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This research examined the general soil fungi and AM fungal communities associated
with a Lonely Tree species (Vachellia pachyceras) existing in the Sabah Al-Ahmad
Natural Reserve located at the Kuwait desert. The goals of the study were to
describe the general fungal and AM fungal communities present in the rhizospheric,
non-rhizospheric soils and roots of V. pachyceras, respectively, as well as local
and non-local V. pachyceras seedlings when grown under standard nursery growing
environments. Soil and root samples were analyzed for an array of characteristics
including soil physicochemical composition, and culture-independent method termed
PCR-cloning, intermediate variable region of rDNA, the large subunit (LSU) and internal
transcribed spacer (ITS) region sequence identifications. The results reveal that the
fungal phylotypes were classified in four major fungal phyla namely Ascomycota,
Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblage of fungal
analyses showed communities dominated by members of the phylum Ascomycota. The
assays also revealed a wealth of incertae sedis fungi, mostly affiliated to uncultured fungi
from diverse environmental conditions. Striking difference between rhizosphere and bulk
soils communities, with more fungal diversities and Operational Taxonomic Units (OTUs)
richness associated with both the field and nursery rhizosphere soils. In contrast, a less
diverse fungal community was found in the bulk soil samples. The characterization of AM
fungi from the root system demonstrated that the most abundant and diversified group
belongs to the family Glomeraceae, with the common genus Rhizophagus (5 phylotypes)
and another unclassified taxonomic group (5 phylotypes). Despite the harsh climate
that prevails in the Kuwait desert, studied roots displayed the existence of considerable
number of AM fungal biota. The present work thus provides a baseline of the fungal
and mycorrhizal community associated with rhizosphere and non-rhizosphere soils and
roots of only surviving V. pachyceras tree from the Kuwaiti desert and seedlings under
nursery growing environments.

Keywords: soil fungal communities, Lonely Tree, Vachellia pachyceras, rhizosphere soils, Kuwait desert
ecosystem
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INTRODUCTION

Kuwait is located in the northeastern corner of the Arabian
Desert where it constitutes a part of the northwestern coastal
flat of the Arabian Gulf. This arid region severely suffered in
recent years from prolonged drought (Khalaf, 1989; Brown and
Porembski, 1997; El-Sheikh et al., 2010). This has ultimately
steered a decline in soil and plant productivity (El-Sheikh et al.,
2010), leading to further desertification. Furthermore, increases
in anthropogenic activities have exacerbated these processes
and under incessant risk of desertification (Wang et al., 2006).
Consequently, about 90% of Kuwait’s territory (an area of
approximately 18,000 km2) is occupied by the desert (Kaitharan,
2013). Such a degraded soil situation needs to be reversed to its
original state to conserve key native plant species and this may
include a series of interventions aimed to sustain soil stability and
productivity.

In Kuwait, Acacia gerrardii (Syn Vachellia gerrardii) is
considered the only native tree species existing in the desert
ecosystem (Boulos and Al-Dosari, 1994). A. pachyceras O.
Schwartz, synonym A. gerrardii Benth., subsequently referred
to as A. gerrardii, commonly known as “Lonely Tree (LT).”
A. gerrardii is considered the only native tree species existing in
the Kuwait desert ecosystem (Boulos and Al-Dosari, 1994) and
is only available in Sabah Al-Ahmad Natural Reserve (a 320 km2

protected area formerly acclaimed as Kuwait’s first National Park)
where it is as key-stone species (Boulos and Al-Dosari, 1994;
Kaitharan, 2013). It belongs to the Acacia genus, one of the largest
genera of leguminous tree and shrubs that has a wide distribution
throughout the world (Pedley, 1986; Sene and Sylla, 2014).
Recently this iconic tree is genetically identified as V. pachyceras
based on multi-locus plastid gene sequences (Suleiman et al.,
2018). Many members of this genus are recognized as species that
are useful for re-vegetation of water-stressed and low-nutrient
soil environments (Sene et al., 2012b; Sene and Sylla, 2014).
V. pachyceras was, however, damaged by the gulf war in 1990 and,
the remaining plants patchiness are under the threat of extinction
(Kaitharan, 2013). Conservation efforts are therefore required to
make this species’ survival in Kuwait’s terrestrial ecosystem and
ensuring sustainability and preserving soil biological attributes.

There is increasing evidence that trees can play a key role
in ecosystem rehabilitation or restoration (Donfack et al., 1995;
Vincke et al., 2010; Sene and Sylla, 2014). Many studies have
supported that the presence of trees provide a number of
ecological advantages from increased soil organic matter content
(Hobbie et al., 2006, 2007; Peichl et al., 2006; Rivest et al., 2009;
Sene et al., 2012a, 2013; Sene and Sylla, 2014), to biodiversity
conservation (Akpo et al., 2003; Grouzis and Akpo, 2006; Sene
et al., 2012a; Hortal et al., 2013), and improved soil microbial
activity and nutrient cycling rates (Hobbie et al., 2006; Sene
et al., 2013). In addition, trees in desert regions often represent
“fertility islands” for many species (Rodríguez-Zaragoza et al.,
2008; Kavamura et al., 2013), which in turn influence long-term
vegetation dynamics and ecosystem processes. Moreover, they
have a role in combating land degradation through stabilizing
soil surfaces by preventing soil erosion and in facilitating
plant recruitment and survivorship (El-Sheikh et al., 2010; Sene

et al., 2012b, 2013; Kavamura et al., 2013; Sene and Sylla,
2014).

