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Abstract: The health benefits of moderate wine consumption have been extensively studied during
the last few decades. Some studies have demonstrated protective associations between moderate
drinking and several diseases including oral cavity cancer (OCC). However, due to the various
adverse effects related to ethanol content, the recommendation of moderate wine consumption has
been controversial. The polyphenolic components of wine contribute to its beneficial effects with
different biological pathways, including antioxidant, lipid regulating and anti-inflammatory effects.
On the other hand, in the oral cavity, ethanol is oxidized to form acetaldehyde, a metabolite with
genotoxic properties. This review is a critical compilation of both the beneficial and the detrimental
effects of wine consumption on OCC.
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1. Introduction

Oral cavity cancer (OCC) is a neoplastic condition characterized by the malignant transformation
of the lips, oral cavity or oropharynx cells. In 2018, the worldwide estimate was 177,384 deaths and
354,864 new cases of OCC, which is the fourth most common cancer and the sixth most common cause
of cancer deaths in low- and middle-income countries [1]. The consumption of alcoholic beverages has
been pointed out as one key risk factor for OCC. The population-attributable risk of OCC for alcohol
consumption alone is lower than 18% [2]. Epidemiological studies indicate that the risk associated with
OCC increases when it is treated as an independent effect in people who consume ≥30 grams of ethanol
per day [3–12]. The relative risk of cancers of the oral cavity and pharynx, esophagus and larynx are
around five for an amount of around 50 g/day of ethanol [13]. These values are higher than the ones
that define moderate consumption (up to one drink—equivalent to about 12 g of ethanol—per day in
women and up to two in men, of all types of alcoholic beverages combined) [13]. Higher consumption,
of more than three drinks per day, over a short period (a few years) has a higher risk of oral cancer
than a lower intake over a longer period (many years) [14].

Wine is known for its large quantities of polyphenols, which have antioxidant properties that may
counteract the potential pro-oxidant effect of ethanol. Numerous studies of animals and humans have
shown that the bioavailability of phenolic compounds is low [15]. However, oral cavity tissues are in
direct contact with wine and its compounds. The levels of salivary polyphenols peaked soon after red
wine intake in healthy volunteers [16,17]. The effects of phenolic compounds in the oral cavity derive
mainly from a reservoir adhering to oral mucosa rather than from systemic absorption. Therefore,
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it seems that the intra-oral actions of both ethanol and the phenolic portion of the wine overlap with
the systemic ones, which makes OCC a peculiar type of disease to study.

In this review, we analyze the molecular mechanisms of ethanol-related carcinogenesis and
phenolic-related preventive-carcinogenesis in the oral cavity and explore the possibility of a dual
contrasting effect of these wine components in the development of OCC.

