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INTRODUCTION

It is reported that up to 34% of dogs and cats sustaining blunt force trauma will have head and
neck injury. In 10% with mild head injury and 80% with severe head injury, intraparenchymal and
extra axial hematomas have been detected with advanced imaging (1). Evidence of head trauma
is significantly associated with mortality in dogs suffering blunt force trauma (2) and the overall
mortality rate is reported to be 24–35% (3, 4). Therapeutic interventions for treating dogs and cats
with traumatic brain injury (TBI) are extrapolated from experimental evidence, isolated veterinary
reports, human clinical investigations, and anecdotal experience. Confounding injuries, including
hemorrhage and additional organ injury, can complicate the decision-making process as well as
outcome. Understanding the unique anatomy of the blood brain barrier (BBB) and autoregulation
of blood flow, and how they become affected by trauma can provide the clinician with a foundation
from which to write a fluid prescription for the patient with TBI.

NORMAL BLOOD BRAIN BARRIER

The brain is highly dependent on a continuous and regulated supply of oxygenated blood traveling
through a highly regulated conduit lined by the BBB. The BBB is a physical, transport, and
metabolic wall that separates the contents of the blood vessels from the brain interstitium and cells.
The endothelial cells lining the vessels of the brain are fenestrated by transmembrane proteins
(occludin and claudins or junctional adhesion molecules) anchored to the cytoplasmic surface
by scaffolding proteins (zonula occludens) that physically control particle movement through the
intercellular clefts and paracellular pathways (5). The capillary membrane is incompletely swathed
by pericytes, and together they are encased by a basement membrane constructed by extracellular
matrix molecules. Astrocytes extend cellular processes that encase the vessel, neuronal synapses,
and nodes of Ranvier, which together make the neurovascular unit. Specific transport mechanisms
mediate solute movement across the BBB, and enzymes metabolizing molecules in transit act as a
metabolic barrier.

An intact BBB acts as a solute exchange barrier between circulating blood and the brain
environment, and functions to allow nutrient delivery and waste removal while limiting entry of
immune cells, pathogens, and toxins. The intact BBB is permeable to oxygen, water, and small lipid
soluble molecules.
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BLOOD BRAIN BARRIER DISRUPTION IN
TRAUMATIC BRAIN INJURY

Dysfunction of the BBB precipitates several key events (6).
Paracellular transport of restricted components, in particular
neutrophils, increases with the loss of tight junction proteins,
and transcytosis of larger molecules such as serum proteins
increases across the endothelial cell. This establishes an
inflammatory response and an increase in interstitial fluid
resulting in vasogenic edema. In addition, activation of
cellular membrane ion channels results in intracellular
water accumulation and cytotoxic edema, culminating in
an increase in brain volume. Following a traumatic event,
brain edema will be heterogenous, and alterations in blood
flow and oxygen delivery will depend on the severity and
region(s) affected.

Since the brain parenchyma is protected within a non-
distensible calvarium, an increase in brain volume from edema
will increase ICP and reduce CPP in a non-linear manner,
resulting in brain ischemia, the single most important secondary
insult that can occur following TBI. Therapeutic goals in
mitigating the reduction in CPP include optimizing systemic
MAP, and, when necessary, decreasing intracranial volume
with osmotherapy.

CPP AND OPTIMIZING MAP

Blood flow to the normal brain is minimally affected with a MAP
between 50–150 mmHg due to autoregulatory mechanisms. A
traumatic insult to the brain is followed by disruption of the BBB
and cellular injury, and infiltration of inflammatory cells. Their
release of cytokines induces nitric oxide production resulting
in vasodilation and failure of cerebral pressure autoregulation.
Cerebral blood flow in the injured region then becomes
dependent on CPP. Systemic hypotension becomes a major
contributor to a reduction in CPP, and therefore must be
corrected and prevented. Causes of hypotension in patients
with TBI can include hemorrhage, third-space fluid losses, and
vasoplegia. In addition, polytrauma is common in patients
with TBI, and multiorgan damage resulting in hypoxemia,
hypovolemia, and systemic inflammation can contribute to the
secondary insult to injured brain tissue and complicate the
approach to treatment.

Intravenous (IV) fluid therapy is the mainstay of fluid
resuscitation from hypovolemia regardless of the extent
of trauma. Fluid types include a balanced, buffered,
isotonic crystalloid (e.g., Plasma-Lyte, Normosol-R), an
isotonic crystalloid with a higher sodium concentration
(0.9% sodium chloride), hypertonic saline (HTS 3–7.5%),
and/or a synthetic or natural colloid. It can be argued that
hyponatremic fluids [e.g., lactated Ringer’s solution (LRS)]
should be avoided unless the patient is hyponatremic,
since they might produce an increased osmolar gap that
could favor brain water accumulation (7). A discussion on

studies relevant to fluid therapy in animals and people with
TBI follows.