Microbial associations have been pointed as an important
strategy to guarantee plant growth and survival (van der
Heijden et al., 1998, 2008; Sene et al., 2010) and the effect
is more pronounced under arid conditions such as desert
areas. Soil microorganisms are particularly known to play key
roles in ecosystems, and mediate many ecological processes
that are central to ecosystem functioning. These processes
include nutrient acquisition (Kahindi et al., 1997; Sene et al.,
2010), nitrogen cycling, carbon cycling, soil formation (Rillig
and Mummey, 2006; Sene and Sylla, 2014), decomposition
processes (Hobbie et al., 2006, 2007; Peichl et al., 2006), and
the regulation and maintenance of plant biodiversity (van der
Heijden et al., 1998, 2008; Sene and Sylla, 2014). Plants adapted
to harsh environments and their associated soil microorganisms
within these habitats make both partners highly competitive
and adaptive (Basil et al., 2004). Highly diverse groups of
fungi are represented among these soil microbial communities
and play fundamental physiological and ecological roles in
desert ecosystems (Meiser et al., 2014; Sene and Sylla, 2014;
Powell et al., 2015). Arid region soil microbes are adapted
to sustain extreme environmental conditions and maintain
a leading role in ecosystem processes (Pointing and Belnap,
2012). AM fungi are one of the most important associations
in terrestrial ecosystems, influencing plant productivity through
the acquisition of nutrients and water (Smith and Read, 2008;
Allen, 2011). They can enhance plant establishment by buffering
different environmental stresses and enhancing soil properties
(Jeffries and Barea, 2001). The growth and development of
A. nilotica is improved in association with AM fungi (Reddell,
1993). Osonubi et al. (1992) reported that inoculation of AM
fungi to A. nilotica has the capacity to increase drought tolerance
and plant biomass. Although numerous studies have reported
the importance of mycorrhizal symbiosis for desert tree species,
the symbiotic status of this unique tree, V. pachyceras (LT) has
never been investigated in Kuwait. Until today, no attempt has
been undertaken to identify indigenous fungal or mycorrhizal
populations associated with the root system of this about to
extinct LT species. Therefore, it is crucial to assess the status of
native fungal and mycorrhizal propagules present in the roots
of surviving plants and rhizosphere soils in the Kuwait desert
before undertaking revegetation programs and introducing any
inoculation technologies.

The main objective of this study was to conduct a field
and seedling nursery study to investigate the root systems
and rhizosphere soils of the V. pachyceras in desert and
nursery conditions. This is in addition to the examination
and comparison of the rhizosphere fungal and mycorrhizal
communities of local and non-local V. pachyceras when grown
under standard nursery seedling growing conditions and media;
and to evaluate plant performance related to fungal and
mycorrhizal associations. The characterization of general fungal
and mycorrhizal populations and functional structures were
revealed using both morphological and advanced DNA-based
molecular techniques. This research is the first effort in Kuwait
to assess the root mycorrhizal structure of V. pachyceras
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and its rhizosphere soil fungal community composition under
both desert (LT) and nursery conditions (local and non-local
V. pachyceras).

MATERIALS AND METHODS

Study Site and Sampling
Field Sampling
The experimental site was located at the Sabah Al-Ahmed Natural
Reserve, Kuwait (N 29◦34.909′, E047◦47.734′ around the only
surviving single V. pachyceras tree, locally known as the LT). Soil
samples were collected using soil corer of 3 × 30 cm from 0 to
30 cm depth for rhizospheric soil. Lateral roots were followed
through the soil excavation channels created around 80–100 cm
distance from the main trunk. Each replicate sample was thus a
composite of 3–4 soil samples collected, which were mixed well
by placing in a zip lock plastic bag and labeled as LT-S. Additional
soil samples were collected 100 m away from the LT at three
different points, and served as the non-rhizospheric control soil
(CTL) in subsequent analyses and it is labeled as LTCS. Roots
containing root nodules were also collected in triplicates from
this tree roots and labeled as LT-AM. The representative soil and
root samples were collected and brought to the laboratory and
stored in a refrigerator until required for analysis. Roots were cut
into 1–2 cm pieces and stored in 2% cetyl trimethylammonium
bromide (CTAB) at−20◦C for molecular characterization of AM
fungal community.

Nursery Sampling
Two month old seedlings of native and non-local V. pachyceras
were transplanted into one-gallon pots containing a soil mixture
of agricultural soil, peat moss, potting soil and perlite (at 2:1:1:1
ratio, v/v basis) and is named hereafter as the commercial
soil mix. The commercial soil mix is used conventionally in
Kuwaiti nurseries for producing large-scale nursery seedlings
for the restoration program at a national scale. Therefore, the
current study was also intended to investigate fungal community
structures in the commercial soil mix used for growing local and
non-local V. pachyceras. Fifteen local and non-local V. pachyceras
seedlings each were grown in one-gallon plastic pots in the
nursery, and arranged in three replicate rows with five plants
in each row for duration of 1 year. Steam-sterilized commercial
soil mix (SAB Potting Soil-Plantaflor) was used for this study.
Non-sterilized crude commercial soil mix was used as non-
rhizospheric control soil (PsBp).

Seedlings were destructively sampled for plant and soil sample
collection. Soil from five pots from each replicate row was
pooled together and thoroughly mixed in a plastic bag to form
a single composite sample per replicate in both seedling groups.
Three replicate samples were used throughout the experiment.
Samples were labeled as PsApLT and PsApSA for the local (Loney
Tree) and non-local (Saudi Arabia) V. pachyceras seedlings,
respectively. Representative soil and root samples collected as
described for field soil and root samples. Several root pieces were
cut into 1–2 cm pieces and stored in 2% CTAB at −20◦C for
molecular characterization of fungal population.

Molecular Characterization of Fungal
Communities in Soil Samples
DNA Extraction and Amplification of ITS rDNA Region
Total community DNA from 0.25 g bulk soil and rhizosphere
samples of V. pachyceras was extracted using a PowerSoil DNA
Isolation Kit (MoBio Laboratories, Carlsbad, CA, United States)
with an addition of 0.05 g of skim milk powder in the
lysis buffer. The remaining steps were performed according
to the manufacturer’s instructions. Isolated soil DNAs were
stored at below –20◦C until PCR amplification. Amplification
was performed using the fungal universal primers ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′; Gardes and Bruns, 1993)
/ITS4 (5′-TCCTCCGCTTATTGATATGC-3′; White et al., 1990).

Polymerase chain amplification (PCR) was carried out in a
25-µL reaction and consisted of 1 µL soil DNA, 1 U of Taq DAN
polymerase (Sigma-Aldrich), 3 mM MgCl2, 0.2 mM dNTP mix
0.2 mg/ml of BSA, and 0.3 mM concentration of each primer.
The following thermocycle program was used for amplification:
94◦C for 4 min followed by 35 cycles of 94, 50, and 72◦C for
60 s each, and an extension period of 72◦C for 10 min using a
MJ Research PTC-225 Peltier Thermal Cycler. Negative control
(containing no template DNA) reactions were also conducted to
assess for any experimental contamination. The PCR products,
5 µl sub-samples, were observed by electrophoresis on 1× Tris-
acetate-EDTA (TAE) agarose (1% w/v) with suitable DNA size
standards (Mass RulerTM, DNA Ladder Mix, Invitrogen, Canada)
to ratify the size and estimate the quantity of the generated
amplicons. The PCR products were visualized using ethidium
bromide (0.25 µg L−1).

