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a b s t r a c t

Cellular membranes are formed from different lipids in various amounts and proportions depending on
the subcellular localization. The lipid composition of membranes is sensitive to changes in the cellular
environment, and its alterations are linked to several diseases. Lipids not only form lipid-lipid interac-
tions but also interact with other biomolecules, including proteins.
Molecular dynamics (MD) simulations are a powerful tool to study the properties of cellular mem-

branes and membrane-protein interactions on different timescales and resolutions. Over the last few
years, software and hardware for biomolecular simulations have been optimized to routinely run long
simulations of large and complex biological systems. On the other hand, high-throughput techniques
based on lipidomics provide accurate estimates of the composition of cellular membranes at the level
of subcellular compartments. Lipidomic data can be analyzed to design biologically relevant models of
membranes for MD simulations. Similar applications easily result in a massive amount of simulation data
where the bottleneck becomes the analysis of the data. In this context, we developed LipidDyn, a Python-
based pipeline to streamline the analyses of MD simulations of membranes of different compositions.
Once the simulations are collected, LipidDyn provides average properties and time series for several
membrane properties such as area per lipid, thickness, order parameters, diffusion motions, lipid density,
and lipid enrichment/depletion. The calculations exploit parallelization, and the pipeline includes graph-
ical outputs in a publication-ready form. We applied LipidDyn to different case studies to illustrate its
potential, including membranes from cellular compartments and transmembrane protein domains.
LipidDyn is available free of charge under the GNU General Public License from https://github.com/
ELELAB/LipidDyn.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Lipids are essential metabolites with crucial cellular functions
and play a major role in most biological systems [1-3]. Lipid diver-
sity, which depends on their chemical composition, is enormous
and predicted to be in the range of hundreds of thousands [4,5],
reflecting the variety of biological functions that lipids fulfill. Many
different lipid species form the building blocks of cellular mem-
branes [6]. Lipid compositions of cellular membranes can vary
depending on the subcellular localization and are sensitive to cel-
lular conditions and other factors [6]. Indeed, lipid alterations have
been linked to different pathophysiological conditions, from cancer
[5,7,8] to neurodegenerative diseases [9-11]. Lipid components of
membranes are crucial determinants in the mechanism of action
of several drugs [12]. Hence, targeting membrane lipids is becom-
ing a possible therapeutic approach [13]. For instance, multidrug-
resistant cancer cells present redistribution of phosphatidylserines
from the inner leaflet of the plasma membrane, in which they
mainly exist under physiological conditions, to the outer leaflet.
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Lipids interact with other biomolecules, including proteins, and
the two classes of biomolecules profoundly impact each other [14].
For example, lipids can influence protein dynamics and protein
conformation [15]. On the other hand, membrane proteins can
alter the biophysical properties of the lipids in the biological mem-
branes [16].

Molecular dynamics (MD) simulations are a suitable tool to
investigate the properties of cellular membranes and the
membrane-protein interactions on different timescales and differ-
ent levels of resolution, from coarse grain to all-atom representa-
tions [17]. The most commonly used physical models, i.e., force
fields, for MD simulations, are Martini [18,19] and the ones in
the CHARMM [20,21] and AMBER [22,23] families. These force
fields cover most of the biologically relevant lipids and allow an
accurate description of membranes, including various lipid species
and their interactions with proteins. However, for complex sys-
tems, other force fields, such as Slipids [24] or FUJI [25], may rep-
resent valuable alternatives. Recent developments in software and
hardware for biomolecular simulations allow access to the
microsecond-millisecond timescale of large and complex biological
systems [26-28], such as lipid bilayers of heterogeneous composi-
tion [29].

A robust framework for MD simulations opens new venues for
understanding the complexity of biological membranes at the
organelle level. One of the open challenges is how to design the
lipid species and their ratio for the membrane models to use in
simulations. On the experimental side, high throughput lipidomics
provides elegant methodological solutions to profile lipids at the
cellular [30-33] and organelle level [34,35]. In this context, we
could envision using lipidomics data from assays performed in dif-
ferent cellular conditions on different subcellular fractions to
design the bilayers to study with MD simulations. Similar applica-
tions will easily result in massive simulation data to analyze. Var-
ious tools calculate properties from MD simulations that can be
compared to experimental observables from biophysical spectro-
scopies [36-42]. A bottleneck is making reproducible and simplify-
ing the steps for analysis when several simulations should be
analyzed in parallel. Pipeline engines can help in this regard.