RESUSCITATION FLUIDS IN PATIENTS
WITH TRAUMATIC BRAIN INJURY AND
HEMORRHAGIC SHOCK

Widely recognized for their guidelines for treating TBI, the Brain
Trauma Foundation (BTF) (8) and the Lund Concept (9) have
published controversial recommendations for the treatment of
TBI. The BTF interventions are based on a set of evidence-
based recommendations gleaned from a literature review of
published studies, and the BTF guidelines do not make any
recommendations about the use of any specific fluid type.
The Lund Concept describes non-individualized, pre-emptive,
ICP-regulating and perfusion-targeted therapy for manipulating
transcapillary fluid dynamics using albumin (in addition to
vasodilators and avoiding the use of vasopressors), but lacks
strong evidence supporting the protocol (10, 11). There are no
clinical trials evaluating any fluid type for resuscitation from
hemorrhagic shock in veterinary patients with TBI. There are
however dog, cat, pig, rat, and mouse models of hemorrhagic
shock and TBI that have been used in the laboratory setting, as
well as human clinical trials, attempting to identify the optimal
fluid for resuscitation.

Isotonic Crystalloids
Isotonic crystalloid solutions have been evaluated in the
laboratory and human clinical trial setting. They are often the
first-line therapy in the pre-hospital environment. However,
crystalloids lack any pro-survival properties (12) and there
is no survival benefit associated with aggressive crystalloid
resuscitation in bleeding patients (13, 14). Modern damage
control resuscitation guidelines for hemorrhaging patients
recommend avoidance of crystalloid fluids in favor of early
initiation of a 1:1:1 ratio-based transfusion strategy using packed
red blood cells, plasma, and platelets (15). This strategy may
mitigate hemodilution, hemostatic derangements, brain edema,
and inflammation associated with large volume crystalloid
infusion and worsening of uncontrolled hemorrhage (9, 15–17).
In a pig model of TBI and uncontrolled hemorrhage, 100% of
pigs died in less than one hour when aggressively resuscitated
with isotonic crystalloid solution to a MAP of 80 mmHg, while
50% of pigs that were allowed to remain hypotensive with
no resuscitation for one hour survived and went on to have
cerebral blood flow return to normal in the second hour following
surgical hemostasis and resuscitation with shed blood (18).
Hypotensive resuscitation during damage control resuscitation
is contraindicated in people with TBI, where resuscitation to a
systolic BP of 90–110 mmHg with limited crystalloid infusion is
recommended (15).

When compared to synthetic colloids, animals resuscitated
with 0.9% sodium chloride or LRS required larger volumes of
fluid to reach and maintain hemodynamic endpoints, developed
progressive acidosis, and were volume-dependent to maintain
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MAP and CPP (19, 20). Other animal model studies found that
resuscitation from hemorrhagic shock with isotonic crystalloid
solutions was associated with lower CPP, higher ICP, lower
MAP, higher glutamate-mediated excitotoxic secondary brain
injury and increased mitochondrial dysfunction, lower brain
tissue oxygenation, more brain edema, larger brain lesion
size, upregulation of inflammatory pathway genes, increased
activation of coagulation, anticoagulation, and endothelial
systems, greater degree of neurologic impairment, and markedly
slower rate of neurologic recovery when compared to plasma
products, regardless of the type of TBI model studied (17, 19–28).

Synthetic Colloids
Synthetic colloids, in particular hydroxyethyl starch (HES), are
readily available, but their use in critically ill human patients is
limited primarily due to increased rates of acute kidney injury
and need for renal replacement therapy following administration
(29). There are relatively few studies evaluating synthetic colloids
in TBI patients, and all but one used experimental animal models.
Formation of cerebral edema was greater in a rat model of
mild to moderate TBI resuscitated with isovolemic hemodilution
using 0.9 or 0.45% sodium chloride compared to whole blood or
6% HES 670/0.75, possibly from a reduction in colloid osmotic
pressure (COP) (30). In pig models of TBI and hemorrhage
testing various crystalloid and colloid infusion, resuscitation with
6% HES 670/0.75 in LRS required less total volume to achieve
hemodynamic endpoints, resulted in a steady improvement in
base excess and a CPP >70 mmHg by 270min post-injury and
resuscitation (19, 20). Animals were hypercoagulable in both the
LRS and HES groups based on thromboelastographic testing,
and there was no difference in transfusion requirement, time
to wean from the ventilator, or mortality compared to animals
resuscitated with 0.9% sodium chloride. In another pig model
of TBI with polytrauma and hemorrhage, 0.9% sodium chloride,
6% HES 670/0.75, and fresh frozen plasma (FFP) were compared
as resuscitation fluids (24). HES reduced edema and lesion size
compared to 0.9% sodium chloride, but not as effectively as FFP.