2. Wine as Oral Cavity Cancer-Enhancer

2.1. Formation and Accumulation of Acetaldehyde in Oral Cavity after Wine Ingestion

Wine contains ethanol, which by itself is not a carcinogen; however, acetaldehyde, which is
associated with wine consumption, is classified as “carcinogenic to humans” by the International
Agency for Research on Cancer (IARC), based, in large part, on the elevated risk of oral and esophageal
cancers in alcohol abusers [18,19]. The concentration of acetaldehyde varies among wine types
(e.g., white, red, sparkling and fortified wines) as a result of the different winemaking conditions,
particularly with the quantity of SO2 added to the medium. Therefore, different values appear in
the literature. Acetaldehyde has been detected at concentration levels of 80 mg/L for white wines,
30 mg/L for red wines and 300 mg/L for sherries [20]. Jackowetz and Orduña [21] reported a final wine
concentration of acetaldehyde of 25 mg/L in reds and 40 mg/L in white wines. Different values were
found in another study, where acetaldehyde content was measured in a large collection of different
alcoholic beverages (over 1500 samples), in which the amount found was 34 mg/L and 118 ± 120 mg/L
in wine and in fortified wines, respectively [22]. In a study carried out to measure the acetaldehyde
concentration in different beverages consumed in Italy, acetaldehyde concentrations of 55.8 mg/L
in red, 67 mg/L in white, 81.7 mg/L in rosé and 123 mg/L in sparkling wine and champagne were
found [23]. Linderborg et al. [24] found a lower concentration of acetaldehyde in wine samples
(12.1 mg/L ± 10.4 mg/L). Recently, acetaldehyde levels ranging from 2.49 ± 0.34 to 29.27 ± 4.69 mg/L
were found in Cabernet Sauvignon wines and this declined by close to 40% during aging under
screw cap closures which admitted very little oxygen [25]. Despite the differences found among
studies, wine contains acetaldehyde levels above the mutagenic limit (4.4 mg/L). Moreover, the IARC
classification includes both acetaldehyde present in wine and acetaldehyde formed from ethanol
via endogenous metabolism [22,24,26–28]. In fact, one of the key mechanisms in the oral formation
of acetaldehyde is the metabolism of ethanol by the microbial flora of the oral mucosa [18,29,30].
Ethanol is oxidized by mucosal and microbial cells to form acetaldehyde by alcohol dehydrogenase
(ADH), mainly alcohol dehydrogenase-1B (ADH1B) (Figure 1). Acetaldehyde is further metabolized
by aldehyde dehydrogenase (ALDH, mostly by aldehyde dehydrogenase-2 (ALDH2)), yielding acetate,
which is a less toxic and less harmful compound (Figure 1). Despite this process primarily occurring in
the liver, the required enzymes are also expressed in the oral mucosa and gingiva. Oral microflora
appears to be the main origin of acetaldehyde concentration in saliva. Some Streptococcus species
have produced high quantities of acetaldehyde and showed significant ADH activity, suggesting that
they may participate in metabolizing ethanol to form carcinogenic acetaldehyde in the oral cavity
(Figure 1) [31]. As revealed by an in vitro characterization of the oral microbiome, both the Neisseria
and Candida species are among the most potent microbial producers of acetaldehyde [32–35].
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Figure 1. Scheme of the mechanisms by which ethanol may affect oral carcinogenesis. Ethanol is
metabolized to form acetaldehyde by alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1)
in the oral cavity and is further oxidized to form acetate by acetaldehyde dehydrogenase (ALDH).
ADH-mediated ethanol metabolism results in the generation of reducing equivalents in the form of
reduced nicotinamide adenine dinucleotide (NADH) and acetaldehyde, whereas ethanol oxidation
by CYP2E1 leads to the production of acetaldehyde but also to the generation of reactive oxygen
species (ROS). Single nucleotide polymorphisms of ALDH2 cause the production and/or oxidation of
acetaldehyde to vary between individuals. Increased CYP2E1 activity not only leads to an increased
generation of ROS but also leads to an increased activation of various environmental agents such as
the pro-carcinogens present in tobacco smoke. Ethanol may also act as a solvent for these carcinogens
to enter the cell. Acetaldehyde can bind to DNA, forming stable adducts, and ROS results in lipid
peroxidation products, such as 4-hydroxynonenal (4-HNE), which bind to DNA to form mutagenic
adducts. During cancer promotion, ethanol and acetaldehyde alter methyl transfer, leading to DNA
hypomethylation that could change the expression of oncogenes and tumor-suppressor genes. Finally,
ethanol-associated immune suppression may facilitate tumor cell spreading.

From that which has been reported above, it is clear that in order to evaluate the OCC risk of wine,
it is important to measure the acetaldehyde content in saliva after wine ingestion. In vivo findings
in humans have shown that acetaldehyde concentrations in saliva range between 0.793 mg/L and
4.41 mg/L after a dose of alcohol containing 0.5 g ethanol/kg body weight [17,36,37]. A study that
was carried out to clarify the effects of alcohol beverage type on salivary and blood acetaldehyde and
ethanol levels, after a moderate dose of alcoholic beverages in healthy Japanese volunteers, showed
that the type of alcoholic beverage (13% ethanol Calvados, 13% ethanol shochu, 13% ethanol red wine
and 5% ethanol beer) had no effect on the salivary acetaldehyde levels that were measured 30 min
or more after the completion of drinking. However, the salivary acetaldehyde concentration after
drinking red wine was significantly lower than that after drinking any of the other beverages [36].