In this context, we developed LipidDyn, an automated pipeline
to streamline the analyses of MD simulations of membranes of dif-
ferent compositions. Our pipeline allows the estimate, in a non-
time-consuming manner, of average properties and time series
for different membranes. We also applied it to three case studies
as an example of LipidDyn applicability.
2. Results

2.1. Overview on LipidDyn

LipidDyn is a Python package for analyzing biophysical mem-
brane properties and facilitating their interpretation in a non-
time-consuming manner (Fig. 1). LipidDyn allows to perform the
analyses through an easy and practical Application Programming
Interface (API) and implements full-fledged user programs accessi-
ble from the command line, including support for both analysis
and plotting of the results. In this way, users can perform standard
analyses of general interests on their molecular ensembles and
write custom Python scripts that integrate several calculations
seamlessly.

LipidDyn is based on popular and well-maintained open-source
packages, such as MDAnalysis [43], to handle trajectory files and
other packages as back-ends [44].

While using the provided API ensures the highest degree of flex-
ibility, it also requires extra programming work and expects the
user to be familiar with Python packages. Nonetheless, the Lipid-
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Dyn user scripts still allow for fine-tuning some aspects of the cal-
culation either by command-line options or by using configuration
files. This flexibility makes it possible to support simulations using
different molecular mechanics physical models to represent the
system under investigation. In addition, the workflow supports
both the analyses of time-series and average properties. LipidDyn
applies to both all-atom and coarse-grained topologies and trajec-
tories. We include configuration files in the package for both short
trajectories with all-atom (CHARMM36) and coarse-grained
topologies (Martini).

We designed LipidDyn to process trajectory files in GROMACS
format. It requires three input files: i) a configuration file (YAML
format) including the definition (using the MDanalysis syntax) of
each headgroup of the lipid species included in the system and
the ratio of each lipid species to the total number of lipids in the
system, ii) a topology file (.gro file), iii) a trajectory file (.xtc,.trr,
or.gro).

LipiDyn handles trajectory files that contain many frames with
data for large systems, including lipid bilayers and proteins. We
tested LipiDyn with all-atom and coarse-grained trajectories of
lipid bilayers and membrane proteins, including a different num-
ber of frames (10,000–200,000) and atoms/coarse-grained beads
(10,000–50,000).

We focused on parameters that can be compared with experi-
mental data. LipidDyn includes different analyses, which can be
performed independently or collectively. It consists of the calcula-
tion of i) membrane thickness, ii) area per lipid (APL), iii) two-
dimensional (2D) lipid density maps, iv) lipid movements, v) lipid
enrichment/depletion maps, vi) order parameter (Fig. 1).

An essential prerequisite for analysis is the identification of the
leaflets (defined as upper and lower leaflets) of the bilayer. In Lipid-
Dyn, we use the LeafletFinder class from MDAnalysis to identify
which lipids belong to each leaflet, considering their headgroups
or, in some cases, other atoms as representatives of each lipid
molecule.

2.1.1. Membrane thickness and area per lipid (APL)
The FATSLiM class performs APL and membrane thickness calcu-

lations [44]. The thickness is calculated for each lipid by using its
neighborhood-averaged coordinates to remove the noise associ-
ated with fluctuations of lipid positions and then searching the
neighbor lipids that belong to its opposite leaflet, using a cut-off
distance (default: 6.0 nm). The thickness corresponds to the pro-
jection of the distance vector between each lipid and its neighbors
in the opposite leaflet.