The only identified clinical study specifically evaluating
synthetic colloids in patients with TBI was a single-center
retrospective cohort study of 171 people with severe TBI (31).
In this cohort 78% of patients received 6% HES 200/0.5 during
hospitalization. There was no association with mortality, change
in serum creatinine, or establishment of renal injury. The
Crystalloid vs. Hydroxyethyl Starch Trial (CHEST) evaluated
6% HES 130/0.4 and pre-specified a TBI subgroup analysis
(32). However, only a small number of patients with TBI were
recruited preventing any reliable conclusion (32, 33).

Natural Colloids
The rationale for using natural colloids as a resuscitation fluid
is to avoid or reduce the amount of isotonic crystalloid fluid
infused thereby avoiding the complications such as increased
brain edema (9, 34), and to avoid use of the synthetic colloids,
which, in people, is associated with significant adverse outcomes
in many critically ill populations (29). Albumin as a resuscitation
fluid during TBI has been evaluated in animal models and
human clinical trials with conflicting results. The most notable

study was the SAFE (Saline vs. Albumin Fluid Evaluation) trial
and subsequent post-hoc analysis (34, 35). The SAFE trial was
a randomized controlled trial comparing 4% albumin to 0.9%
sodium chloride for resuscitation from hemorrhagic shock. A
secondary analysis of the subset of patients with hemorrhagic
shock and TBI found the patients resuscitated with 4% albumin
had higher mortality rate than the subset resuscitated with 0.9%
saline (34, 36). This was in contrast to smaller single center
and animal studies that suggested a beneficial effect of albumin
(37, 38). The mechanism for this outcome cannot be determined
from the SAFE trial because the study was not designed to answer
this question (9, 34, 36).

Resuscitation with hypoosmolar solutions (including 4%
albumin) has been associated with increased brain edema (36).
These authors postulate that this may be the reason for increased
mortality associated with 4% albumin resuscitation, and that
the osmolality of an infusion solution rather than the COP
may be more important in the pathogenesis of cerebral edema
formation associated with resuscitation fluids (9, 36). Other
authors suggest that with a loss of BBB integrity, any colloid
might leak into the brain and pull water with it (39). The Lund
Concept recommendations continue to support the use of 4%
albumin (9) in spite of the evidence of harm (34, 36).

There is increasing evidence in the general trauma population
that ratio-based resuscitation with high ratios of FFP to
packed red blood cells confers a survival advantage to patients
requiring massive transfusion (40). This may be due to avoidance
of the complications associated with large-volume crystalloid
resuscitation (41, 42). There is also evidence that FFP exerts a
protective effect on the endothelium and endothelial glycocalyx
layer (22, 41–43), and may protect or help to heal the BBB when
administered early to patients with TBI (22, 42, 43). Plasma
products have been evaluated as a resuscitation fluid in animal
models and human patients with TBI. Fresh frozen plasma,
lyophilized plasma, and spray-dried plasma perform similarly
when compared to one another (23, 28, 43, 44), and consistently
outperform resuscitation with crystalloid or colloid solutions
(21–23, 26–28, 36, 42, 44–49).

In animal models of TBI, use of plasma products consistently
resulted in favorable responses when compared to resuscitation
with isotonic crystalloids (21–23, 25–28, 40–45, 47) or HES (26).
Resuscitation from hemorrhagic shock with plasma products
was associated with improved CPP, higher MAP, improved brain
tissue oxygenation, and reduced brain edema and lesion size (21–
23, 26). In addition, administration of plasma products resulted
in diminished glutamate-mediated excitotoxic secondary brain
injury and reduced mitochondrial dysfunction (21, 26), down-
regulation of inflammatory pathway genes and expression of gene
clusters mapping to increased metabolic and platelet signaling
(26), a lesser degree of neurologic impairment, and markedly
faster rate of neurologic recovery (28).