Molecular Characterization of
Arbuscular Mycorrhizal Fungal
Communities in Root System
PCR Amplification
A nested PCR was required to obtain sufficient amplicons for
the molecular characterization of AM fungal communities from
the roots of V. pachyceras tree from the field and seedlings
grown in nursery under different conditions. Before isolation of
genomic DNA, roots were rinsed in sterile distilled water for
48–72 h to remove excess CTAB. Next, 50 mg of roots were bead-
grinded with a Tissue Lyser II (Qiagen) using the DNeasy Plant
Mini Kit (Qiagen) and following the manufacturer’s protocol.
Amplification was performed using the fungal universal primers
LR1- (5′-GCA TAT CAA TAA GCG GAG GA-3′) and NDL22 (5′-
TGG TCC GTG TTT CAA GAC G-3′) (van Tuinen et al., 1998).
The polymerase chain reaction (PCR) followed the protocol of
Brito et al. (2012). The reaction was carried out in a 25-µL
reaction and consisted of 1 µL of total DNA, 1 U of Taq DNA
polymerase (Sigma-Aldrich), 1.5 mM of MgCl2, 0.2 mM of dNTP
mix, 0.5 mM of each primer and 25 µg/µl of T4 gene 32 protein
(New England Biolabs Inc.). The following thermocycle program
was used for amplification: 94◦C for 4 min followed by 30 cycles
of 94, 56, and 72◦C for 60 s each, and an extension period of
72◦C for 10 min using a MJ Research PTC-225 Peltier Thermal
Cycler.
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The nested PCR was performed on this amplicon, previously
diluted at 1:50 ratio with the primers LR1 and FLR4
(Gollotte et al., 2004). PCR conditions were almost identical to
those for the first reaction; however, instead of T4 gene 32 protein,
BSA at 0.2 mg/ml was added to the reaction and the annealing
temperature was 55oC for PCR optimization. This PCR was
migrated in a 1.2% agarose gel stained with ethidium bromide
and visualized under UV light. Samples where amplification
failed were processed once again from the first PCR.

Cloning, Sequencing and Determination
of Phylotypes and Phylogenetic Analyses
The 100 ng of PCR amplicons were cloned into a pGEM-T Easy
Vector System II (Promega) using the procedure suggested by
the manufacturer. The samples were stored in TTE buffer (triton
X-100 1%; Tris–HCl pH 8.0 20 mM; EDTA pH 8.0 2 mM) at
−20◦C until use. At least 10 clones per sample were selected
and transformed PCR products were sequenced using the Sanger
method with two 16-capillary genetic analyzers 3130XL (Applied
Biosystems).

DNA sequences were edited using BioEdit software, version
7.0.5 (1Hall, 1999) in order to resolve oligonucleotide ambiguities.
The BLASTn (Basic Local Alignment Search Tool nucleotidic)
search program algorithm2 was used to query the National Center
for Biotechnology Information GenBank (NCBI) for highly
similar sequences. When sequence similarity of at least 97% was
achieved, these were considered to be in the same phylotypes
(Moebius-Clune et al., 2013). Thus, one representative of
each phylotype was used to continue phylogenetic analyses.
Sequences were edited, aligned and queried on GenBank (NCBI)
using ClustalX version 1.81 (Thompson et al., 1994) software.
Operational taxonomic units (OTUs) were determined based on
97% similarity and the sequences with at least 97% similarity
we considered in the same OTU, which could represent one
species (Quince et al., 2008). One representative of each OTU
was used to continue phylogenetic analyses. However, closely
related sequences obtained were incorporated in phylogenetic
analyses. Phylogenetic analyses were conducted using MEGA
6.0 (Tamura et al., 2013). Evolutionary distances were calculated
as described by Jukes and Cantor (1969). Firstly, analyses were
performed using the Neighbor-Joining (NJ) method (Saitou
and Nei, 1987) and adopting the Kimura two-parameter
method (Kimura, 1980). Secondly, maximum likelihood (ML)
method based on the Kimura two-parameter model (Kimura,
1980) and 1,000 bootstrap replicates (Felsenstein, 1985) was
used to compute the final tree. Finally, Bayesian inference
of phylogeny was calculated using MrBayes version 3.2.2
(Ronquist et al., 2012), assuming a 4 × 4 model and non-
variable substitution rates among sites – gamma rates. Analyses
were constructed on two runs of four Markov chain Monte
Carlo analyses where 2,000,000 generations were produced
with burning fraction at 0.5 rate. These were sampled every
100 generations for 10,000 trees generated (Ronquist et al.,
2012).

1http://www.mbio.ncsu.edu/BioEdit/bioedit.html
2http://www.ncbi.nlm.nih.gov/BLAST/

Statistical Analyses
Simpson’s (D), Shannon–Wiener (H) and Pielou’s evenness (E)
diversity indices were calculated using the following formula;
D = 1−6 (pi)2, H = −6pi log(pi), where pi = proportion of
frequency of the ith phylotype in a sample. Phylotypes evenness
was calculated as; E = H/log(S). Where H = Shannon Wiener
diversity and S = phylotypes richness, i.e., total number of
phylotypes. Fungal community diversities were compared and
the specific levels of taxonomic resolution (rarefaction) were
determined. The coverage saturation (C) was also calculated in
order to verify the sufficiency of the sampling effort: C = 1 –
(n1/N), where n1 is the number of phylotypes that occurred once,
and N is the total number of phylotypes examined. In order to
determine similarity associations between fungal communities
among the different samples, a dendrogram was constructed on
the basis of a similarity matrix using Morisita–Horn’s similarity
coefficient (Magurran, 2004). Analyses were conducted using
the “vegan” package in R software (R Development Core Team,
2010).