APL is estimated for each lipid by performing a neighbor search
to identify its surrounding lipids in the leaflet and using them to
compute a Voronoi tessellation. In mathematical terms, a Voronoi
tessellation refers to a diagram that assigns for each point pi, in a
given set of points in a plane p1; p2; � � � ; pnf g, a corresponding cell
Vi consisting of every point whose distance to pi is less than or
equal to its distance to any other point from the set [45]. The
implementation uses the Voronoi cell area to approximate the lipid
APL [46]. The program returns the upper and lower leaflet areas as
the sum of the individual lipid areas and the membrane area as the
average value of the two leaflet areas [44]. Compared to other
existing tools [42,47-49], the computation with FATSLiM does not
depend on the bilayer morphology, and it can also accurately han-
dle vesicles. The user can visualize APL and thickness outputs with
the profiler plotting tool included in the pipeline with options to
customize the plot.

2.1.2. Lipid density maps
The Density class performs lipid density calculation on both the

upper and lower leaflets of the bilayer, providing 2D density maps.
The class consists of a Python-based reimplementation of the den-



Fig. 1. Overview of LipidDyn. The figure illustrates the workflow implemented in LipidDyn and its dependencies. The membrane is identified from the input files by the
MDAnalysis tool LeafletFinder. Depending on the force field employed, different methods are used for the analysis of choice.
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sity calculation algorithm provided by the densmap tool of GRO-
MACS [50]. This algorithm divides the simulation box into a lattice
of three-dimensional cells spanning a chosen dimension. Further, it
calculates the time average of the number density of atoms across
the plane of the remaining two dimensions. It visualizes local dif-
ferences in lipid density with insights into lipid dynamics and sys-
tem phase. The computed arrays are stored in .dat files for upper
and lower leaflets. The user can visualize the outputs using the
dmaps plotting tool to obtain 2D density maps.
2.1.3. Lipid enrichment/depletion
The Enrichment class calculates the enrichment/depletion of

each lipid species in specific regions of the bilayer, for example,
around a membrane protein included in the system. For a given
lipid species L, the class uses the Density class to compute the den-
sity map of the lipid L in the upper and lower leaflet averaged over
the trajectory time. Then, the density map obtained is divided by
the total number of lipids in the given leaflet. The resulting map
is divided by the ratio of the lipid L in bulk.

The enrichment/depletion calculation is performed separately
for the upper and lower leaflet of the bilayer. The user can visualize
the outputs with the dmaps plotting tool to obtain 2D enrichment/
depletion maps.
2.1.4. Lipid movements maps
The Movements class provides graphical support for how each

lipid moves along the X-Y plane of the bilayer. This analysis is use-
ful to describe the motions of groups of lipids or even a single
molecule of interest over trajectory time. The user can visualize
3606
the output with the diffusion tool to obtain 2D maps of lipid
movements.
2.1.5. Order parameters
The Order Parameter class implements the calculation of the

order parameter for the acyl chain tails of each lipid moiety. This
analysis gives insight into the overall order of the lipid bilayer
and the conformations that the acyl chains assume [51].

For the all-atom trajectories, the class includes a reimplementa-
tion of the algorithm in NMRlipids [https://github.com/NMRLipids]
to calculate the carbon-hydrogen order parameter (SCH) of the acyl
chains. For the coarse-grained trajectories, the class includes the
module SCC from the LiPyphilic package [40] to calculate the car-
bon–carbon order parameter (SCC) of the acyl chains. For each lipid
species, consecutive carbon atom pairs composing the sn-1 and sn-
2 acyl chains are defined inside the configuration file. The Order
Parameter class calculates SCH or SCC for the sn-1 and sn-2 acyl
chains of each lipid species over trajectory time. The user can visu-
alize the output with the ordpar plotting tool.
2.2. Comparison with other tools

We compared the analyses provided by LipidDyn with other
available tools (Fig. 2) [40-42]. Each tool focuses on a group of anal-
yses, with some classical ones in common, such as order parame-
ter, thickness, and APL. LiPyphilic [40] and Memsurfer [42] provide
mostly data on the geometrical properties of the bilayer as in the
case of domain registration, z-positions, and z-angles calculations
or membrane surface and curvature. On the other hand, LOOS
[41] includes tools for analyzing membranes and accounts for

https://github.com/NMRLipids


Fig. 2. Comparison with other tools to analyze simulations of lipid bilayers. The Venn diagram compares the analyses covered by LipidDyn and other available tools. Most of
the tools include the analysis of biophysical properties of lipid bilayers such as area per lipid, thickness, and order parameter. However, none of the tools currently cover all
the possible analyses. Only LipidDyn has been designed as a workflow.
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embedded proteins. We noticed that most of these tools are either
a suite of different scripts for analyses or a collection of Python
classes to be imported. They do not provide complete workflows
to streamline analysis collection and visualization and ensure
reproducibility.
2.3. Case study 1 – analyses of the lipid behavior in autophagy-related
protein 9 (ATG9A) -positive compartments