The results of human clinical data surrounding the use
of plasma products to treat patients with TBI are mixed
and complicated by small sample size and differences in
protocols and study population. There are two single center,
prospective, randomized trials evaluating the early empirical
use of FFP in patients with severe closed head injury: one
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with 63 patients receiving 5 ml/kg (50) and one with 90
patients receiving 10–15 ml/kg (51). Fresh frozen plasma or an
equal volume of 0.9% sodium chloride was administered
over 3–4 h following initial hemodynamic stabilization
and CT scan. The fluid types and volumes used for initial
stabilization are poorly described but may have included
blood products, crystalloids, and/or colloids. In both studies,
early empirical use of FFP was associated with an increase
in delayed traumatic intracerebral hematoma formation.
The study by Zhang (50) showed increased rate of blood
transfusion and coagulopathy, but no mortality difference in
patients receiving FFP, whereas the study by Etemadrezaie
(51) showed increased mortality but no difference between
groups for rate of coagulopathy (there was no comment on
transfusion requirements).

Gruen (46) et al. reported the secondary analysis of a
predefined subgroup of patients with TBI from the PAMPer
trial. The PAMPer trial (52) was a multi-center, cluster-
randomized, phase-3 superiority clinical trial comparing plasma
administration to standard-care resuscitation in severely injured
patients during air-medical transport, and the primary outcome
was mortality at 30 days. The study enrolled patients transported
from an outside referral emergency department and directly
from the scene of the accident. Patients were randomized
to receive plasma vs. no plasma in addition to standard
care. From that cohort, a subset of patients with TBI were
included in the secondary analysis. Among patients with
TBI, the group receiving resuscitation with plasma during
air transport had improved 30-day survival compared to
those that did not. They also received less crystalloid fluid,
vasopressors, and packed red blood cells in the first 24 h, had
lower international normalized ratios, lower 24 h mortality,
and lower 30-day mortality. The plasma group also had
higher incidence of multiple organ failure, longer ICU stay,
and longer hospital length of stay. Plasma treatment was
associated with the greatest survival benefit in the sickest/most
severely injured of these patients. Additionally, transport
origin (scene of accident vs. hospital transfer) was used as
a proxy for time-to-plasma resuscitation. When grouped by
transport origin, patients transported from the scene of the
accident who received plasma had lower 30-day mortality
than those who did not receive plasma, while there was no
difference between patients receiving plasma vs. no plasma when
transported from a referral emergency department, suggesting
that minimizing time from injury to administration may be
important (46).

Retrospective studies also suggest patients with TBI
benefit from early resuscitation with plasma (40, 53).
Unlike the two single-center prospective trials already
discussed, patients in these retrospective trials received
plasma as part of the initial resuscitation. Jokar (53)
et al. report on 1:1:1 (plasma:pRBC:platelet) ratio-based-
resuscitation vs. non-ratio-based resuscitation in trauma
patients with isolated TBI and intracranial hemorrhage.
Patients receiving ratio-based resuscitation received more
plasma and no crystalloid compared to non-ratio-based
resuscitation, had significantly lower mortality compared

to those who did not, and crystalloid administration was
associated with increased odds of death. Additionally,
there was no difference in progression of intracranial
hemorrhage or rate of neurosurgical intervention between
groups (53).

Chang (39) et al. evaluated early plasma transfusion during
initial resuscitation in patients with isolated TBI without
polytrauma and intracranial hemorrhage at a single center.
Evaluation of the full cohort showed no difference in baseline
characteristics or survival between patients receiving plasma
and those who did not. Patients were then sub-grouped
based on the dominant brain lesion: extradural hematoma,
subdural hematoma, intraparenchymal contusion, subarachnoid
hemorrhage, or multifocal intracranial hemorrhage. There
were significant differences in age, mechanism of injury,
hypoperfusion, injury severity, early plasma transfusion, and
survival among the different subgroups. In the subgroup
with multifocal intracranial hemorrhage early plasma
transfusion was associated with improved survival. Compared
to patients with extradural hematoma, subdural hematoma,
intraparenchymal contusion, or subarachnoid hemorrhage,
these patients were more likely to present with markers of
more severe injury: severe TBI, hypotension, hypoperfusion,
more severe injuries, and coagulopathy. Twenty-five percent
of these patients received early plasma transfusion which
was associated with improved in-hospital survival. Early
plasma transfusion was not associated with improved survival
in any of the other subgroups (39). It is difficult to make
direct comparisons between any of these studies due to
the significant differences in populations, protocols, and
study design.

