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Levodopa-induced abnormal 
involuntary movements correlate 
with altered permeability of the 
blood-brain-barrier in the basal 
ganglia
Renata P. Lerner1, Veronica Francardo2, Koji Fujita  1, Zisis Bimpisidis2, Vincent A. Jourdain1, 
Chris C. Tang1, Stephen L. Dewey1, Thomas Chaly1, M. Angela Cenci2 & David Eidelberg1

Chronic levodopa treatment leads to the appearance of dyskinesia in the majority of Parkinson’s 
disease patients. Neurovascular dysregulation in putaminal and pallidal regions is thought to be an 
underlying feature of this complication of treatment. We used microPET to study unilaterally lesioned 
6-hydroxydopamine rats that developed levodopa-induced abnormal involuntary movements 
(AIMs) after three weeks of drug treatment. Animals were scanned with [15O]-labeled water and 
[18F]-fluorodeoxyglucose, to map regional cerebral blood flow and glucose metabolism, and with 
[11C]-isoaminobutyric acid (AIB), to assess blood-brain-barrier (BBB) permeability, following separate 
injections of levodopa or saline. Multitracer scan data were acquired in each animal before initiating 
levodopa treatment, and again following the period of daily drug administration. Significant 
dissociation of vasomotor and metabolic levodopa responses was seen in the striatum/globus pallidus 
(GP) of the lesioned hemisphere. These changes were accompanied by nearby increases in [11C]-AIB 
uptake in the ipsilateral GP, which correlated with AIMs scores. Histopathological analysis revealed 
high levels of microvascular nestin immunoreactivity in the same region. The findings demonstrate that 
regional flow-metabolism dissociation and increased BBB permeability are simultaneously induced by 
levodopa within areas of active microvascular remodeling, and that such changes correlate with the 
severity of dyskinesia.

Parkinson’s disease (PD) is characterized by loss of dopaminergic neurotransmission in nigrostriatal  
pathways1. The clinical manifestations of the disorder can be treated with the dopamine precursor 
L-3,4-dihydroxyphenylalanine (L-DOPA), or levodopa2. During the past few years, it has become apparent that 
levodopa has pronounced localized effects on the neurovascular unit, a physiological entity comprised of neurons, 
astroglia, and juxtaposed endothelial cells3. Specifically, levodopa is transported across the blood-brain-barrier 
(BBB) by the large neutral amino acid transporter (LAT1), which is expressed on the endothelial cells. Upon 
crossing the BBB, the drug is regionally decarboxylated to dopamine, which is stored in presynaptic monoamin-
ergic terminals4.

In addition to repleting striatal dopamine, levodopa administration corrects the elevations in local metabolic 
activity seen in PD subjects and 6-hydroxydopamine (6-OHDA) rodents studied in the baseline unmedicated 
state5–7. Indeed, a consistent relationship has been observed between the loss of nigral dopaminergic projec-
tions to the putamen and metabolic increases in the same brain region8,9. Interestingly, dual tracer imaging stud-
ies conducted in the two species revealed stereotyped dissociation of the metabolic (cerebral metabolic rate, 
CMR) and vasomotor (cerebral blood flow, CBF) responses to levodopa in dopaminoceptive brain regions6,10. 
We have found that levodopa-mediated dissociation effects localized to the putamen are a stereotyped fea-
ture of acute drug administration in human PD subjects10 and that these responses are exaggerated in patients 
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with levodopa-induced dyskinesia (LID)11. This complication of chronic levodopa treatment, which involves 
the induction of abnormal, disturbing involuntary movements by the drug, affects approximately 50% of PD 
patients within five years of the initiation of therapy12,13. Indeed, dual tracer [15O]-labeled water ([15O]-H2O) and 
[18F]-fluorodeoxyglucose (FDG) PET data from human PD patients, demonstrated that acute levodopa adminis-
tration causes local CBF in the putamen dissociation region to rise to abnormally high levels in association with 
these movements11. Moreover, LID patients exhibit marked uncoupling of cerebral blood flow and metabolism in 
this region during drug administration11.

How does the presence of levodopa-mediated uncoupling, with concomitant elevations in striatal on-state 
CBF, facilitate the appearance of LID? One possibility is that the intraluminal shear stress can increase as a conse-
quence of a pronounced vasodilation, leading to localized BBB leakage in the medicated “on” state10,14. While less 
likely with normally formed vasculature, this possibility is more tenable in the setting of localized angiogenesis, 
given that immature blood vessels can form within dopaminergically denervated brain regions15–18.

In the current study, we investigated the relationship between the vasomotor and metabolic levodopa 
responses in 6-OHDA animals that developed drug-induced abnormal involuntary movements (AIMs), the 
rodent equivalent of LID, in the course of chronic daily treatment with this drug. To this end, we implemented 
a novel multitracer microPET technique to identify regions with significant CBF-CMR dissociation in response 
to levodopa injection, as well as local changes in BBB permeability, before and after levodopa administration. 
Thus, each animal was scanned with [15O]-H2O and [18F]-FDG, to map regional CBF and CMR, and with 
[11C]-isoaminobutyric acid (AIB) to assess BBB permeability. Scanning was conducted in a baseline state (PRE), 
following 6-OHDA lesioning but before initiation of daily levodopa treatment. The animals were then rescanned 
with all three tracers after 21 days of drug treatment, following the acute injection of saline (OFF) and levodopa 
(ON) in separate microPET sessions. During the treatment period, the animals were evaluated for the devel-
opment and severity of levodopa-induced AIMs according to a well-established protocol19. The scan data were 
correlated with these ratings and with histopathological markers of angiogenesis in individual post-mortem brain 
samples.