Autophagy is a catabolic process that mediates the degradation
of cellular components by forming autophagosomes [52]. During
autophagy, vesicles loaded with ATG9A translocate at the sites of
the autophagosome formation, delivering lipids and proteins
[53]. There is still scarce information about ATG9A-positive com-
partments, and structural studies on these compartments can
bring new knowledge [54,55]. We performed liquid
chromatography-mass spectrometry-based lipidomics of ATG9A-
positive compartments immuno-isolated from amino acid–starved
(i.e., autophagy-induced) HEK293A cells (see GitHub repository
Lipiddyn_case_studies for tables summarizing the data). We then
designed two models of membranes for all-atom MD simulations.
In particular, we used the following bilayers: i) 59% 1,2-dioleoyl-
sn-glycero-3-phosphocholine (DOPC), 41% sphingomyelin species
and ii) 35% DOPC, 24% unesterified cholesterol, 41% sphingomyelin
species. We used LipidDyn to analyze the MD simulations and com-
pare them with a reference bilayer including only DOPC (Fig. 3).
We calculated the time-series and average values for APL and
thickness using the FATSLiM class. We also estimated the order
parameter using the Order Parameter class of LipidDyn (Fig. 3).
APL and thickness are commonly used for the validation of bilayer
MD ensembles. The average values of APL and thickness calculated
from the DOPC trajectory are in good agreement with experimental
values � 0.67 nm2 [56] and � 3.8 nm [57], respectively (Fig. 3A-B).
Our analysis shows that the presence of sphingomyelin is associ-
3607
ated with a decrease in APL (average � 0.63 nm2) and a corre-
sponding increase in thickness (average � 4.12 nm) (Fig. 3A-B).
The addition of cholesterol leads to higher lipid packing (average
APL � 0.49 nm2), increased lipid chains order, and thicker bilayer
(average thickness � 4.41 nm) (Fig. 3A–C), showing a reorganiza-
tion of the membrane structure. Our data are in agreement with
experiments and simulations on the condensing effect of choles-
terol on the membranes, which increases the order of the lipid
packing and lowers the membrane permeability while maintaining
membrane fluidity by forming liquid-ordered–phase lipid rafts
with sphingolipids [58-61]. Our analyses shed light on the bio-
physical properties of the ATG9A-positive compartments upon
autophagy induction, suggesting a certain degree of rigidity and
packing dictated by the lipids enriched in these compartments.
2.4. Case study 2 – lipidomics of single-organelle: structural properties
of endoplasmic reticulum in HeLa cells

Analyzing membranes from subcellular compartments in terms
of structural and biophysical properties is essential for fundamen-
tal research and health-related applications [31,33]. Indeed, many
diseases, including cancer, are associated with dysregulation of
lipid metabolism [62].

We thus used immunoaffinity purification and mass
spectrometry-based shotgun lipidomics to collect data from the
endoplasmic reticulum (ER) of HeLa cells, quantifying 19 different
lipid classes (see GitHub repository Lipiddyn_case_studies for
tables summarizing the data). We modeled a coarse-grained
heterogeneous bilayer designed from the experimental lipidomics
data, hereafter indicated as ER bilayer, and collected 10 ls MD sim-
ulation. The modeled ER bilayer includes 1,000 lipids for each leaf-
let. In detail, we had species from 11 classes of lipids, among which
the most abundant are phosphatidylcholines (�77%), phos-
phatidylethanolamines (�6%), phosphatidylinositols (�5.8%), and



