,1596,1597,1598,1601,1602,1603,1604, 
1605,1611,1614,1615,1617,1619,1620,1621,1622,1623,1625,1626,1627,1629,1630,1631, 
1635,1636,1639,1642,1645,1648,1651,1655,1657,1658,1660,1662,1665,1668,1670,1671, 
1672,1673,1674,1675,1677,1678,1682,1683,1685,1687,1689,1690,1691,1692,1693,1694, 
1695,1696,1698,1699,1701,1703,1704,1706,1707,1708,1709,1710,1711,1713,1714,1715, 
1716,1718,1721,1722,1724,1725,1727,1732,1733,1734,1736,1737,1738,1739,1740,1741, 
1742,1743,1744,1749,1750,1751,1752,1753,1754,1755,1756,1758,1759,1760,1761,1763, 
1765,1766,1768,1769,1770,1771,1774,1775,1779,1780,1781,1782,1784,1785,1787,1789, 
1792,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808, 
1809,1810,1811,1813,1815,1816,1817,1819,1820,1821,1822,1823,1825,1826,1827,1836, 
1838,1841,1842,1845,1846,1847,1849,1850,1851,1852,1854,1856,1857,1858,1859,1860, 
1861,1862,1863,1866,1868,1869,1870,1872,1875,1876,1877,1878,1879,1880,1881,1882, 
1883,1884,1887,1890,1892,1893,1894,1896,1899,1900,1905,1907,1908,1909,1910,1911, 
1912,1913,1914,1915,1916,1917,1921,1923,1925,1927,1928,1929,1932,1934,1936,1937, 
1938,1939,1940,1941,1943,1945,1948,1951,1952,1953,1954,1955,1956,1957,1958,1960, 
1961,1963,1966,1967,1968,1970,1972,1973,1974,1975,1978,1979,1980,1982,1983,1984, 
1985,1987,1989,1990,1991,1992,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003, 
2004,2005,2006,2008,2009,2010,2013,2014,2016,2017,2019,2022,2023,2024,2025,2026, 
2028,2030,2031,2032,2036,2037,2039,2040,2041,2043,2048,2049,2050,2051,2052,2053, 
2055,2057,2058,2060,2062,2063,2064,2065,2067,2070,2071,2075,2076,2079,2081,2082, 
2083,2086,2090,2091,2092,2094,2096,2098,2099,2100,2101,2102,2103,2107,2109,2110, 
2111,2112,2113,2115,2117,2120,2123,2124,2125,2126,2127,2128,2130,2132,2135,2138, 
2142,2144,2147,2148,2149,2152,2153,2155,2157,2159,2162,2163,2164,2165,2167,2168, 
2170,2173,2174,2176,2178,2181,2182,2183,2184,2188,2189,2191,2192,2193,2194,2196, 
2201,2202,2204,2205,2207,2208,2214,2215,2219,2220,2222,2223,2224,2227,2228,2229, 
2230,2231,2234,2240,2241,2242,2244,2245,2250,2251,2252,2253,2254,2258,2260,2266, 
2267,2268,2269,2273,2275,2277,2278,2279,2280,2282,2286,2289,2291,2292,2294,2295, 
2296,2297,2299,2300,2301,2302,2305,2307,2309,2310,2311,2312,2314,2315,2320,2322, 
2324,2325,2326,2329,2330,2331,2333,2336,2337,2339,2342,2346,2349,2350,2351,2354, 
2355,2356,2357,2360,2361,2362,2363,2364,2368,2369,2370,2371,2372,2373,2374,2375, 
2377,2378,2383 

Considering ZIB effect 

Optimal number of 
PMU 

1368 

Optimal locations of 
PMU 

6,10,12,14,15,16,18,19,23,24,25,29,30,31,32,34,37,38,39,40,41,43,45,46,47,48,54,55,56,57,58, 
62,63,65,67,68,69,70,72,73,74,75,78,80,81,82,83,89,91,93,94,95,96,97,99,100,101,102,105,106, 
107,109,110,113,115,116,119,121,122,125,126,127,128,129,132,134,136,137,138,139,140,146, 
147,149,151,152,153,154,156,157,158,160,163,164,166,168,172,175,176,178,180,181,182,185, 
189,190,192,193,195,196,197,198,199,200,201,203,204,205,206,210,211,212,213,218,219,220, 
223,224,225,227,228,229,231,232,233,234,235,237,238,239,240,241,242,244,249,250,251,252, 
253,258,259,261,262,263,265,266,268,270,271,274,275,276,280,281,285,286,287,289,291,292, 
293,295,300,301,302,304,305,309,313,314,316,317,320,323,325,326,327,328,329,330,331,337, 
339,340,341,344,346,349,350,351,352,358,359,360,361,362,363,365,366,370,371,372,374,380, 
382,383,384,386,388,390,391,393,394,396,397,398,399,400,402,403,405,406,408,409,411,412, 
413,414,415,417,418,419,420,421,422,427,429,432,433,435,436,439,440,441,443,444,448,449, 
450,452,453,454,456,457,462,463,465,466,467,468,469,470,472,473,474,477,479,480,481,483, 
484,488,490,495,496,497,498,499,500,501,502,503,504,505,510,511,512,513,516,521,522,523, 
524,526,527,528,529,532,533,534,535,537,541,542,543,554,556,557,558,559,561,562,563,564, 
566,567,570,574,578,579,580,582,588,590,592,594,597,599,601,602,603,605,606,607,608,610, 
611,612,613,615,617,618,620,624,627,632,638,640,643,644,647,648,652,654,655,656,657,659, 
660,663,669,670,673,675,676,678,681,682,683,684,685,689,691,693,699,700,704,708,709,710, 
711,716,719,722,724,727,728,730,733,738,740,741,742,745,746,747,749,751,752,753,757,758, 
761,762,765,767,768,769,778,779,782,786,787,788,789,790,791,793,797,798,800,801,803,805, 
806,807,810,811,812,814,816,817,818,819,821,823,824,825,827,828,830,831,832,833,834,837, 
841,842,843,844,845,846,847,848,849,853,854,856,861,863,864,865,866,867,868,869,871,872, 
873,875,880,881,883,884,886,887,888,891,892,894,897,899,900,901,902,903,904,906,907,908, 
913,915,918,919,921,922,923,925,926,927,930,931,933,934,935,937,939,940,941,942,943,945, 
946,947,948,949,950,951,952,953,954,955,956,958,960,962,964,965,966,967,969,970,973,976, 
977,980,983,984,985,987,988,992,993,995,998,1000,1001,1002,1003,1005,1006,1007,1008, 
1009,1010,1013,1014,1015,1016,1017,1019,1020,1022,1023,1027,1028,1029,1031,1032,1033, 
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Number of Terminal 
buses 

500 

1034,1035,1036,1037,1038,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1051,1052, 
1053,1055,1056,1057,1060,1061,1062,1063,1064,1066,1067,1068,1072,1073,1076,1079,1080, 
1081,1082,1083,1084,1085,1087,1089,1090,1091,1099,1100,1102,1103,1105,1106,1108,1109, 
1110,1111,1112,1113,1115,1116,1117,1118,1122,1123,1124,1125,1126,1127,1128,1130,1133, 
1134,1135,1137,1138,1139,1140,1141,1142,1143,1147,1148,1149,1150,1151,1152,1154,1155, 
1156,1157,1159,1160,1161,1162,1163,1164,1165,1166,1167,1169,1171,1172,1173,1174,1175, 
1176,1177,1178,1179,1180,1182,1183,1184,1186,1187,1190,1192,1197,1198,1200,1201,1203, 
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