RESULTS

Molecular Characterization of Fungal
Communities in Soil Samples
Fungal Community Composition and Phylogenetic
Diversity
The total community DNA isolated from soil samples was of
high molecular weight (700–800 bp by using the primer pair
ITS1F-ITS4) and sufficient purity for successful amplification of
ITS rDNA fragments. The ITS rDNA fragments were obtained
from all DNA samples by direct PCR amplification. The
majority of fungal ITS rDNA sequences (68.34%) had high
sequence similarity, up to 100%, with those of environmental
fungi or known species in the NCBI database. However, 5%
of the sequences in our database could not match more
than 500 bp with sequences in the NCBI database; most
of these sequences matched members of Fungi incertiae
sedis. Eighteen clone libraries were generated from bulk
and rhizosphere soil samples and 8 to 17 clones were
successfully sequenced per library. Phylogenetic assignment
of phylotypes was performed according to best sequence
matches based on BLASTn analyses. Data obtained from BLAST
analyses are summarized in Table 1. We globally obtained 48
OTUs among the 217 classifiable clone sequences (Table 1).
The Ascomycota, Basidiomycota, traditional Zygomycota and
traditional Chytridiomycota represented the majority of fungal
sequences derived from our clone libraries (Table 1). However,
a large number of sequences that matched members of Fungi
incertae sedis was found. Because of the taxonomic distances
between these phyla, the phylogenetic trees were inferred
separately (Figures 1–3).

Sequence analysis showed that members of the phylum
Ascomycota were the most common group in this study
(Table 1). Twenty-three fungal sequences belonged to this group,
which showed high similarities to their closest relatives. Of
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FIGURE 1 | Phylogenetic tree showing maximum likelihood (ML) analysis of “Uncertae sedis fungi.” Bold sequences are from this study. Bootstrap percentage
values (50%) generated from 1000 replicates from ML and posterior probabilities (>50%) from Bayesian analysis are shown as (ML bootstrap value/Bayesian
posterior probabilities).

the Ascomycota (Figure 3), Sordariomycetes were by far the
most abundant (16 OTUs), followed by the Eurotiomycetes (6
OTUs), Leotiomycetes (2 OTUs), Saccharomycetes (2 OTUs),
Dothideomycetes (3 OTUs) and mitosporic Pezizomycota (1
OTU). Mortierellomycota were the second largest contributor
in terms of phylogenetic diversity with 5 OTUs belonging
to this sub-phylum (Figure 1). Traditional Chytridiomycota
were detected but were rare in this study. Besides those
fungal phyla, Basidiomycota were represented by 3 OTUs

belonging to the Agaricomycetes (Figure 2). The remaining
sequences, mostly affiliated to uncultured fungi from diverse
environments, matched members of Fungi incertae sedis
(Table 1 and Figure 1). They were divided into six groups
outlined in Figure 1 and were represented by 10 OTUs.
It is also remarkable to note that Sordariomycetes were
widely distributed across the different soil samples, whereas
other classes such as Saccharomycetes were almost exclusively
found in bulk soils. The most abundant genera and species
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FIGURE 2 | Phylogenetic tree showing ML analysis of Basidiomycota. Bold sequences are from this study. Bootstrap percentage values (50%) generated from 1000
replicates from ML and posterior probabilities (>50%) from Bayesian analysis are shown as (ML bootstrap value/Bayesian posterior probabilities).

were Mortierella sp. (Mortierellomycotina) and Fusarium sp.
(Sordariomycetes).

Rhizosphere Effect
The degree to which fungal communities are influenced in the
rhizospheres of plants compared to the non-rhizospheric control
bulk soils was analyzed at a level of class. A differential
distribution pattern of the detected fungal taxa among
the different soil rhizospheres was observed at both field
and nursery environments (Table 2). In more detail, the
rhizosphere soils (LT-S) were clearly dominated by fungal
phylotypes of the mitosporic Pezizomycotina class (72.5% of the
communities) followed by members of the Dothideomycetes,
which accounted for 17.02%. The remaining individual classes
were relatively rare and accounted for up to 6.3% of the fungal
communities. In contrast, the non-rhizosphere (bulk soil)
samples (LT-CS) showed the lowest biodiversity in terms of
community structure (Table 1). They were represented by fungal
phylotypes of a single class; Basidiomycetes, which had clearly
increased its abundance in bulk soil samples (100% of fungal
communities).

The Ps-Ap-LT soils (grown in optimal nursery conditions)
contain fungal phylotypes of at least four dominant classes:
Sordariomycetes (36.7%), Leotiomycetes (13.3%), and
Eurotiomycetes (10%) for the sample B and, Sordariomycetes
(18.5%) and Eurotiomycetes (22.2%) for the sample A. Close
relatives of Mortierellomycotina incertae sedis fungi were also
common in these soil samples with 20 and 51.85% for the
Ps-Ap-LT sample B and sample A, respectively. The other classes
are of minor importance and accounted for up to 3.4% of the soil
fungal communities. The Ps-Ap-SA treatment was dominated

by fungal phylotypes of the Mortierellomycotina incertae sedis
(48.15% of fungal communities), followed by members of the
Eurotiomycetes (37.04%). The remaining classes were relatively
rare and accounted for up to 7.4% of the soil communities.
The non-rhizosphere (bulk soil) samples (Ps-Bp) were affiliated
to three main classes of Ascomycota: Sordariomycetes (54%),
Saccharomycetes (36%) and Eurotiomycetes (5.1%). Other
phylotypes from this clone library are of minor importance, with
sequences having nearest hits to members of Agaricomycetes
(2.5% of fungal communities) and incertae sedis Group 6 (2.5%).

Globally taken, the rhizosphere samples LT-S, Ps-Ap-LT-A, Ps-
Ap-LT-B, and Ps-Ap-SA treatments, with 8, 11, 22, and 10 OTUs,
respectively, showed the highest richness of fungal communities.
The field and nursery bulk soil samples disclosed 1 and 6 OTUs,
respectively. Indices of Shannon (H) for diversity and Simpson
(1–D) for evenness were also calculated, and data were broadly in
agreement with those reported with the richness index (Table 2).
Collectively, data from this study illustrate that Bulk soil samples
were consistently less even than rhizosphere soils. Difference in
coverage were also marked among the different samples, the
nursery rhizosphere soils (Ps-Ap-LT and Ps-Ap-SA) showing
lesser values of rarefaction index, suggesting that sample efforts
are further needed to saturate the organismal richness in these
samples.