Hyperosmolar Fluids During Resuscitation
An intact BBB is required for a predictable response to
osmolar gaps to occur (54–56). Following a significant TBI,
cerebral edema may be reduced by a hyperosmolar fluid
infusion (54, 57–59). Use of hyperosmolar solutions during
initial resuscitation is not discussed in either of the human
guidelines (8, 9) although they are evaluated in the experimental
and human clinical literature. When used empirically in the
prehospital setting as a low-volume resuscitation fluid, 7.5%
HTS is well-tolerated but does not confer a survival benefit
compared to isotonic crystalloid resuscitation (33, 60, 61).
However, in patients with intracranial hypertension both HTS
(3–23.4%) and mannitol effectively lower ICP (33, 62). In two
experimental dog models of TBI and hemorrhage the animals
were resuscitated with either 3% HTS (8 mL/kg) or LRS (16
mL/kg) (63, 64). Animals resuscitated with HTS had higher
CPP, lower ICP, higher serum sodium and osmolarity, less
cerebral edema, and faster return of pupil responses compared
to animals resuscitated with LRS. When animals were further
resuscitated by returning their shed blood to maintain MAP
>70 mmHg there was no difference in total volume infused
between groups (64). In a rat model of TBI and hemorrhage,
HTS (7.5%) resuscitation was associated with improved long-
term neuronal survival as well as faster and more complete
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behavioral recovery compared to 0.9% sodium chloride or no
resuscitation (65).

FLUID RESUSCITATION TECHNIQUE

The fluid administration and shock management technique
might also matter, particularly in patients with uncontrolled
hemorrhage. Current BTF (8) and damage control resuscitation
guidelines (15) recommend strongly against hypotensive
resuscitation in favor of resuscitation to a systolic BP 90–
110 mmHg. There is evidence that even transient episodes
of hypotension lead to irreversible secondary brain damage
in a time- and dose-dependent manner (66–68). However,
experimental data suggests normotensive resuscitation prior to
hemorrhage control may not be the optimal strategy. Vrettos
(18) et al. compared aggressive crystalloid resuscitation to no
initial resuscitation in a pig model of TBI with hemorrhage.
TBI was induced in anesthetized pigs followed by abdominal
hemorrhage to a MAP of 30 mmHg. After 6min of hypotension
the animals were randomized and either resuscitated to a systolic
BP of 80 mmHg with LRS or allowed to remain hypotensive.
Animals surviving to 1 h post-injury then underwent surgical
hemostasis and 1 h of resuscitation with shed blood. All
animals in the early aggressive fluid resuscitation group died
of exsanguination and hemorrhagic shock in less than an
hour, none surviving to undergo surgical hemostasis and
further resuscitation. Half of the animals in the hypotensive
group survived to receive surgery and resuscitation. In the
survivors, MAP, cardiac output, cerebral blood flow and
oxygen measurements were restored to pre-hemorrhage levels.
There was no evaluation of brain lesion size or any functional
outcome in these animals. The authors suggest that while
hypotension is suboptimal in TBI, bleeding to death leaves no
chance of survival, and other resuscitation strategies need to
be investigated.

In another pig TBI and uncontrolled abdominal hemorrhage
model, resuscitating pigs with vasopressin plus 6% HES 670/0.75
in LRS increased blood pressure but failed to improve cerebral
blood flow and increased abdominal hemorrhage volume
compared to resuscitation with HES only and to no resuscitation
(66). A third pig TBI and hemorrhage model compared FFP and
0.9% sodium chloride administered as either a large rapid bolus
or slower stepwise resuscitation (27). Pigs underwent TBI and
40% blood loss, were kept hypotensive for 2 h, then resuscitated
with FFP or 0.9% sodium chloride. The FFP group received the
shed blood volume back as either a fast bolus (50 ml/min) or
stepwise infusion starting at 2 mL/min and gradually increasing
to 50 mL/min. The 0.9% sodium chloride group received 3x
the shed blood volume either as a bolus at 165 mL/min or
starting at 6 ml/min and gradually increasing to 165 mL/min.
Animals were euthanized and tissue harvested after 6 h. Bolus
FFP or 0.9% sodium chloride resulted in greater brain swelling
but similar lesion size to stepwise FFP or 0.9% sodium chloride,
suggesting that stepwise infusion is superior to rapid bolus.
In addition, 0.9% sodium chloride infusion resulted in more

swelling and a larger brain lesion when compared to both FFP
infusion types.