Results
Dissociation of vasomotor and metabolic levodopa responses. To identify areas in which vaso-
motor and metabolic responses to single levodopa injections were significantly dissociated, we conducted vox-
el-wise searches over the entire brain volume for regions with significant tracer (CBF/CMR) × condition (ON/
OFF) interaction effects (see Methods). The analysis revealed a significant levodopa-mediated dissociation region 
(Fig. 1a; Table 1), which was situated at the junction of globus pallidus (GP) and ventrocaudal striatum on the 
lesioned (right) cerebral hemisphere. Graphical inspection of individual CBF and CMR values for this region 
measured in the two conditions (Fig. 1b, left) disclosed a significant local interaction effect (F(1,8) = 10.85; p = 0.01; 
2 × 2 RMANOVA), with levodopa-mediated increases in normalized CBF (p < 0.01) and no corresponding 
change in CMR (p = 0.70; post-hoc tests). Analogous dissociation effects were not seen (F(1,8) = 0.42, p = 0.53) 
in the contralateral “mirror” region on the non-lesioned (left) hemisphere (Fig. 1b, right). Indeed, the degree of 
levodopa-mediated dissociation in this region (Fig. 1c), represented in each hemisphere by the local dissociation 
index (DI = ΔCBFON–OFF – ΔCMRON–OFF; see Methods) value, differed significantly for the two sides (p < 0.04; 
paired Student’s t-test). This indicates that the dissociation effect in this region was present only in the denervated 
hemisphere. Of note, no difference was observed (p > 0.57; Student’s t-tests) for GP CBF and CMR values meas-
ured in the pre-treatment (PRE) condition for the non-lesioned hemisphere and corresponding values measured 
in the sham-lesioned control group.

Levodopa alters blood-brain-barrier transport. The effect of levodopa on local [11C]-AIB uptake, a 
measure of influx of the amino acid across the BBB, was evaluated in the same animals. To identify areas in 
which single levodopa injections increased local [11C]-AIB uptake, scans acquired in the ON and OFF conditions 
were interrogated voxel-wise over the entire brain volume. A significant increase in [11C]-AIB uptake (Fig. 2a; 
Table 2) was noted in the GP of the lesioned hemisphere. A significant hemisphere × condition interaction effect 
(Fig. 2b) was present in this region (F(1,9) = 7.92, p < 0.03; 2 × 2 RMANOVA), with levodopa-mediated increases 
in [11C]-AIB uptake on the lesioned side (p < 0.02) but not on the contralateral non-lesioned side (p = 0.99; 
post-hoc tests). [11C]-AIB uptake values in this region measured in the PRE condition did not differ significantly 
for the non-lesioned hemispheres of the 6-OHDA animals vs. their sham-lesioned control counterparts (p = 0.42; 
Student’s t-test; data not shown).

Effects of daily levodopa administration prior to imaging. We next determined whether the acute 
effects of levodopa administration, as observed in the ON vs. OFF contrasts, were influenced by changes in the 
baseline unmedicated condition that resulted from the preceding three-week period of daily drug administra-
tion. To this end, we compared the OFF scans for each tracer with the corresponding PRE scans, which were 
acquired in the pre-treatment baseline condition. Significant regional differences were not seen on voxel-wise 
comparisons of hemispheric maps of CBF, CMR, and [11C]-AIB uptake acquired in the PRE and OFF conditions. 
We additionally conducted post-hoc comparisons of OFF values for the three tracers measured in the significant 
clusters identified above. In the levodopa dissociation region (depicted in Fig. 1a), significant declines in local 
CMR (Fig. 1b) were noted in OFF relative to PRE (p < 0.03; paired Student’s t-test). Analogous baseline changes 
were not present for CBF and [11C]-AIB uptake measurements in this region (p > 0.19). Indeed, in this region, 
levodopa-mediated changes in ON relative to PRE were significant for each of the three tracers (CMR: p < 0.03; 
CBF: p < 0.008; [11C]-AIB: p < 0.04; paired Student’s t-tests).

The levodopa-mediated dissociation effect seen in the striatum/ventral GP of the lesioned side was sub-
stantiated by a separate voxel-wise search for significant tracer × condition interactions involving the ON 



www.nature.com/scientificreports/

3Scientific REPORTS | 7: 16005  | DOI:10.1038/s41598-017-16228-1

and PRE scans. Indeed, this analysis revealed a significant dissociation cluster in the GP of the lesioned hemi-
sphere (Table 1), which was in close proximity to the original interaction region. Similarly, in the comparison of 
[11C]-AIB scans acquired in the ON vs. PRE conditions, we noted an area of increased uptake (Table 2), which was 
also in close proximity to that reported above for the ON vs. OFF contrast.