In addition, principal component (PCA) and Cluster analyses
(based on the Morisita–Horn’s similarity coefficient) were
conducted to compare similarities between fungal communities
of the different samples. According to these analyses, marked
differences exist in the fungal community compositions of
soil samples: two main clusters were distinguished (Figure 5).
The first cluster included the rhizosphere soils collected from
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FIGURE 3 | Phylogenetic tree showing ML analysis of Ascomycota. Bold sequence are from the study. Bootstrap percentage values (50%) generated from 1000
replicates from ML and posterior probabilities (>50%) from Bayesian analysis are shown as (ML bootstrap value/Bayesian posterior probabilities).

both V. pachyceras (Ps-Ap-LT-A, Ps-Ap-LT-B, and Ps-Ap-SA
treatments) grown in nursery conditions and, the second cluster
comprised the Lonely Tree (LT-S) and bulk soil (LT-CS and
Ps-Bp) samples. However, Figure 4 showed that nursery bulk

soils (Ps-Bp) were segregated from LT-S and LT-CS samples,
thus suggesting that their soil fungal communities were different.
Ps-Ap-LT was replicated in order to verify that the sample
effort is reliable. Figure 5 clearly shows that both replicates

Frontiers in Microbiology | www.frontiersin.org 9 January 2019 | Volume 10 | Article 63

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00063 January 31, 2019 Time: 12:28 # 10

Suleiman et al. Assessment of Fungal Diversity

TABLE 2 | Frequency and diversity indices for the mean of samples from different origins.

Taxonomic groups LT-S LTCS Ps-Bp Ps-Ap-LT-A Ps-Ap-LT-B Ps-Ap-SA

Incertae sedis and Mortierellomycotina tree

Group 1 (Mortierellomycotina) 0 0 0 14 6 13

Group 2 0 0 0 0 0 1

Group 3 0 0 0 0 1 0

Group 4 0 0 0 0 0 1

Group 5 0 0 0 0 1 0

Group 6 0 0 1 1 1 0

Group 7 0 0 0 0 1 0

Group 8 0 0 0 0 1 0

Basidiomycota tree

Basidiomycota (Agaricomycetes) 2 30 1 0 0 0

Ascomycota tree

Sordariomycetes 3 0 21 5 11 2

Eurotiomycetes 0 0 2 6 3 10

Leotiomycetes 0 0 0 0 4 0

Saccharomycetes 0 0 14 1 0 0

Dothideomycetes 8 0 0 0 1 0

Mitosporic Pezizomycotina 34 0 0 0 0 0

Total abundance 47 30 39 27 30 27

OTU richness (S) 8 1 6 11 22 10

Shannon–Wiener index (S) 1,009 0,000 1,337 2,074 3,014 1,742

Simpson index (1-D) 0,452 0,000 0,682 0,837 0,947 0,738

Evenness Pielou (E) 0,485 NaN 0,746 0,865 0,975 0,757

Rarefaction (20 individuals) 4,539 1,000 4,775 9,323 16,350 8,125

Coverage (C) 1,000 1,000 0,945 0,926 0,800 0,926

The codes of the different soil samples are: LT-S, Lonely tree composite rhizospheric soil; LT-CS, Lonely tree non-rhizospheric control soil; Ps-Bp, Planting Soil before
planting V. pachyceras seedlings (non-rhizospheric crude commercial soil mix); Ps-Ap-LTA and Ps-Ap-LTB, Planting Soil after planting Lonely Tree seedlings (rhizospheric
commercial soil mix of local V. pachyceras); Ps-Ap-SA, Planting Soil after planting Saudi Arabia V. pachyceras seedlings (rhizospheric commercial soil mix of non-local
V. pachyceras).

were grouped together and roughly included in the same branch
cluster.

Molecular Characterization of
Arbuscular Mycorrhizal Fungal
Communities From Root System
DNA extractions were performed using the Plant DNeasy kits
(Qiagen, ON) from roots stored in CTAB. The expected 750–
800 bp PCR fragment was obtained with the nested PCR with
LR1-FLR 4. From the total DNA amplicons, 15 clone libraries
were produced, and 3 to 14 clones were successfully sequenced
per library (Table 3). Among all 133 clones sequenced, 10
phylotypes could be identified (Table 3).

Nucleotide BLAST results in GenBank database for the
representing clones sequenced are shown in Table 3. First,
analysis was performed excluding “Uncultured/environmental
sample sequences.” If similarity percentage between the query
and GenBank sequence was below 95%, nucleotide BLAST was
computed again including “Uncultured/environmental sample
sequences.” This was the case for phylotypes #3, 8 and 9, for which
similarity with NCBI-deposited sequences was below 95%. Thus,
the matching “Uncultured/environmental sample sequences” was
included in further analyses. Branches that delimit phylotypes

and their matching sequence were well supported, with 73 to
99% of bootstraps values and 0.67 to 1.00 of Bayesian posterior
probabilities. Tree topology acquired after computing NJ and
ML analyses were similar. Figure 6 present the ML tree on
which is observed a different branching pattern between ML
and Bayesian analyses at the family level, so it does not affect
interpretation. Phylogenetic tree (Figure 6) showing molecular
phylogenetic analysis obtained by maximum likelihood (ML)
analysis of arbuscular mycorrhizal fungi. The most abundant and
diversified main group was found within the family Glomeraceae.
However, in the phylogenetic tree, on the right side it is showing
two taxonomic groups. In the first group, it is assigned into two
sub-groups clustering the genera Rhizophagus and Sclerocystis
in which 5 different phylotypes included with the exception of
phylotype 4, where a sequence of Rhizophagus irregularis DAOM
197198 was included in the branch group, no other type was
included in the phylotype branches. Thus, a species could not
be assigned to these groups. In the second group, only a single
sub-group assigned and clustering as Glomeraceae group-1, in
which another 5 phylotypes with unclassified taxonomic group
included. According to cluster analysis in Figure 7, a closer
relationships exist among AMF communities from Lonely Tree
(LT-AM) and (N-LT-AM) than the Saudi Arabia tree (N-SA-
AM). For AMF composition and frequency in the different
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FIGURE 4 | Correspondence analysis of the different fungal communities in
soil rhizosphere of Vachellia pachyceras in diverse conditions. Soil samples
are positioned along the first two DA axes, where Eigen values are 0.9919 for
CA1 and 0.9536 for CA2. The codes of the different soil samples are: LT-S,
Lonely tree composite rhizospheric soil; LT-CS, Lonely tree non-rhizospheric
control soil; Ps-Bp, Planting Soil before planting V. pachyceras seedlings
(non-rhizospheric crude commercial soil mix); Ps-Ap-LTA and Ps-Ap-LTB,
Planting Soil after planting Lonely Tree seedlings (rhizospheric commercial soil
mix of local V. pachyceras); Ps-Ap-SA, Planting Soil after planting
Saudi Arabia V. pachyceras seedlings (rhizospheric commercial soil mix of
non-local V. pachyceras).

communities (Table 3), it can be observed that the most common
phylotype for all root types is the phylotype no. 1. Phylotype no. 2
is very abundant for LT-AM and N-LT-AM, and phylotype no.
7 is abundant for N-SA-AM. The highest diversity indices are
found in seedlings N-LT-AM, followed by N-SA-AM and LT-AM.