Fig. 3. Analyses of MD simulations of ATG9A-positive compartments. A-B) Boxplot of the area per lipid and membrane thickness calculated for the all-atom simulations of the
bilayers with lipid ratio: i) DOPC 35%, cholesterol (CHOL) 24%, sphingomyelins (SMs) 41%, ii) DOPC 59%, SMs 41% and iii) DOPC 100%. C) Comparison of average order
parameters for sn-1 and sn-2 acyl chain of DOPC in the two bilayers with respect to the DOPC 100% bilayer. The addition of SMs is associated with a decrease in area per lipid
and an increase in thickness of the lipid bilayers compared to the reference system. The addition of cholesterol and SMs leads to a higher lipid packing and chain order and a
thicker bilayer.
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we included a low concentration of unesterified cholesterol
(�6.3%), and sphingolipids (�0.6%), in agreement with composi-
tions previously reported [1]. As a comparison, we designed a
coarse-grained bilayer with the same number of lipids per leaflet
composed of phosphatidylcholine (70% POPC) and higher choles-
terol concentration (30%). With LipidDyn, we calculated the time-
series and average values for APL and thickness using the FATSLiM
class, and we estimated the average 2D lipid density using the Den-
sity class (Fig. 4). The average values of the membrane thickness
(average � 3.85 nm) and APL (average � 0.51 nm2) calculated from
the reference POPC-cholesterol trajectory are in agreement with
the known condensing effect of cholesterol [63], causing the thick-
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ening of the bilayer, reduction of APL, and ordering of the lipid tails
(Fig. 4A-B). Our analysis shows that the bilayer with a complex
mixture and low content of cholesterol is associated with an
increase in APL (average � 0.65 nm2) and a similar thickness
(average � 3.89 nm) (Fig. 4A-B) in comparison to the POPC–choles-
terol bilayer. The analysis of the average 2D lipid density maps
shows regions of higher density in the POPC–cholesterol bilayer.
In contrast, the ER bilayer shows a more uniform lipid density
(Fig. 4C), suggesting a more disordered membrane. Recent all-
atomMD simulations of a model system of ER with a complex lipid
mixture [64] reported values of APL (average 0.62 nm2) and thick-
ness (average 4.02 nm) in broad agreement with our results. Our



Fig. 4. Analysis of coarse-grained MD simulations of the ER and POPC-cholesterol bilayers. A-B) Line plots of the area per lipid (A) and membrane thickness (B) calculated for
the bilayer composed of phosphatidylcholine (POPC 70%) and cholesterol (CHOL 30%) and the bilayer designed from the lipidomics data of the endoplasmic reticulum (ER).
The ER bilayer includes phosphatidylcholines (�77%), CHOL (�6.3%), sphingomyelins (�0.6%) and lipid species from other classes as phosphatidylethanolamines (�6%),
phosphatidylinositols (�5.8%), ceramides (�0.4%), phosphatidylserines (�0.3%). Side distributions are also shown along with the line plots. C) Average 2D lipid density maps
calculated for the upper leaflet of the bilayers. The ER bilayer is associated with an increase in the area per lipid and a more uniform lipid density than the POPC-cholesterol
bilayer, suggesting loose packing and low ordering of lipids.
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analyses shed light on the biophysical properties of ER bilayer,
showing loose packing and low ordering of lipids that may reflect
membrane dynamics involved in the functions of ER. Indeed, ER is
at the beginning of the secretory pathway and at the level of its
membrane happen the insertion and transport of newly synthe-
sized proteins and lipids, as cholesterol which is synthesized at
ER and then rapidly transported to other organelles [1,65,66].
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2.5. Case study 3 – study of the lipid interactions of the
transmembrane emp24 domain 2 (p24) protein

The interactions of the transmembrane p24 protein with lipids
[67-70] regulate its activity in the secretory pathway and vesicular
trafficking [71]. The cytosolic part of the p24 transmembrane
domain includes a sphingolipid-binding motif [67,72]. It has been



S. Scrima, M. Tiberti, A. Campo et al. Computational and Structural Biotechnology Journal 20 (2022) 3604–3614
shown that sphingolipids and ether lipids interact with the trans-
membrane helix of p24 and regulate the cycling of p24 between ER
and Golgi membranes, contributing to the early secretory pathway
[68].