Correlations of the imaging measures with levodopa-induced dyskinetic movements. To 
determine the relationship of the imaging measures to levodopa-induced abnormal movements, we examined 
the correlations between the composite AIMs scores for the individual animals and the corresponding ON-OFF 

Figure 1. Dissociation of vasomotor and metabolic response to levodopa in the unilateral 6-OHDA rat 
dyskinesia model. (a) Voxel-wise searches over the whole brain volume revealed a distinct region in which 
local vasomotor (CBF) and metabolic (CMR) changes were significantly dissociated in response to levodopa. 
This cluster (red), comprised of 49 contiguous voxels (1 voxel = 0.8 × 0.8 × 0.8 mm) located at the border 
of the striatum and the ventral globus pallidus (GP) of the dopaminergically denervated right (R) cerebral 
hemisphere, was significant at a voxel-level threshold of p < 0.001 corrected for extent at p < 0.05 (see text). 
(b) Box-and-whisker plots of CBF and CMR values in this region. Left: Significant CBF–CMR dissociation was 
seen in the lesioned hemisphere (F(1,8) = 10.85, p = 0.01, tracer × condition interaction effect; RMANOVA) 
with increased CBF (p < 0.01; post-hoc test) and no change in CMR (p = 0.70) in the OFF vs. ON condition. 
Right: Analogous changes were not seen in the contralateral non-lesioned hemisphere (p = 0.53). [Horizontal 
bars below box plots represent paired Student’s t-tests.] (c) Levodopa-mediated dissociation responses in this 
region were measured in the dopaminergically denervated and non-denervated hemispheres (see Methods). 
Dissociation responses were significantly greater on the 6-OHDA lesioned side relative to its non-lesionsed 
counterpart (p < 0.04; paired Student’s t-test).

Voxel Search

Coordinates Cluster Size 
(Voxels) Zmax p-valuea

CBF CMR
Interaction Effect 

(VOI Analysis)

x y z OFF/PRE ON OFF/PRE ON F-valuec p-value

CBF/
CMR × OFF/ON 3.2 −1.4 −7.2 49 3.78 p < 0.001 1.04(0.20)b 1.34(0.18) 1.13(0.07)b 1.16(0.07) 10.85 0.011

CBF/
CMR × PRE/ON 3.4 −1.4 −7.4 107 4.12 p < 0.001 1.05(0.10) 1.29(0.20) 1.21(0.05) 1.17(0.08) 16.42 0.005

Table 1. Regions of Dissociated Vasomotor and Metabolic Levodopa Responses. aCorrected for cluster extent at 
p ≤ 0.05. bMean(SD) for local cerebral blood flow (CBF) and cerebral metabolic rate for glucose (CMR) in each 
of the significant clusters. cF-tests for tracer × condition interaction effects in each volume-of-interest (VOI); 
repeated measured analysis of variance (RMANOVA). PRE = drug-naïve baseline condition; OFF = saline 
injection; ON = levodopa injection following three weeks of daily drug administration (see text).
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vasomotor or metabolic changes (∆CBF and ∆CMR) recorded in the striatal/ventral GP dissociation region 
(Fig. 1a) of the lesioned hemisphere. Likewise, composite AIMs scores were correlated with levodopa-mediated 
changes in [11C]-AIB uptake (∆AIB) recorded in the ipsilateral GP region (Fig. 2a) of the same animals. 
Correlations with AIMs scores were not significant for tracer changes in the levodopa dissociation region 
(p > 0.78; Pearson’s correlations). Nonetheless, AIMs scores in the same animals correlated with ∆AIB values 
measured in the GP area of increased tracer uptake. Composite AIMs scores (Fig. 3a,b, left) correlated with ∆AIB 
(r = 0.68, p < 0.04; Pearson’s correlation) and with ∆CMR (r = 0.80, p < 0.006) values measured in this region 
of the lesioned hemisphere. The correlation with local ∆CBF values (Fig. 3c, left), however, was not significant 
(p = 0.59). Of note, ∆AIB and ∆CMR values measured in this region were not significantly related (R2 = 0.04, 
p = 0.59; linear regression). Thus, changes in GP uptake for the two tracers served as independent predictors 
of the composite AIMs scores in these animals, together accounting for over 90% of individual differences in 

Figure 2. Levodopa-mediated changes in [11C]-AIB uptake in the unilateral 6-OHDA rat dyskinesia model. 
(a) Voxel-wise searches over the whole brain volume revealed a distinct area of increased [11C]-AIB uptake 
across the blood-brain-barrier (BBB) in responses to levodopa. This cluster (red) was comprised of 159 
contiguous voxels (1 voxel = 0.8 × 0.8 × 0.8 mm) located in the globus pallidus (GP) of the dopaminergically 
denervated right (R) cerebral hemisphere. (b) Box-and-whisker plots of [11C]-AIB uptake values for this cluster 
measured in the PRE, OFF, and ON levodopa conditions (see text). There was a significant condition (ON/
OFF) × hemisphere (lesioned/non-lesioned) interaction in this region (F(1,9) = 7.92, p < 0.03; RMANOVA), 
with a significant effect on the denervated side (p < 0.02; post-hoc test). Analogous changes were not seen in the 
contralateral non-lesioned hemisphere (p = 0.99). [Horizontal bar below box plot represents paired Student’s 
t-test].