DISCUSSION

Fungal Community Structures
To our knowledge, this study is the first attempt using PCR
based molecular approach to reveal the diversity of general
fungal communities and AM fungi associated with the only
surviving nationally important tree specises – V. pachyceras in
Kuwait desert. The present work provides us with a preview
of general fungal communities associated with rhizosphere and
non-rhizosphere soils of V. pachyceras from the Sabah Al-Ahmad
Natural Reserve of the Kuwait desert and nursery growing media.
Data showed that despite a hostile climate that the Kuwait desert
represents, the studied area maintained surprisingly diverse
fungal biodiversity, largely consisting of fungi adapted to harsh
environmental conditions exists in desert. Our results are in
agreement with a recent report showing unpredictably huge
fungal biodiversity in the Middle Eastern desert soils (Murgia
et al., 2018). For the overall community composition of this study
site, the majority of fungal sequences recovered were classified

FIGURE 5 | Cluster analysis based on Morisita-Horn similarity coefficient for
different fungal communities in soil rhizosphere of V. pachyceras in diverse
conditions. The codes of the different soil samples are: LT-S, Lonely tree
composite rhizospheric soil; LT-CS, Lonely tree non-rhizospheric control soil;
Ps-Bp, Planting Soil before planting V. pachyceras seedlings (non-rhizospheric
crude commercial soil mix); Ps-Ap-LTA and Ps-Ap-LTB, Planting Soil after
planting Lonely Tree seedlings (rhizospheric commercial soil mix of local V.
pachyceras); Ps-Ap-SA, Planting Soil after planting Saudi Arabia
V. pachyceras seedlings (rhizospheric commercial soil mix of non-local
V. pachyceras).

into four major fungal phyla: Ascomycota, Basidiomycota,
Zygomycota and Chytridiomycota, which account for 80% of
the OTUs. Consistent with the previous studies (El-Said and
Saleem, 2008; Bates et al., 2012; Sterflinger et al., 2012; Abed
et al., 2013; Bastida et al., 2013), Ascomycota was the most
abundant phylum (48%), whereas Basidiomycota accounted for a
much smaller percentage of the community (10.4%). A large body
of investigation has supported this dominance of Ascomycota
fungi in arid and semi-arid soils. In a recent study, soil sample
from Saudi Arabia and Jordan deserts revealed that the most
abundant fungal phyla was Ascomycota similar to our results
(Murgia et al., 2018). Abed et al. (2013) showed that in the arid
desert of the Arabian Peninsula Ascomycota represents >86%
of their pyrosequencing reads, while forming more than 98% of
the observed isolates. Using molecular techniques, Green et al.
(2008) and Bates and Garcia-Pichel (2009) reported dominance
of Ascomycota fungi in soils from the Chihuahuan desert (83.3%
of 989 sequences) and in Colorado Plateau (87–91% of 135
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TABLE 3 | BLAST results for the representing clone’s sequences from AMF communities in roots and statistical analysis.

Phylotypes Clones Accession Identity % Similarity LT-AM N-LT-AM N-SA-AM

no. representative

1 13A-4 JX999965 Glomeromycota F84 clone B 98 21 18 10

2 6B-12 JX999971 Glomeromycota F80 clone F 99 13 12 2

3 15C-11 HE858411 Uncultured glomus clone FW3-5 95 2 1 1

4 22B-6 HE817882 Rhizophagus irregularis DAOM197198 clone pHS052-37 98 8 0 9

5 22B-1 FM992381 Glomus sp. Att690-23 DAOM:197198 98 0 0 1

6 14C-3 JF439202 Glomus sp. 7 SUN-2011 isolate 07_10_1 94 0 4 0

7 22B-11 AM040435 Glomus sp. Rp2 clone 2 98 0 4 21

8 13A-1 KC411228 Uncultured glomerales clone B08_06 92 0 2 0

9 13A-6 KF849658 Uncultured glomus clone AM178 99 0 3 0

10 R1-25 JN937539 Glomeromycota sp. OTU3 DJMC-2012 95 0 0 0

11 5B-13 JF439189 Glomus sp. 7 SUN-2011 isolate 08_40_1 95 1 0 0

Nb of libraries 5 5 5

Shannon–Wiener diversity index 1,244 1,566 1,327

Species richness (S) 5 7 6

Total abundance 45 44 44

Simpson diversity index D: 0,335 0,265 0,324

1-D: 0,665 0,735 0,676

1/D: 2,982 3,767 3,083

Evenness (Pielou) 0,773 0,805 0,741

The codes of the different soil samples are: LT-AM, Lonely Tree Arbuscular Mycorrhizal root; N-LT-AM, Nursery grown Lonely Tree Arbuscular Mycorrhizal root (local
V. pachyceras); N-SA-AM, Nursery grown Saudi Arabia Arbuscular Mycorrhizal root (non-local V. pachyceras).

sequences), respectively. Other data from Grishkan et al. (2006)
have also shown this dominance in the Negev desert (98% of
58 species). The results, however, are disclosed to those of a few
scale surveys of desert soils (Connell et al., 2006; Fell et al., 2006)
where Basidiomycota was the dominant phylum. These analyses
and our data from the Kuwait desert indicate the variations of
fungal community composition among desert lands. Molecular
analyses data of this study clearly demonstrated these variations
in soil fungal community composition and reflected in the non-
rhizospheric control LT bulk soil, which had very low levels
of fungal composition with OTUs Richness – 1 and Shannon–
Weiner Index (S) – 0.0. In all other soils, such as nursery
soils tested were found much higher OTUs Richness and higher
Shannon–Weiner Index as these soils have relatively higher
organic matter and maintained in optimal growing conditions
or have vegetation effects. Chytridiomycota and Zygomycota
fungi seem to be underrepresented, compared to the number
of sequences in the Ascomycota. Similar results have been
previously reported in Omani desert and Chihuahuan desert by
Green et al. (2008).