MANAGING ELEVATED ICP WITH
OSMOTHERAPY

Osmotherapy is the infusion of a hyperosmolar fluid with the
intention of producing an osmolar gap and transferring brain
parenchymal fluid into the vessels to be excreted in the urine.
This reduces blood viscosity, which improves rheology resulting
in constriction of pial arterioles (68–70). A direct effect at the site
of injury may not be realized should blood flow to the site of
injury be limited, or the BBB be disrupted. However, in regions
where the BBB is intact, the osmolar gap may remove water that
has accumulated in the brain cell and interstitium, and reduce
ICP. The most common fluids used for osmotherapy include
mannitol (20 and 25%) and HTS (3, 7.5, 24%). Their differences
are summarized in Table 1. A key difference between the two
fluids is that HTS can be used for dual purpose in treating
hypovolemic shock as well as reduce cerebral edema. There is
no strong evidence to support any recommendation for the
use of osmotherapy for the treatment of traumatic intracranial
hypertension or using one over another, and a summary of the
evidence follows.

A single clinical veterinary study evaluating the effect of
isosmotic mannitol and 3% HTS in two cats and one dog
was identified (71). The animals were presented to a veterinary
teaching hospital with naturally occurring head trauma, received
immediate cardiovascular resuscitation with LRS, pain control
with fentanyl, and antibiotic coverage with cefazolin when
indicated. A brain MRI was performed within 12 h of
presentation and as soon as the animals were considered stable.
Animals suspected to have elevated ICP were instrumented
for direct ICP monitoring immediately following imaging and
randomized to receive either 18% mannitol or 3% HTS. ICP
and CPP were recorded before and at five timepoints during the
120min post-treatment. Patient one received 3% HTS and had
no response to treatment. Patient two received 3% HTS resulting
in an approximately 40% decrease in ICP and 15% increase in
CPP. The ICP remained lower than baseline however the patient
became hypotensive requiring further isotonic fluid resuscitation
and dopamine to raise the MAP. This period of hypotension
resulted in a decreased CPP, and the patient’s response to 3%HTS
was therefore classified as transient. The third patient received
18% mannitol. Initially the ICP decreased by 19% and the CPP
returned to normal, however there was a rebound increase in ICP
that was higher than pre-treatment values, and the CPP decreased
again before gradually returning to normal over the 120-min
monitoring period.

Numerous reviews and meta-analyses evaluate HTS and
mannitol against various agents in the human clinical literature
(33, 62, 72–82). In summary, the studies are heterogenous in
population, dose, concentration and rate of fluid administered,
therapeutic targets, and outcomes of interest. Therefore,
the systematic reviews can only draw limited and general
conclusions. The available evidence suggests that both mannitol
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TABLE 1 | Characteristics of Mannitol and Hypertonic Saline.

Mannitol Hypertonic Saline

Base 6-carbon, alcohol sugar isomer of

sorbitol

Sodium and chloride

Osmolarity (mOsm/L) 20%: 1100

25%: 1375

3%: 1027 (500 mmol/L)

7.5%: 2565 (1274 mmol/L)

23.4%: 8008 (4004 mmol/L)

Reflection coefficient 0.9 1.0

Molecular weight (Daltons) 182

Diuretic effect Excreted as is in urine and induces

osmotic diuresis

Releases ANP

Additional effects Oxygen-free radical scavenger ↑IV volume & ↑MAP

Immunomodulator

Dose for treating intracranial hypertension 500–1000 mg/kg over 15min. Can

be repeated 2-3 X if effective

4-6 ml/kg of 7.5%

Dose for treating hypovolemia 4-7 ml/kg of 7.5% or 4-7 ml/kg 1 part

23.4% mixed with 3 parts HES

and HTS effectively lower ICP, but there is not enough evidence
to suggest one fluid is superior, although a few studies suggest
HTS may have slightly fewer treatment failures in patients
with refractory intracranial hypertension compared to mannitol
(62, 73–76, 78, 83, 84). Additionally, HTS avoids diuresis and
increases cardiac preload, favorably impacting cerebral perfusion
(33, 79). Mannitol is associated with a well-documented rebound
phenomenon in patients with intracranial hemorrhage and brain
tumors, occurring in about 12% of patients (85–89). A rebound
phenomenon was defined in a Cochrane review by Chen (76)
et al. as ‘intracranial pressure rising above its original level
after hyperosmolar therapy.’ However, the rebound phenomenon
occurring in patients with TBI is only mentioned in passing
in a single study included in the Cochrane review (76) and in
the veterinary pilot study (71). Despite effective reduction of
ICP, neither HTS nor mannitol has clinical evidence supporting
improved survival or long-term neurologic outcome (33, 75, 81).