Voxel Search

Coordinates Cluster 
Size 

(Voxels) Zmax p-valuea

[11C]-AIB Uptake
Levodopa Effect (VOI 

Analysis)

x y z OFF/PRE ON T-valuec p-value

ON > OFF 2.8 −0.8 −5.1 159 4.29 p < 0.001 0.60(0.14)b 0.83(0.17) 3.59 0.006

ON > PRE 2.6 −0.7 −4.9 144 4.20 p < 0.001 0.76(0.16) 0.95(0.13) 3.40 0.009

Table 2. Regions of Increased [11C]-AIB Uptake. aCorrected for cluster extent at p ≤ 0.05. bMean(SD) for local 
[11C]-AIB uptake in each of the significant clusters. cT-values for changes in each volume-of-interest (VOI); 
paired Student’s t-tests. PRE = drug-naïve baseline condition; OFF = saline injection; ON = levodopa injection 
following three weeks of daily drug administration (see text).
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outcome (model R2 = 0.92, p = 0.0001; multiple linear regression). By contrast, composite AIMs scores did not 
correlate (r < 0.44, p > 0.20) with ∆AIB, ∆CMR, or ∆CBF values measured on the contralateral non-lesioned 
side.

Upregulation of angiogenesis markers. After the animals were sacrificed, sections through the striatum 
and GP were immunostained for nestin, which is upregulated in immature endothelial cells in brain regions 
undergoing angiogenesis15,20,21. Microvessel nestin immunoreactivity was quantified through the dorsoventral 
extent of the striatum and pallidum (Fig. 4A). Sample areas were digitized from levels that included the node 
of [11C]-AIB leakage seen on the microPET scans. This quantitative analysis revealed highly significant overall 
differences between groups and sample areas (Group: F(1,40) = 38.89; p < 0.0001; Area: F(3,40) = 7.9; p = 0.0003; 
Interaction: F(3,40) = 3.2; p = 0.0332).

Compared to sham-lesioned controls (also treated with levodopa), the 6-OHDA lesioned dyskinetic animals 
showed significant upregulation of nestin-immunostained microvessels in each region (Fig. 4B). Within the dys-
kinetic group, nestin immunoreactive microvessels were less frequent in the dorsal caudate-putamen (Fig. 4C), 
and most prominent in the GP (Fig. 4G).

Discussion
Previous PET imaging studies in PD patients have linked LID to localized flow-metabolism dissociation in 
putaminal and adjacent pallidal regions10,11. By applying a multimodal microPET imaging approach to a rat 
model of LID, we now show that levodopa-mediated flow-metabolism dissociation is accompanied by a localized 
increase in BBB permeability, which correlated with the composite AIMs ratings of LID severity.

Figure 3. Correlations with abnormal involuntary movements. (a) Composite AIMs scores averaged over days 
1–20 of levodopa administration significantly correlated (r = 0.68, p < 0.04) with levodopa-mediated changes 
in [11C]-AIB uptake (∆AIB, left) measured in the significant GP cluster on the lesioned hemisphere (Fig. 2a). 
The composite AIMs scores correlated with [11C]-AIB values measured in the OFF (r = −0.79, p < 0.007; 
middle) but not in the ON (r = 0.13, p = 0.72; right) conditions. (b) Analogous correlation of levodopa-mediated 
changes in local metabolic activity (∆CMR, left) measured with corresponding AIMs scores was also significant 
(r = 0.80, p < 0.006). Nonetheless, AIMs correlations with CMR values in this region were significant for the 
ON condition (r = 0.91, p < 0.0004; right) but not for OFF (r = −0.20, p = 0.59; middle). (c) By contrast, the 
composite AIMs scores did not correlate (p > 0.41) with levodopa-mediated changes in cerebral blood flow 
(∆CBF, left) or CBF values in the OFF (middle) or ON (right) condition measured in this region.