Of the Ascomycota, the most OTU-rich fungal classes
were Sordariomycetes and Eurotiomycetes. The former is
the only class showing high diversity in each soil sample,
indicating their high ecological plasticity. Described members
of the Sordariomycetes are assumed to be cosmopolitan,
and function as plant and animal pathogens, endophytes
of plants, and saprobes involved in decomposition and
nutrient cycling (Brunner et al., 2011; Abed et al., 2013; Qin
et al., 2014). In the present study, the majority of OTUs
sequences belonging to the Sordariomycetes matched previously

described species and was related to the following genera:
Fusarium, Myrothecium, Trichoderma, Chaetomium, Thielavia,
Stachybotrys, Pestalotiopsis, Pseudallescheria, Thielaviopsis, and
Conlarium. They mostly belonged to the orders Hypocreales,
Sordariales, Xylariales, and Microascales. These fungi most likely
play a role in organic plant material breakdown in a symbiotic
or mutualistic relationship with plant species (Meiser et al., 2014;
Powell et al., 2015).

The largest assemblages of fungal OTUs belonging to the
Eurotiomycetes comprise members of the genera Rasamsonia,
Talaromyces, Penicillium, Hamigera, and Geomyces. They
belonged to the orders Euritiales and Onygenales, which include
cellulolytic soil saprophytes fungi (Sugiyama et al., 1999; Berbee,
2001). Most of the OTUs in the Leotiomycetes class belonged
to the genera Scytalidium and Leotiomycetes whereas most of
the OTUs in the Saccharomycetes class belonged to the genera
Blastobotrys and Candida. Saccharomycetes class includes genera
of ascomycetous yeasts and one pathogenic on human (Candida)
(Berbee, 2001).

Dothideomycetes OTUs were assembled into three genera
Cladosporium, Phoma, and Alternaria. They mostly belonged
to the order Pleosporales. Fungi belonging to this order (most
notably Alternaria) were used before as indicative of desert
settings (Bates et al., 2012; Sterflinger et al., 2012). This is
mainly because they typically have darkly pigmented spores or
hyphae stained with allomelanins, which may provide protection
from excessive exposure to UV radiation (Bates et al., 2012).
They can often be found as endophytes or epiphytes of living
plants, and also as saprobes degrading cellulose, keratin and
other complex carbohydrates in dead or partially digested plant
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FIGURE 6 | Phylogenetic tree showing ML analysis of arbuscular mycorrhizal fungi. Bootstrap percentage values (50%) generated from 1000 replicates from ML and
posterior probabilities (>50%) from Bayesian analysis are shown as (ML bootstrap value/Bayesian posterior probabilities). Bold sequences are from this study.

matter in leaf litter (Porras-Alfaro et al., 2010; Nguyen et al.,
2011; Abed et al., 2013). Nevertheless, species of the genus
Aspergillus, being very abundant in Israel (Grishkan and Nevo,
2010), Saudi Arabia and Libya (Abdel-Hafez, 1981, 1982), were
missing in our samples.

Basidiomycota have been reported to be diverse in soil
ecosystems (Buée et al., 2009), but is not confirmed here. We
showed that only 6.25% of the OTUs belong to this phylum.
Most sequences matched species belonging to the Cryptococcus
and Sakaguchia genera. These genera are known to comprise a
number of human associated species, as either opportunists or
pathogens (de Hoog et al., 2000). Dominance of yeast genera

including Cryptococcus genus is also reported in Antarctica in a
study by Arenz and Blachette (2011).

Most OTUs sequences in the Zygomycota and
Chytridiomycota phyla matched species belonging to the
Mortierella and Spizellomyces genera, reportedly common fungal
groups in soils (Brown and Jumpponen, 2014; Zhang et al.,
2014). Members of the former are reported to mineralize readily
available dissolved organic substrates rather than breaking
down soil litter polymers (Schmidt et al., 2008; Brown and
Jumpponen, 2014), while the later has been found to infect
spores of arbuscular mycorrhizal fungi (Ross and Ruttencutter,
1977; Daniels, 1981). OTU sequences belonging to the chytrids
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FIGURE 7 | Cluster analysis based on Morisita-Horn similarity coefficient for different arbuscular mycorrhizal fungal communities in roots of V. pachyceras in diverse
conditions. The codes of the different soil samples are: LT-AM, Lonely Tree Arbuscular Mycorrhizal root; N-LT-AM, Nursery grown Lonely Tree Arbuscular Mycorrhizal
root (local V. pachyceras); N-SA-AM, Nursery grown Saudi Arabia Arbuscular Mycorrhizal root (non-local V. pachyceras). LT, Lonely Tree; The clone number were
added at the end of the sample codes.

were also detected in soil crusts of the Sultanate of Oman in the
Arabian Desert (Abed et al., 2013). However, their detection in
arid deserts, although in low abundance (<3% of total OTUs) is
intriguing and more research is needed in order to determine the
ecological role of aquatic Chytridiomycetes fungi associated with
desert lands.

Several OTUs sequences mostly affiliated to uncultured fungi
from diverse environments, matched members of Fungi incertae
sedis. These sequences were assembled into six groups and seem
to correspond to a well-supported clad of Ascomycota, equivalent
to endophytic of dark septate fungi. The detection of dark-
colored fungi is a typical feature of desert soils mainly because
of their ability to survive high solar radiation and temperature
(Grishkan et al., 2006). Further analyses are required to explore
functional attributes of these fungal species and to classify them
at the genus level.

Rhizosphere Effect on Soil Fungal
Communities
Microbial activity in deserts are concentrated in brief periods
of high soil wetness following rainfall events and are expected
to be greater in rhizosphere soils, depending on the plant type
(Hollister et al., 2010; Zhang et al., 2014). We sought to investigate
the rhizosphere effect of the LT V. pachyceras and the non-
local Saudi Arabia V. pachyceras, on soil fungal community
structures by assessing fungal diversity in soils from the same

species grown in optimal nursery environments. The foremost
aspect of fungal community structures that is so clear as to be
unassailable in this study is the rhizosphere effect, with more
fungal diversity and OTUs richness associated with both field
and nursery rhizosphere soils. In contrast, a less diverse fungal
community was found in the bulk soils. Such plant-dependent
enrichment has received increasing support recently (Xu et al.,
2012; Meiser et al., 2014; Welc et al., 2014; Zhang et al., 2014).
Indeed, plant may exude a variety of carbon sources that can
be consumed by fungal communities, thus creating more niches
for them to occupy and promoting increased fungal richness
(Weber et al., 2011). However, ideal nursery growing conditions
with nutrient availability may also favor microbial population
in soils. In the absence of root plants, the nutrient limitations
and the combined disturbance of climatic conditions in deserts
could preclude the growth and hamper the hyphal proliferation
of many fungi (Meiser et al., 2014). Thus, only fungal species
that might be highly specialized to such an ecological niche could
be found (Bates et al., 2012). Those data and the results from
fungal community structure, pointed out the complexity of the
interdependency of soil microbial diversity with plant species.