The optimal dose has not been determined for either
mannitol or HTS. There is some evidence that higher doses
of mannitol (∼ 1.0–1.5g/kg) might be associated with greater
reduction of ICP and less rebound phenomenon compared
to lower doses of mannitol, although the data surrounding
the dose-relationship with rebound phenomenon is conflicting
(80, 90–93). A specific, evidence-based dosing strategy for
HTS cannot be determined at this time due to insufficient
evidence and profound heterogeneity among the various
studies. In the veterinary clinical study (71) noted previously,
the 2 cats received 5.3 ml/kg of 3% HTS IV over 5min.
One had no response to therapy and the other had an
approximately 40% decrease in ICP. The Neurocritical Care
Society has published guidelines for acute treatment of cerebral
edema in human neurocritical care patients with TBI and
recommends symptom-based bolus dosing over sodium-target-
based dosing (94).

Continuous infusion of HTS in patients with various
pathologies has been evaluated in a small single center trial
and was compared in a pooled analysis against intermittent
bolus therapy from two other trials (95). The hazards ratio for

survival showed a 90-day functional outcome with continuous
infusion to be significantly greater compared to bolus therapy.
There were no significant adverse effects observed with HTS
continuous infusion (96, 97). This is in contrast to pediatric
patients, where sustained hypernatremia is associated with
thrombocytopenia, kidney failure, neutropenia, and ARDS (97–
101). The recently published COBI (Continuous hyperosmolar
therapy (20% HTS) in Brain-Injured patients) trial compared
functional outcome at 6 months between standard care
alone and continuous therapy with 20% HTS in 370 adults
(102). All patients received recommended interventions based
on the most recent BTF guidelines. The treatment group
received a 1 h bolus infusion adjusted to their measured
serum sodium level within 24 h of trauma, which was
immediately followed by a 0.5–1 g/kg/h continuous infusion
of saline. Serum sodium levels were monitored, and the
infusion concentration adjusted to prevent an elevation in
serum sodium >155 mmol/L for a minimum treatment period
of 48 h and only while intracranial hypertension remained
a risk. The infusion was stopped once 12 h had passed
following the suspension of all specific therapies for intracranial
hypertension. Although the study was underpowered to detect
a clinically important difference, the authors concluded that in
patients with moderate to severe TBI, there was no significant
difference in neurological status between the treatment and
control group.

ADDITIONAL CONSIDERATIONS WITH
HTS AND MANNITOL

Several local and systemic pathophysiological consequences
contribute to secondary injury of the brain which may
be mitigated by HTS and/or mannitol. Hypovolemia,
hypotension, cerebral vasospasm, and altered blood flow
result in activation of systemic inflammation and hypoxemia.
In the brain, cerebral leukocytes congregate in injured areas
and initiate vasodilation and peroxidase/protease-mediated
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FIGURE 1 | Fluid therapy for the TBI patient. *Fluid resuscitation techniques can be any one of the following or a combination thereof: (1) 10–20 ml/kg crystalloids

(Plasma Lyte or Normosol-R) IV rapid infusion up to 60–90 ml/kg. (2) 5–10 ml/kg 6% HES (tetrastarch) IV rapid infusion up to 40–50 ml/kg. (3) 5–10 ml/kg plasma

rapid infusion IV up to 20–30 ml/kg. (4) 3–4 ml/kg 7% HTS IV over 10–15 min. (5) whole blood or pRBC, if indicated. **Altered level of consciousness with or without

bilateral or unilateral miotic pupils; unresponsive mid range pupil(s) or mydriasis; loss of the oculocephalic reflex; bradycardia with hypertension (Cushing reflex);

posturing (opisthotonus, decerebellate, decerebrate); alteration of the respiratory pattern. ***1 g/kg mannitol IV up to 3 doses q60–90 min OR 3–4 ml/kg 7% HTS IV.

cell death (101, 103). Dysfunction of cell-mediated
immunity can occur and may be moderated by
HTS (104–107).

Hypoxemia results in the depletion of ATP, cellular membrane
ion pump malfunction, intracellular sodium accumulation and
endothelial cell swelling. This can narrow the vascular lumen
causing red blood cells to pass through vessels with more
difficulty, and rupture or cause premature apoptosis of neuronal
cells. In addition, brain injury can induce extensive neuronal
depolarization which decreases extracellular sodium reversing
the direction of the Na-glutamate cotransporter, causing an
increase in extracellular glutamate, compounding neurotoxicity
(107–110). Using HTS during resuscitation improves alveolar
gas exchange by reducing extravascular lung volume, reverses

endothelial and red blood cell swelling improving blood flow and
oxygen delivery and restores extracellular sodium and cellular
action potential, moderating glutamate toxicity in the brain
(111–116).