www.nature.com/scientificreports/

6Scientific REPORTS | 7: 16005  | DOI:10.1038/s41598-017-16228-1

Figure 4. Nestin is significantly upregulated in the globus pallidus of dyskinetic rats. (A) The density of nestin-
immunoreactive vessels was estimated by counting the number of intersections formed by immunopositive 
vessels on a grid that fully covered each sample areas (see Methods). [Four sample areas (1–4) were digitized 
from each animal spanning the dorsoventral extent of the caudate-putamen and the pallidum.] (B) A 
measure of nestin-immunoreactive microvessels (number of intersections) indicates largest density of stained 
microvessels in the GP (Area 3), and lowest density in the dorsal CPu (Area 1) (see text). [Post-hoc Bonferroni 
test, *p < 0.05 vs. Sham, # vs. Ventral CPu and GP).] (C–L) Representative photomicrographs were taken under 
a 20 × objective to show nestin-immunoreactive microvessels in the dorsal Cpu (C,D), Ventral Cpu (E,F), 
GP (G,H) and VP (I,L) from 6-OHDA-lesioned and sham-lesioned controls, respectively. [Scale bar, 50 µm. 
Cpu = caudate-putamen; GP = globus pallidus; VP = ventral pallidum.]
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The finding of levodopa-induced flow–metabolism dissociation in the striatum/GP of dyskinetic rats is in 
keeping with similar results obtained in chronically medicated PD patients affected by LID10,11, as well as with 
the increases in local dopamine release in response to levodopa seen in these individuals22. Here, however, the 
same animals additionally underwent concurrent [11C]-AIB microPET to assess levodopa-mediated changes in 
regional BBB function. We found significant increases in the uptake of this radiotracer in the GP of the lesioned 
hemisphere, which correlated with the severity of drug-induced abnormal movements observed in the individ-
ual animals. Indeed, the association of focal [11C]-AIB leakage with nestin-positive microvessels in the involved 
regions supports the hypothesis that the increase in BBB permeability associated with LID is intimately linked 
with angiogenesis4.

The finding of dissociated vasomotor and metabolic levodopa responses in the caudate-putamen and GP on 
the lesioned hemisphere is consistent with an earlier autoradiographic study conducted in the same rat model16. 
In that study, chronically levodopa-treated animals with drug-induced abnormal movements exhibited higher 
on-state CBF in the striatum and GP than animals without abnormal movements; analogous differences in CMR 
were not discerned under the same treatment conditions16. Although microPET has lower anatomical resolution 
than autoradiography, in vivo imaging allowed for CBF and CMR to be measured concurrently in the same ani-
mals scanned on and off drug6. Moreover, this approach allowed us to conduct a voxel-wise search of the whole 
brain to localize regions with significant dissociation effects without the use of pre-specified regions-of-interest 
(ROIs).

In human PD, the levodopa-mediated flow-metabolism dissociation is associated with abnormal baseline ele-
vations in glucose metabolism in the putamen and GP, which decline consistently with drug10,11. While significant 
increases in baseline metabolic activity have also been described in homologous brain regions of the non-human 
primates with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) parkinsonism23–25, evidence has been 
less consistent for corresponding metabolic changes in the rat model. In the autoradiographic study of Ohlin  
et al.16, dopaminergic denervation was associated with increased 2-DG (2-deoxy-D-glucose) uptake in the rat 
GP at baseline that declined following chronic levodopa administration. While baseline metabolic increases were 
not observed with microPET, a significant decline was detected following three weeks of daily drug in both the 
medicated (ON) and unmedicated (OFF) conditions relative to the pre-treatment baseline (PRE). It is unknown 
whether the observed differences between species are attributable to biological effects, technical factors, or both.

Also in general agreement with the earlier autoradiographic study16, we found evidence of levodopa-mediated 
increases in [11C]-AIB uptake in the basal ganglia of the lesioned hemisphere in chronically treated 6-OHDA 
rats. It is also noteworthy that [11C]-AIB uptake in this region was negligibly low in both hemispheres when 
measured before the initiation of daily levodopa treatment (PRE) or in the off-state (OFF) after receiving the 
drug daily for three weeks. Thus, the localized changes in [11C]-AIB uptake observed in this study was clearly 
induced by levodopa administration. We have suggested that the on-state CBF-CMR dissociation may alter BBB 
permeability11. Indeed, studies in PD patients indicate that vasomotor effects of levodopa can cause local CBF to 
rise to abnormal levels. It is however doubtful that the observed increases in regional perfusion are sufficient in 
themselves to disrupt the integrity of the vascular endothelium11. Nevertheless, an increase in local blood flow can 
trigger BBB leakage through immature, angiogenic vessels. Angiogenesis has been found to occur in chronically 
levodopa-treated 6-OHDA rats14,15,17 and in all likelihood also in PD patients with LID16,26. Interestingly, in the 
current set of dyskinetic animals, the region exhibiting largest density of nestin-immunoreactive microvessels 
was the GP, closely matching the area of [11C]-AIB leakage seen on microPET. That said, nestin-immunoreactive 
microvessels were additionally seen in other striatal and pallidal regions. The comparatively low spatial resolution 
of rodent [11C]-AIB microPET imaging may require a substantial degree of ongoing angiogenesis for a significant 
locus of BBB leakage to be discerned. Moreover, with resolutions of 1.83 and 1.49 mm for O-15 and C-11, respec-
tively, it may be difficult to identify discrete areas of increased flow-metabolism dissociation and altered BBB 
permeability within small subregions of the rodent basal ganglia.