Ethanol may also be metabolized to form acetaldehyde by the cytochrome P450 2E1 (CYP2E1)
present in the keratinocytes of buccal mucosa (Figure 1) [38]. The increase in CYP2E1 activity is due to
ethanol consumption and, consequently, the generation of reactive oxygen and reactive nitrogen species
(ROS, RNS). Some studies suggest that the initiation of OCC results from DNA damage by ROS/RNS via
the activation of proto-oncogenes and the inactivation of tumor suppressor genes. An accumulation of
8-nitroguanine, which is a potentially mutagenic DNA lesion, and 8-hydroxy-deoxyguanosine, one of
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the most frequent DNA base modifications associated with oxidative damage, has been found in the
tissue of patients with oral lichen planus (OLP) [38,39], oral squamous cell carcinoma (OSCC) [38] and
leucoplakia [40], though no immune-reactivity was observed in normal oral mucosa [38]. The formation
of 8-nitroguanine and 8-oxodG may contribute to the development of oral cancer from OLP and
leucoplakia [41]. It was also observed that inducible nitric oxide synthase dependent DNA damage
may stimulate tumor protein p53 accumulation in OLP, leukoplakia and OSCC [41]. Increased levels of
4-hydroxy-2-nonenal and malondialdehyde, which result from the lipid peroxidation of cell membranes
by ROS, have been reported in oral cancer and pre-cancer patients [42–45].

Ethanol may directly affect the oral mucosa since it can act as a solvent, removing some of mucosa
lipid content, thereby making it considerably more permeable, which also facilitates the development of
tumors on such exposed locations by the increased absorption of other carcinogenic substances [46–48].

2.2. Ethanol/Acetaldehyde Genotoxicity

Acetaldehyde’s genotoxicity is linked to its reactivity, forming DNA adducts and interfering with
DNA synthesis and repair as well as binding to proteins, altering their structure and function. Mutagenic
DNA adducts can be formed when acetaldehyde is present in concentrations equal to or higher than
6.30 mg/L [49,50]. The major acetaldehyde-derived DNA adduct in the human body is a Schiff base,
N2-ethylidene-2′-deoxyguanosine (N2-ethylidene-dG) [51]. Since the N2-ethylidene-dG adduct is
unstable in the single 2′-deoxynucleoside form, with a half-life of just 5 min, an analytical approach
was developed for quantifying N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG): this is a compound
which is more stable and easier to detect than results from the reduction of N2-ethylidene-dG by
sodium cyanoborohydride (NaBH3CN) (Figure 2) [52]. Therefore, for assessing the effects of alcohol
consumption on DNA in studies of alcohol-related carcinogenicity, N2-ethyl-dG has been used as a
biomarker (Figure 2). The detection of N2-ethyl-dG supported epidemiological studies showing a
higher risk of oral and esophageal cancer in ALDH2-deficient individuals who drink chronically [53].
Balbo et al. [54] used N2-ethyl-dG to investigate, for the first time, the effects of alcohol consumption
on the time course of DNA adduct production in the oral cavities of healthy volunteers. A clear
dose–response relationship between the levels of N2-ethyl-dG produced and the amount of alcohol
consumed was observed. The most interesting result of this bio-kinetic study was that the adduct
levels returned to baseline values after 24 h. Since the half-life of N2-ethylidene-dG in DNA is 24 h
at 37 ◦C, the elimination of adducts can be explained by either DNA repair or cell turnover [54,55].
It is possible that the nucleotide excision repair mechanism could remove the lesion, since neither
base deletion repair nor direct repair have been shown to be able to remove N2-ethyl-dG (used as
a substitute for N2-ethylidene-dG). The other possibility is that the return of the adduct levels to
baseline values reflects changes in the cell population that is being sampled. Cells in the basal layer
of the epithelium appropriately undergo mitosis to provide cell renewal. As these cells differentiate,
they are pushed toward the surface by new cells in the basal layer. Therefore, the cells sampled
at the 24 h time point would have been in a different epithelial layer relative to the surface during
the alcohol drinking and immediately afterwards, when salivary acetaldehyde levels would be
at their highest [54,55]. The condensation of two molecules of acetaldehyde may also produce a
reactive electrophile, croton-aldehyde, which can also form a Schiff base on the same amino group of
deoxyguanosine (dG), which results in the formation of other adducts the croton-aldehyde-derived
propano-dG ones. Under the in vitro conditions that were investigated, these adducts proved to be
very unstable. Further investigation is needed to clarify the biological significance of these adducts [56].
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Figure 2. Formation of the N2-ethylidene-dG adduct and the N2-ethyl-dG adduct due to acetaldehyde
production from ethanol. Acetaldehyde can interact with deoxyguanosine (dG) to form a Schiff
base N2-ethylidene-dG. During the reduction step, the unstable N2-ethylidene-dG is expected to be
converted to the stable N2-ethyl-dG.