We used coarse-grained MD simulations to investigate if, with
this approach, we can study the interaction of p24 with sphin-
gomyelin, previously observed with all-atom MD simulations
[63,64], and observe effects associated with the presence of choles-
terol (Fig. 5). We collected two 20 ls MD simulations of the trans-
membrane helix of human p24, including residues 163–193, in
bilayers with lipid composition of phosphatidylcholine (70%-50%
POPC), unesterified cholesterol (30%), and sphingomyelin (0%-
20%). We used LipidDyn to investigate if p24 prefers interactions
with specific lipid species in our systems. In particular, we used
the Density class to calculate the 2D lateral density of the lipids
and the Enrichment class to compute the enrichment-depletion
map of each lipid species, considering the last ls of MD simula-
tions (Fig. 5). The analysis of the enrichment-depletion map in
the POPC 70% cholesterol 30% system shows that cholesterol is
enriched around the transmembrane helix of p24. This effect is
more pronounced in the luminal leaflet of the membrane than in
the cytosolic one (Fig. 5A). In sphingomyelin-rich membranes,
cholesterol enrichment is still present in the cytosolic and luminal
leaflets (Fig. 5B). The map of sphingomyelin shows a diffused and
more pronounced enrichment around the cytosolic portion of the
transmembrane helix of p24, where the sphingolipid binding motif
is located, than around the luminal part (Fig. 5C). Although the lim-
itations and approximations of the coarse-grained force field
employed, especially in overestimating interactions [73], our anal-
ysis sheds light on the interactions of the transmembrane helix of
p24 with cholesterol and sphingomyelin, in agreement with previ-
ous data [67-69]. Cholesterol levels are strictly controlled at the
level of the ER membrane. In the ER membrane, cholesterol is
esterified to fatty acids, forming hydrophobic cholesteryl esters
that are stored in intracellular lipid droplets or plasma lipoproteins
[74,75]. When in low concentrations, cholesteryl esters and other
neutral lipids localize between the leaflets of the ER membrane.
It is proposed that when the concentration of neutral lipids over-
comes a certain threshold, they aggregate into lens-like structures
that grow into lipid droplets. Thus, it will be interesting to design
membrane systems including cholesteryl esters and the trans-
membrane helix of p24 and investigate their biochemical proper-
ties and dynamics by MD simulations.
3. Materials and methods

3.1. Lipidomics of the endoplasmic reticulum of HeLa cells

The post-nuclear lysate of HeLa cervical cancer cells was pre-
pared as previously described [76]. 300 ll post-nuclear lysate
was incubated with 0.6 lg/ml rabbit anti-calnexin antibody
(ab22595, Abcam) for 45 min and for an additional one hour after
the addition of magnetic microbeads conjugated to anti-rabbit IgG
(25 ll, 30–048-602; Miltenyi Biotec) to purify the endoplasmic
reticulum. The endoplasmic reticulum was then captured on an
MS column (130–042-201; Miltenyi Biotec) mounted on an Octo-
Macs magnetic separator (130–042-108; Miltenyi Biotec) and
eluted after washing and demounting of the column. The eluted
endoplasmic reticulum was pelleted by centrifugation for 20 min
at 21,100g and resuspended in 200 ll 155 mM ammonium bicar-
bonate. The entire purification procedure was performed at 4 �C.
Lipid extraction and mass spectrometry-based lipidomics analysis
was carried out as previously described [33].
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3.2. Lipidomics of ATG9A-positive lipid compartments

HEK293A cells were cultivated in a full medium composed of
DMEM supplemented with 10% FCS and 4 mM l-glutamine, as
described in [53]. We performed the immunoisolation of ATG9A-
positive compartments from HEK293 cells as previously described
[53]. We carried out metabolite extraction by fractionating the cell
samples into pools of species with similar physicochemical proper-
ties, using combinations of organic solvents. Cell pellets were
resuspended in cold water and briefly mixed. Proteins were precip-
itated from the lysed cells by adding methanol. The samples were
spiked with chloroform after vortex mixing. The extraction sol-
vents were spiked with metabolites not detected in unspiked cell
extracts used as internal standards. We incubated the samples at
�20 �C for 30 min and collected two different phases after a vortex
step. Cell extracts were mixed with water (pH 9), and after brief
vortexing, the samples were incubated for 1 h at �20 �C. After cen-
trifugation at 16,000g for 15 min, the organic phase was collected.
We reconstituted the dried extracts in acetonitrile/isopropanol
(50:50), resuspended them for 10 min, centrifuged (16,000g for
5 min), and transferred them to vials for UPLC-MS analysis.