During reperfusion of hypoxemic tissue, the production of
radical oxygen species can propagate tissue injury. Mannitol may
limit the secondary oxidative injury in the brain by scavenging
radical oxygen species (117).

Hypotension caused by a decrease in systemic vascular
resistance and/or a vagal-mediated reflex after the rapid
administration of HTS has been reported to occur in
humans, dogs, and rabbits (118–120). This appears to
be transient as it is followed by an increase in MAP and
myocardial contractility.
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SUGGESTED THERAPEUTIC APPROACH

It is clear from the information available that therapeutic
recommendations for fluid therapy in the dog or cat with TBI
continue to remain the clinician’s choice. Maximizing CPP by
correcting systemic hypotension is a cornerstone to management
of TBI, although this has to be done carefully when also treating
severe hemorrhage resulting from polytrauma. Hypovolemia
is treated with isotonic crystalloids, hypertonic saline, and/or
colloids. A decline in neurological status in the non-hypotensive
patient warrants osmotherapy. The authors approach to fluid
resuscitation of the small animal patient with TBI is outlined in
Figure 1.

ON THE HORIZON

Various fluid additives and novel molecules are being investigated
to identify the optimal resuscitation fluid for patients with TBI.
One combination that stands out is HTS containing adenosine,
lidocaine, and magnesium. This combination appears to play
a protective role in a variety of life-threatening conditions
in animal models of sepsis (121–124), non-compressible
hemorrhagic shock (125–127), and TBI from non-compressible
hemorrhage (128). Interestingly, the drugs do not confer benefit
when used individually, and magnesium sulfate alone might
increase mortality in humans with TBI (129). LRS with added
drag-reducing molecules has been evaluated in a rat model,
and appears to improve cerebral microcirculation, increase brain
tissue oxygenation, and reduce neuron loss, despite lower mean
arterial pressure (130).

Modified hemoglobin-based oxygen carriers (HBOCs) that
have reduced nitric oxide scavenging and oxygen-free radical
generation are being evaluated as resuscitation fluids in
animal models of TBI and hemorrhagic shock (131–133).
Polynitroxylated-pegylated hemoglobin (PNPH) is a novel
HBOC bovine-origin carboxyhemoglobin with covalently labeled
nitroxide moieties being evaluated for use as a small-volume
resuscitation fluid (132–134). The polynitroxylation of the
hemoglobin molecule has antioxidant properties and prevents
nitric oxide scavenging, while the polyethylene glycol side chains
create a “hydrating shell” that has a strong oncotic effect useful

in resuscitation (131). PNPH has also been evaluated in mouse

models of TBI with hemorrhage (131–133), and compared with
crystalloid andwhole blood resuscitation (131).Mice resuscitated
with PNPH required smaller volume fluid resuscitation and had
higher mean arterial blood pressure that remained normal and
stable through to the end of the experiment without the need for
additional fluid infusion. In addition, they had a lower ICP and
markedly less brain edema compared to those resuscitated with
crystalloid or whole blood.

Dodecafluoropentane emulsion is an oxygen-carrying
perfluorocarbon emulsion also under investigation for use in
patients with TBI. In humans it has a short half-life (90min) and
is cleared via exhalation from the lungs (135). It is administered
IV, travels to the lungs where it picks up oxygen, then to the
tissues where it delivers oxygen. It has been evaluated in a rat
model of TBI where brain tissue oxygen levels increased to 146%
of the post-injury, pre-treatment level, with no effect on systemic
blood pressure, heart rate, biochemical parameters, or blood gas
measurements (135, 136). Further evaluation is needed before
these therapies can be recommended in clinical practice.

CONCLUSION

There is a paucity of information covering treatment of TBI
in dogs and cats, which is limited to experimental data in
primarily pigs and rats, and clinical data collected from human
studies. Response to treatment can be complicated by acute
hemorrhage. The research and limited clinical studies examined
do not provide sufficient evidence for a preferred fluid type,
although it appears that infusion of LRS is less desirable than
other isotonic crystalloids, and the use of plasma products during
resuscitation may convey an improved outcome. To further the
knowledge base on therapeutic interventions for TBI in dogs
and cats, future clinical studies should focus on the effect of
specific fluid prescriptions and osmotic agents on short- and
long-term outcome.
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