2.3. Ethanol/Acetaldehyde and Pre-Cancerous Lesions

Acetaldehyde also damages oral mucosa, which promotes the stimulation of cell regeneration.
DNA mutation may result from the spreading out of the proliferative cell compartment and
hyper-regeneration. The various alterations in DNA can progress from a normal oral epithelial
cell to a pre-malignant or a potentially malignant oral epithelial cell that is characterized by the ability
to proliferate in a non-controlled mode. Genetic alterations may then cause the development of
pre-cancerous lesions, which develop in the form of benign or malignant tumors. Pre-cancerous lesions
can be in the form of leukoplakia, erythroplakia, erythroleukoplakia (Figure 3) or oral sub-mucous
fibrosis, and all these can potentially give rise to a primary tumor in the oral cavity [56–60]. OCC involves
changes in the mucosal layers that most probably occur in the entire epithelial surface of the oral cavity
and are followed by the invasion of tumor cells [61]. Changes in over approximately 100 genes have
been involved in OCC, the overexpression of oncogenes and/or the silencing of tumor suppressor
genes being the focus of the scientific community [62].
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Figure 3. The various clinical appearances of leukoplakia with expected underlying microscopic
changes are shown. Leukoplakia is a pre-malignant, pre-cancerous or potentially malignant lesion
or condition, which means that there is an increased risk of future malignant transformation into a
squamous cell carcinoma either at the site of the leukoplakia or elsewhere in the oral cavity. Lesions
become progressively more “severe” toward the right, culminating in erythroleukoplakia, which most
frequently demonstrates severe epithelial dysplasia and carcinoma in situ when studied histologically.
It should be emphasized that the scheme does not necessarily represent a chronological change,
but rather it shows the potential presentations of leukoplakia. Homogeneous leukoplakia is a uniform,
flat, thin and white plaque, with or without fissuring and with a gradual increase of hyperkeratosis
and acanthosis. Leukoplakia can also be non-homogeneous, being nodular or flat with a mixed white
and red discoloration (“erythroleukoplakia”). The histopathologic features of leukoplakia may vary
from hyperkeratosis with or without epithelial dysplasia to various degrees of epithelial dysplasia,
carcinoma in situ and even invasive squamous cell carcinoma.

A case–control study in Kenya revealed a weak to moderate association between wine intake
and oral leukoplakia [63]. No relationship was found in a case–control study investigating the role
of alcohol consumption in the development of oral leukoplakia in Southern Taiwan. Subjects who
had drunk a bottle or more of an alcoholic beverage per month for at least one year did not develop
oral leukoplakia [64]. According to Petti et al. [65], regular intake of a moderate quantity of wine
could reduce the risk of oral leukoplakia. Consumption of beer and hard liquor, but not wine, is more
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strongly associated with oral cancer than oral epithelial dysplasia [66]. Jaber et al. [67] carried out a
study that aimed to provide an assessment of the importance of tobacco and alcohol consumption
in the development of oral epithelial dysplasia in a large group of European patients. These authors
found no relationship between the degree of wine consumption and risk of oral epithelial dysplasia.
However, increased risk of oral epithelial dysplasia was associated with the consumption of fortified
wines [67]. A retrospective case–control study showed no overall increased risk from wine and other
alcoholic beverages of oral dysplasia. However, the proportion of subjects who drank spirits was
significantly higher among cases than controls [68]. Morse et al. [69] found a two-fold increase in
the risk of oral epithelial dysplasia associated with drinking seven or more drinks of beer and hard
liquor per week but no excess risk with drinking an equivalent amount of wine. A study in Puerto
Rico also suggests that any type of alcoholic beverage consumption, including wine, is positively
associated with an increased risk of potentially malignant oral disorders [70]. Conflicting evidence
exists to support alcohol’s role in the development of pre-cancerous lesions but apparently wine has
little to no effect on their development. In general, these results corroborate the ones obtained by
Purdue et al. [71], who found that among wine-only drinkers, the odds ratio for moderate levels of
consumption frequency approached null. According to their study, only individuals with higher wine
consumption levels were comparable to drinkers of other beverage types.