We used two quality controls described in [77]. Randomized
duplicate sample injections were performed. We performed pre-
processing, normalization, and statistical analysis with TargetLynx
application manager for MassLynx 4.1 software (Waters Corp., Mil-
ford, USA). The processing was executed using a set of predefined
retention time, mass-to-charge ratio pairs, Rt-m/z, corresponding
to metabolites included in the analysis. The ion chromatograms
were denoised and peak-detected with a mass tolerance window
of 0.05 Da. For each sample injection, a list of chromatographic
peak areas was generated. We used representative MS detection
curves to identify the metabolites using internal standards. The
normalization factors were calculated for each metabolite by divid-
ing their intensities in each sample by the recorded intensity of an
appropriate internal standard in that same sample, as described in
[77]. Statistical analysis included principal component analysis,
Shapiro-Wilk test, Student t-test, and Wilcoxon-signed-rank test.
3.3. From lipidomics to MD design

We designed a Python script (see GitHub repository Lipiddyn_-
case_studies) to analyze the ATG9A-positive lipidomic dataset. We
quantified the average relative abundance of each lipid species
from the raw data among the two starved samples. To design the
lipid compositions for the MD simulations, we selected three sph-
ingomyelin species (SM36:1, SM42:1, SM42:2) with the highest
average abundance in the lipidomic dataset and available in the
CHARMM36 force field (indicated as PSM, LSM, and NSM), query-
ing the LipidDyn internal database. To study the effect of choles-
terol and sphingomyelin species, we directly used their average
relative abundances as lipid ratios to design the bilayers. We used
phosphatidylcholine (DOPC) to represent the rest of the lipids. The
final composition of the two lipid bilayers are 59% DOPC and 41%
sphingomyelin species (19% PSM, 13% LSM, 9% NSM) and 35%
DOPC, 24% cholesterol and 41% sphingomyelin species (19% PSM,
13% LSM, 9% NSM). In addition, we modeled as a reference system
a 100% DOPC bilayer.

From the lipidomics data set of the endoplasmic reticulum from
HeLa cells, we quantified 19 lipid classes (see GitHub repository
Lipiddyn_case_studies for tables summarizing the data). We
designed a Python script (see GitHub repository Lipiddyn_-
case_studies) to analyze the lipidomics dataset at the level of
classes of lipids and to design the lipid composition of the bilayer
for the coarse-grained MD simulations. We selected 11 of these



Fig. 5. Analyses of coarse-grained MD simulations of the transmembrane domain of p24 embedded in different lipid bilayers. Enrichment-depletion map of A) cholesterol
(CHOL) in the cytosolic and luminal leaflet of the phosphatidylcholine (POPC 70%) and cholesterol (CHOL 30%) bilayer, B) CHOL and C) sphingomyelin (DPSM) in the cytosolic
and luminal leaflet of the phosphatidylcholine (POPC 50%), cholesterol (CHOL 30%) and sphingomyelin (DPSM 20%) bilayer. The right panels show the number density of the
transmembrane domain of p24 (residues 163–193) calculated for the two bilayers. For the sake of clarity, we superimposed the density map of the protein on the enrichment-
depletion map. Our analysis shows a more pronounced sphingomyelin enrichment around the cytosolic part of the transmembrane domain of p24, which includes the
sphingolipid binding motif. We observe binding of cholesterol to p24 in the cytosolic and luminal leaflets.