We note that levodopa may also affect regional [11C]-AIB transport across the BBB through mechanisms 
unrelated to its local vasomotor effects. Indeed, pharmacologic activation of dopamine receptors has recently 
been found to interfere with gap junction communication in local neurons and astrocytes27, which may alter 
BBB permeability on a regional basis. Irrespective of cause, the observed levodopa-mediated increase in pallidal 
[11C]-AIB uptake is biologically relevant in that these changes correlated with the severity of the drug-induced 
involuntary movements. Of note, the [11C]-AIB changes in the GP were also unrelated to corresponding changes 
in local glucose utilization, an index of synaptic activation in the region. That said, both ∆AIB and ∆CMR meas-
ured in the GP cluster correlated with independent AIMs scores, each explaining different aspects of LID severity. 
While validation of these relationships is needed, one can attribute each of the effects to discrete mechanisms: 
[11C]-AIB uptake to input, in that it measures local BBB permeability, which may be under dopaminergic con-
trol27,28, and CMR to output, in that it measures synaptic activity, which may be regulated by dopamine receptors 
on GP neurons29.

The relationship of the localized BBB changes seen with chronic levodopa exposure to ongoing regional angi-
ogenesis is intriguing. Indeed, angiogenesis and BBB formation are intimately linked processes in normal brain 
development. Wnt/β-catenin signaling induces not only central nervous system angiogenesis but also expression 
of BBB components GLUT1 and Claudin-330–33. Indeed, pathways involved in BBB formation may be affected 
by both genetic and environmental factors associated with PD34–37. Lastly, the current data link angiogenesis to 
regions with altered BBB transport. Indeed, the current findings accord with prior histopathological data from 
dyskinetic 6-OHDA rats14,17 and human PD patients with LID16,26, showing upregulation of angiogenesis markers 
in the involved striatum and GP regions. The altered BBB properties associated with angiogenesis may contribute 
to uncontrolled and uneven levodopa delivery, as well as glial activation and neuroinflammation, which favor the 
development of LID38,39.
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Methods
Animals and procedures. Animals. Female Sprague-Dawley rats (200−350 g; Harlan, The Netherlands) 
were housed under a 12 h light/dark cycle with free access to food and water. All procedures were in accordance 
with National Institutes of Health guidelines and approved by the Malmo-Lund Ethical Committee on Animal 
Research (Lund, Sweden) and by the Institutional Animal Care and Use Committee (IACUC) at The Feinstein 
Institute for Medical Research (Manhasset, NY).

Drugs. L-DOPA methyl ester and benserazide hydrochloride (peripheral DOPA decarboxylase inhibitor) 
(Sigma-Aldrich, Stockholm, Sweden) were freshly dissolved in saline and co-administered subcutaneously (s.c.) 
at the doses of 6 and 12 mg/kg, respectively. The injection volume was 1.0 ml/kg body weight.

Dopamine-denervating lesioning and behavioral screening. Ten rats received a unilateral injection of 6-OHDA 
hydrochloride (Sigma-Aldrich) into the right ascending dopamine fiber bundle (medial forebrain bundle), as 
previously described6,16. Thirteen sham-lesioned animals received injections of vehicle at the same coordinates. 
Two weeks following surgery, rats were tested for amphetamine induced-rotation (2.5 mg/kg d-amphetamine 
intraperitoneally (i.p.), 90 min recordings). Only animals exhibiting >5 net full turns per minute in the direc-
tion ipsilateral to the lesion were selected for the experiments40. The 6-OHDA lesion was verified with tyrosine 
hydroxylase immunohistochemistry in all animals at the conclusion of the study.

Experimental design. Multimodal PET data were acquired from rats with unilateral 6-OHDA lesions of the 
medial forebrain bundle (n = 10) or sham lesions (n = 13). Rats received a single s.c. injection of saline 30 min-
utes before anesthesia induction with isofluorane and scanned before treatment on a Siemens Inveon (Siemens, 
Munich, Germany) at The Feinstein Institute for Medical Research. Following completion of a pre-treatment scan 
(PRE), 6-OHDA lesioned rats received two daily s.c. injections of levodopa (6 mg/kg) plus benserazide (12 mg/
kg) for six days per week for a total of three weeks (21 days), which served as chronic levodopa treatment. AIMs 
were assessed according to well-validated criteria (See Behavioral assessment section below).

Upon completion of chronic treatment, animals underwent scanning under two conditions: after s.c. injec-
tions of saline (OFF) or levodopa (ON). OFF and ON scans occurred one week apart; half of the animals under-
went OFF scanning first, and the other half underwent ON scanning first. During the week between the OFF and 
ON scanning sessions, after completion of their 21-day treatment and until the time of their transcardial perfu-
sion, animals continued receiving one daily s.c. levodopa injection, for treatment and dyskinesia maintenance.

MicroPET. Rats were injected with s.c. saline or levodopa 30 minutes prior to scan acquisition and 15 minutes 
before anesthesia induction with 3.5−4% isofluorane in 100% oxygen via a breathing mask. Once absence of 
reflexes was confirmed, the lateral tail vein was catheterized for [15O]-H2O injection and a 25-gauge butterfly 
catheter line was secured with Transpore tape (3 M, Maplewood, MN) in the right intraperitoneal cavity for 
[18F]-FDG injection, as previously described6. After the lines were secured, the animal was placed on the scanner 
platform, and anesthesia delivery was reduced to 1.5−2% in 100% oxygen for the remainder of the scan. The ani-
mal’s position was maintained until completion of the scanning session. To measure CBF, 1−2 mCi of [15O]-H2O 
tracer was injected into the lateral tail vein line and a 4-minute dynamic emission scan was immediately begun. 
One animal with an anomalous CBF value in the OFF condition was excluded from the dissociation analysis.