Although the nursery experiment was not designed to
specifically test the impacts of soil properties on the soil fungal
communities, the results of this study suggest that they have an
effect. Compared to the field soils, fungal communities in the
nursery soils were more diverse owing to soil chemical richness
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and substrate. This is analogous to an edaphic condition effect
and has been reported in other studies (de Castro et al., 2008;
Qin et al., 2014; Welc et al., 2014). Thus, we hypothesized
that by providing a nutritional resource and stable substrate,
nursery sustains the growth of many more fungi than do
field environments. Nevertheless, from this study, this edaphic
condition effect seems to be overwhelmed by the response
of fungi to the root plant presence. It is not surprising that
differences in soil chemical properties may drive the observed
higher fungal communities and diversity associated with nursery
potting soils and LT rhizospheric soils compared to LT non-
rhizospheric control soils.

Arbuscular Mycorrhizal (AM)
Communities From Root System
This study is the first to use of molecular technique to reveal
the AM fungal communities from the roots of V. pachyceras
the only surviving native tree species in Kuwait desert and
the roots of nursery grown V. pachyceras seedlings. Our
attempt was to uncovering AM fungal community composition
and obtained a baseline data that was previously unknown
with this unique tree in Kuwait. Initial staining of roots
confirmed the presence of AM fungi in the LT (V. pachyceras)
and in the roots of nursery-grown V. pachyceras seedlings
(Supplementary Material). This observation is further supported
by the molecular characterization of AM communities associated
with root systems of all the test plants of this study. Results
from molecular characterization, a total of 10 phylotypes were
identified, in which 5 phylotypes revealed with most abundant
group from the family Glomeraceae with the presence of genera
Rhizophagus formerly known as Glomus sp., suggesting specific
recruitment preference of AM fungi partners by the single plants
(Xu et al., 2017). However, another 5 phylotypes were also
revealed with unclassified taxonomic group under Glomeraceae
group 1. Furthermore, our result revealed that the diversity
of AM fungi was more pronounced in the nursery-grown
Vachellia seedlings than in the desert habitat of the LT roots.
The identified phylotypes belonged to the Family Glomeraceae
supporting the results of the examination of the spores in the soil,
which morphologically resembles Glomeraceae (Supplementary
Material). Nevertheless, the unclassified taxonomic group with
five phylotypes revealed in this investigation suggests that further
detailed analysis is required to elucidating the unclassified group
fully. Similar to our findings, many studies have shown that
AM fungi belonging to the genus Glomus and Rhizophagus were
the most dominant in desert as well as other ecosystems, and
most common AM fungi revealed throughout the world (Pande
and Tarafdar, 2004; Shi et al., 2007; Al-Yahya’ei et al., 2011; Xu
et al., 2017). The abundance of Glomeraceae in complex arid
regions may be due to its ability to withstand harsh arid climatic
conditions and resistance to high temperatures (Bever et al., 2009;
Barto et al., 2011).

Even though AM fungal infection was detected
morphologically under microscope from dried and thick
roots typical for desert plants, DNA extraction was successful
but the amplification and sequencing of such DNA samples
was inadequate. Further standardization of amplification and

sequencing is required for the desert AM fungal communities
unique to Kuwait desert environment. Furthermore, it might
be because of insufficient representation of AM fungal taxa
in existing reference databases used. Nevertheless, the present
research revealed a considerable diversity among the different
root samples tested that has not been earlier depicted. The impact
of environmental attributes on AM fungal communities that
may influence shape these communities are still not adequately
known (Xu et al., 2017). Data of this study showed that despite
the harsh climate that prevails in the Kuwait desert, studied
roots displayed the presence of AM fungal biota. However, the
greatest diversity was noted in the roots of seedling from nursery,
suggesting that diversity in the harsh desert conditions is lower
compared to when seedlings were grown in nursery soil mix
under ideal nursery conditions. It should be noted that not
all sequences produced a match with a described well-known
species; only the composition of the communities at the class
level for the taxonomic rank could be characterized. However,
it seems that soil factors may influence fungal composition and
diversity more than tree species characteristics and their root
system (Oehl et al., 2017). Although AM fungal spore counts
are often low in arid soils and zero counts are common (Cui
and Nobel, 1992; Requena et al., 1996; Titus et al., 2002). Data
from this work demonstrate that a good number of AM fungal
species exist in the Kuwaiti desert that need to be fully explored.
However, this study established foundation work of the AM
fungal communities associated with roots of V. pachyceras in
Kuwait desert as well as nursery seedlings. This research delivers
essential insight about ecological characteristics of V. pachyceras.
Further detail information is still required about the revealed
AM fungal population, and then there is possibility to improve
better seedling production in nursery and survival rates of
V. pachyceras seedlings when planted in desert conditions by
increasing population of certain AM fungal species in roots and
rhizosphere.

CONCLUSION

In conclusion, despite harsh climatic conditions prevailing in
Kuwait desert, our results demonstrate surprisingly a diverse
number of general fungal and AM fungal resources exists in
the studied area that remain to be fully characterized. Our
study from both rhizospheric and bulk soil revealed four
major fungal phyla and classified as Ascomycota, Basidiomycota,
Zygomycota and Chytridiomycota. In which Ascomycota is
the most abundant phylum (48%) followed by Basidiomycota,
Zygomycota and Chytridiomycota. A great number of fungal
ITS rDNA sequences were related to a wealth of incertae sedis
fungi, suggesting further works are needed to classify them at the
genus level. Similar to many other studies, we also found distinct
fungal composition and diversity between the rhizospheric and
non-rhizospheric soils. The most abundant AM fungal group
identified was among the family Glomeraceae. Evidently, further
detail taxonomic information on is still required in order
to performing quantitative comparisons of relative phylotypes
obtained in this research. The current research would however,
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assists set the basis for future research and might be helpful
to determine the strategies used by this fungal microbiota in
response to hot and dry weather conditions for plant fitness.
Furthermore, to exploit the potential for the use of these fungal
species as biofertilizer to unfavorable desert conditions, this
might lead to improvement in restoration and revegetation
strategies for about to extinct LT species in Kuwait. Apparently,
this study is a first effort using molecular approach and
advances our existing knowledge about the general fungal, and
AM fungal communities related with this nationally important
unique tree since the tree species is considered endangered in
Kuwait.
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