S. Scrima, M. Tiberti, A. Campo et al. Computational and Structural Biotechnology Journal 20 (2022) 3604–3614
classes (ceramides, cholesterol, cardiolipins, diacylglycerols,
phosphatidic acids, phosphatidylcholines, phosphatidylinositols,
phosphatidylethanolamines, phosphatidylserines, phosphatidyl-
glycerols, sphingomyelins) that are available in the Martini force
3611
field. The final composition of the heterogeneous bilayer (indicated
as ER bilayer) includes phosphatidylcholines (�77%), cholesterol
(�6.3%), sphingomyelins (�0.6%), phosphatidylethanolamines
(�6%), phosphatidylinositols (�5.8%), ceramides (�0.4%),
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phosphatidylserines (�0.3%), and phosphatidylglycerols, phospha-
tidic acids, and cardiolipins with lower concentrations. We mod-
eled as a reference system a 70% POPC, 30% cholesterol bilayer.

In addition, we have been curating a more general dictionary to
link lipid species to the corresponding available molecules in all-
atom and coarse-grained force fields to assist in the design of the
lipid composition for MD simulations.
3.4. MD simulations

We studied a peptide of human p24 (residues T165–R193
including two additional lysines at the N-terminus) that includes
the transmembrane region of p24 and was recently investigated
by solid-state NMR spectroscopy [70]. We used ProBuilder [78]
to model the transmembrane helix of p24 (residues 169–189)
and MODELLER v9 [79] to build the flanking regions. We generated
100 models and ranked them on: i) the distance between the N-
and C-termini of the p24 peptide and ii) the number of contacts
between the transmembrane helix and the rest of the peptide.
We selected the model with the maximum distance between N-
and C-termini and the minimum number of contacts. We used
CHARMM-GUI Membrane Builder and Martini Maker [80,81] to
build the systems for simulations. For the systems containing
p24, we build them in CHARMM-GUI, including p24 already
inserted in the lipid bilayer. The MD simulations were carried
out using GROMACS [50]. We used the CHARMM36 force field
[21] and the TIP3P water model adjusted for CHARMM force fields
[82] for all-atom MD simulations and Martini 2 for coarse-grained
simulations [83]. Each bilayer system was built in a rectangular
box in the x and y dimensions. The water thickness (minimum
water height on top and bottom of the system) was set between
25 Å and 35 Å to ensure that the two layers of water molecules
were sufficient to avoid artificial contacts between the image
boxes. Each system was simulated for different timescales ranging
from 0.5 to 20 ls. Periodic boundary conditions were applied in all
three dimensions. More details, including the preparation steps,
are reported in the readme files in the GitHub repositories for each
set of simulations.
4. Conclusion and future perspective

LipidDyn has been released in its first version to provide a well-
organized workflow for the analyses of lipid and protein-lipid sim-
ulations and streamline cases where many bilayers with different
compositions need to be analyzed in parallel. We selected the most
important parameters that often need to be scrutinized, with
emphasis on supporting properties that can also be experimentally
determined. Nevertheless, LipidDyn does not currently cover all the
available portfolio of analyses of structural and biophysical proper-
ties that can be applied to membrane simulations. In the future, we
will widen the range of analyses supported by the package and find
new visualization solutions. For example, we will include tools to
calculate the shapes and curvatures of the membranes. In terms
of protein-lipid interaction, we will implement analyses of occur-
rence, maximal occupancy and time life of contacts along the sim-
ulation time [84]. We will provide LipidDyn outputs compatible
with Pyinteraph2 [85,86] so that protein-membrane simulations
can be analyzed using methods from graph theory.

Furthermore, we plan to include in LipidDyn automated support
to convert the information in the processed lipidomics data to
design models of membranes for MD simulations that resemble
experimentally observed lipid compositions. Our focus is to pro-
vide a tool in LipidDyn that includes a dictionary to automatize
the mapping and conversion of the lipid species in the lipidomics
3612
datasets to the corresponding molecules for which parameters
are available in the commonly used force fields for MD simulations.
Data Availability

The LipidDyn package and test data are available at https://
github.com/ELELAB/LipidDyn. The lipidomics data , the modeling
data, and the analysis performed with LipidDyn on the MD trajec-
tories of the three study cases are available at https://github.-
com/ELELAB/Lipiddyn_case_studies. The topologies, input files,
and MD trajectories related to the study cases are availabl e at
OSF https://osf.io/u52da/.
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