After allowing 10 minutes for radiotracer decay, we injected 1−2 mCi of [11C]-aminoisobutyric acid (AIB) 
to assess the integrity of the BBB. [11C]-AIB is an inert, neutral amino acid that does not readily cross the BBB 
(under normal conditions. Its transport across the BBB is mediated through Na+-dependent system A, and is 
normally inefficient41). Following intravenous injection, [11C]-AIB is concentrated by capillary endothelial cells, 
and moves bidirectionally from blood to brain and back. Regional [11C]-AIB uptake can increase, however, under 
pathological conditions involving change in BBB permeability, amino acid transport, or both.

In this study, [11C]-AIB was injected into the tail vein catheter and data were acquired during a 90-minute 
dynamic emission scan and a subsequent 10-minute transmission scan. To maintain a consistent ON (or PRE/
OFF) state during [11C]-AIB imaging, we gave the animals a s.c. injection of levodopa (or saline) one hour after 
radiotracer injection. After completion of the [11C]-AIB scan, 1−2 mCi of [18F]-FDG was injected into the pre-
viously secured right i.p. line and a 45-minute uptake period was allowed prior to the acquisition of a 10-minute 
emission scan and a 4-minute transmission scan. At the end of the scanning session, animals were allowed to 
recover in a clean cage until they regained their righting reflex.

Behavioral assessment. During the treatment period, we rated the AIMs of the animals three to four times a 
week after the morning levodopa injection, according to well-validated criteria19. Briefly, we observed each rat 
for AIMs for 1 minute every 20 minutes following drug injection, for a total duration of 180 minutes. Axial AIMs 
(dystonic posturing or twisting movements of the neck and upper body towards the side contralateral to the 
lesion), limb AIMs (purposeless movements of the contralateral forelimb), and orolingual AIMs (empty jaw 
movements and contralateral tongue protrusion) were scored on a severity scale from 0 to 4, based on the pro-
portion of observation time during which the dyskinesia was present. A total AIMs score for each animal was 
obtained by summing the severity score for each dyskinesia subtype from each monitoring period. Each total 
score was divided by nine to obtain a numerical score for each observation period (a total of 9 one-minute obser-
vation periods). The composite behavior was defined as the average of scores from every rated treatment day 
(days 1−20).

Image analysis. Data processing. Imaging data was processed using PMOD (PMOD Technologies LLC, 
Zurich, Switzerland) and SPM5 (Wellcome Trust Centre for Neuroimaging, London, UK) with SPMMouse 
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(Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK; www.spmmouse.org) implemented in 
Matlab 6.1 (MathWorks, Natick, MA). [18F]-FDG scans from each animal were manually aligned to an [18F]-FDG 
template in PMOD42. The transformations from the [18F]-FDG scan to the template were then applied to the cor-
responding [15O]-H2O and [11C]-AIB scans in each animal. (Regarding the [11C]-AIB scan, the final three frames 
(60–90 minutes post injection) of each decay-corrected scan were averaged and used for analysis.) The scans of all 
the animals were subsequently aligned to each other and were registered together to a common MRI template in 
SPM5. Final alignments were visually inspected using PMOD software. Images were smoothed with an isotropic 
Gaussian kernel FWHM (full width at half maximum) 0.8 mm at all directions to improve the signal-to-noise 
ratio.

[15O] − H2O and [18F] − FDG. To identify brain regions in which there was significant dissociation between 
CBF and CMR during levodopa administration, we conducted unbiased whole brain voxel-wise searches in the 
6-OHDA-lesioned animals. This analysis identified regions from the [15O]-H2O and [18F]-FDG PET data where 
there were interaction effects between the tracers and conditions (PRE, ON [levodopa], and OFF [saline]) in the 
globally normalized scan data. Searches were performed for both PRE vs. ON and OFF vs. ON conditions. Areas 
with interaction effects were considered significant at a voxel-level threshold of p < 0.001, with a correction for 
cluster extent at p < 0.05.

[11C] − AIB. To identify regions with significant levodopa-mediated increases in [11C]-AIB uptake, we per-
formed separate whole brain voxel-wise searches as described above for the other tracers. Specifically, we interro-
gated the data for clusters in which radiotracer uptake measured in decay-corrected scans acquired 60–90 minutes 
post injection was greater in the ON vs. OFF and in the ON vs. PRE conditions. As with the other tracers, 
levodopa-mediated changes in regional [11C]-AIB uptake were considered significant at a voxel-level threshold of 
p < 0.001, with a correction for cluster extent at p < 0.05.

Regional analysis. Brain regions identified through the above-mentioned whole-brain searches were analyzed 
with post-hoc volume-of-interest (VOI) analyses in order to evaluate individual data from each significant clus-
ter. For each VOI, functional activity values for [15O]-H2O, [18F]-FDG, and [11C]-AIB were ratio-normalized 
by the corresponding global whole-brain value for each scan. For each significant VOI, globally normalized 
[15O]-H2O, [18F]-FDG, and [11C]-AIB values were measured for individual animal in each treatment condition 
(PRE, OFF, and ON). Additionally, we computed values for each tracer measured in the PRE, OFF, and ON con-
ditions at “mirror” VOIs defined by reflecting the center of the cluster over the y-axis (from [x, y, z] to [−x, y, x]) 
as an internal control. Interaction effects in the CBF/CMR VOI data were evaluated by two-way 2 × 2 repeated 
measures ANOVA (RMANOVA), with ON/OFF or ON/PRE conditions and [15O]-H2O/[18F]-FDG scans as two 
within-subject variables. BBB effects were analyzed by two-way 2 × 2 RMANOVA with ON/OFF conditions as 
within-subject variable and lesion/non-lesion hemispheres as between-subject variable. Appropriate Bonferroni 
post-hoc corrections were applied for all analyses.

For the region of significant interaction effects, we also computed a regional dissociation index (DI), 
defined as the change in blood flow (ΔCBFON-OFF = CBFON − CBFOFF) minus the change in metabolism 
(ΔCMRON-OFF = CMRON − CMROFF) for an individual animal6,10,11. In this computation, a DI value of 0 indicated 
equal treatment-mediated changes in functional activity for CBF and CMR scan data. Positive DI values indicated 
greater treatment-mediated changes in blood flow relative to metabolism (ΔCBFON–OFF > ΔCMRON–OFF), whereas 
negative values indicated the opposite (ΔCBFON–OFF < ΔCMRON–OFF). Differences in DI across the lesioned and 
non-lesioned hemispheres were assessed with paired Student’s t-test.

Behavioral correlations. To understand the relationship of dyskinesia with local CBF, CMR, and [11C]-AIB 
uptake, we performed correlation analyses of each animal’s axial, limb, and orolingual AIMs scores using the 
average composite score per test session from the entire treatment period (days 1−20). Individual differences 
in composite AIMs scores were correlated with levodopa-mediated changes (ON – OFF) in radiotracer activity 
computed for each VOI, and with local PRE, OFF, and ON values for each of the tracers. Correlations were con-
sidered significant for p ≤ 0.05 (Pearson’s correlation).

Histopathological analysis. After the completion of all scans, rats received 100 mg/ml of ketamine and 20 mg/ml 
of xylazine at a volume of 0.15 ml per 0.1 kg body weight before being transcardially perfused with 50 ml of 0.9% 
NaCl and 250 ml ice-cold 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer. Brains were post-fixed in cold 
PFA for 2 hours, and subsequently transferred to a sucrose solution containing 0.05% PFA. Samples were refrig-
erated in this solution and shipped to Lund, Sweden for processing.

Free-floating immunohistochemistry was performed as previously described14,17. Endogenous peroxi-
dases were quenched using 3% hydrogen peroxide and 10% methanol for 20 minutes. Sections were incu-
bated in 0.02 M potassium-PBS with 0.1% Triton-X (KPBS/T) and blocked in a solution of 5% normal serum. 
The mouse anti-nestin primary antibody (concentration 1:8,000) (BD Biosciences, Franklin Lakes, NJ), 
used as a marker for immature endothelium, was incubated overnight at 4 °C in KPBS/T containing 5% nor-
mal serum. The secondary antibody, biotinylated horse anti-mouse antibody 1:200 (Vector Laboratories, 
Burlingame, CA), was incubated 1 hour at room temperature in KPBS/T with 2.5% normal serum. Antibody 
complexes were detected using a peroxidase-based method (with 3′3′-diaminobenzidine as the chromogen). 
Slide-mounted sections were cover-slipped with DPX mounting medium or polyvinyl alcohol-1,4-[2.2.2]-octane 
(Sigma-Aldrich). Nestin is expressed not only on blood vessels, where it is associated with angiogenesis20, but also 
by neuroepithelium-derived progenitor cells43. We therefore took special care to assess nestin staining only on 
blood vessel profile17.

http://www.spmmouse.org
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Quantification of nestin-positive microvessels was performed by an experimentally blinded investigator on 
two sections per animal encompassing the regions of flow-metabolism dissociation and increased [11C]-AIB 
uptake (rostrocaudal levels + 0.02 mm and −0.10 mm from bregma in the Paxinos and Watson rat brain atlas44). 
The analysis was performed using both 6-OHDA-lesioned animals and sham-lesioned controls showing good 
tissue quality (n = 6 per group). Sample areas of equal size (353287 µm2/area) were digitized across the dorsoven-
tral extent of caudate-putamen (CPu), globus pallidus (GP) and ventral pallidum (VP) on the side ipsilateral to 
the lesion (image acquisition on a Nikon 80i microscope under a 10 × objective). Nestin immunoreactivity on 
microvessels was quantified by overlaying a grid (2174 µm2/square) on each digitized area and counting the num-
ber of intersections formed by immunopositive vessels on the grid.

Statistical analysis. Statistical analysis was performed using Statistical Analysis System (SAS), version 9.3 (SAS 
Institute Inc., Cary, NC). The results were considered significant at p < 0.05.

Data availability. The datasets that were generated in the course of the current study can be made available on 
reasonable request from interested investigators.
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