In summary, it seems that ethanol may act as an OCC promoter by multiple pathways. However,
important questions remain to be answered about the mechanistic and dynamic bases of this relationship.

3. Wine as Oral Cavity Cancer-Preventer

Grapes contain phenolic compounds: these are highly specific metabolites that are important in
plant regulatory mechanisms and play an important role in the response and resistance of plants to
infection by pathogenic microorganisms. Phenolic compounds also directly contribute to the sensory
properties, such as color, astringency, bitterness and roughness, of wine. They are involved in redox
reactions, protein interactions and wine-aging processes [72]. The primary constituents of the phenolic
compounds are flavonoids and non-flavonoids. Flavonoids make up approximately 85% of the total
phenolic content of red wine but less than 20% of that of white wine [73]. Phenolic compounds have
important effects on human physiology and are considered to have beneficial effects in relation to
cancer and diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and aging [74].
Herein, we will review the literature related to the chemoprevention potential of wine polyphenols,
i.e., their potential for controlling the transformation of pre-malignant or potentially malignant lesions
into invasive OCC.

3.1. In Vitro Studies

Wine contains the same flavanol derivatives as green tea, namely catechins; the latter have
been extensively studied for their chemo-preventive potential, showing efficacy against multiple
cancers including OCC [75,76]. Therefore, it is reasonable to suppose that wine flavanols could
have similar OCC protective effects. Oral and head and neck cancer cells exposed to green tea
and epigallocatechin-3-gallate (EGCG), respectively, lead to a decrease in the expression of the
phosphorylated epidermal growth factor receptor (EGFR), suggesting that catechins are potential
cancer chemo-therapeutic or chemo-preventive agents [77,78]. In vitro, tea catechins promote a
decrease in the proliferation of different human head and neck squamous cell carcinoma (HNSCC)
cell lines [77–82]. Li et al. [82] found that EGCG affects the proliferation, apoptosis, migration
and invasion of tongue squamous cell carcinoma cells through the Hippo-TAZ signaling pathway.
Polyphenols extracted from green tea have a synergistic beneficial effect with lactoferrin on oral
carcinoma cells’ cytotoxicity and apoptosis. Moreover, polyphenols alone induce G0/G1 cell-cycle
arrest and apoptosis [83]. EGCG also induces the G1 phase arrest of human OSCC cells [81]. Activation
of the p53 tumor suppressor gene by green tea polyphenols could explain the induction of cell cycle
arrest and apoptosis [84]. Treatment with EGCG increases caspase-3 and -7 activities and the percentage
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of apoptotic cells [81]. In addition, it was observed that EGCG induces cell apoptosis and autophagy
and inhibits multi-drug resistance gene (MDR1) expression in oral cancer cells [85]. The in vitro
effects of EGCG on oral cancer cells include three main phases: (i) inhibition of cell proliferation via
apoptosis induction and cell cycle arrest; (ii) modulation of transcription factors, namely nuclear factor
kappa-light-chain-enhancer (NF-κB) and activator protein; and (iii) reduction of cell migration and
invasion by decreasing the production of matrix metallo-proteinases (MMPs) [86,87].

Quercetin is an efficient anti-cancer agent as evidenced by an EGFR decrease in
EGFR-overexpressing HNSCC [88]. An in vitro study with human OSCC cells suggested that quercetin
chemo-preventive mechanisms start by inducing a stress response, resulting in cell necrosis. Then,
the surviving cells die by apoptosis after prolonged exposure to quercetin, presumably mediated by
the inhibition of thymidylate synthase protein, a key S-phase enzyme [89].

The combination of quercetin with chemo-therapeutic drugs not only induces apoptosis but also
decreases the cells’ resistance to the chemo-therapeutic medication [90,91]. The bio-pharmacological
effects of quercetin on cell growth and invasion/migration inhibition involve cellular and molecular
mechanisms, mainly via cell cycle arrest accompanied by mitochondria-mediated apoptosis.
The caspase-3-dependent apoptosis of OSCC cells is one of the mechanisms that has been proposed to
explain the anti-OCC properties of quercetin [92].

Quercetin efficiently inhibits the cellular migration and invasion of the HNSCC cell lines,
HSC-3 and FaDu, and human oral cancer cells (SAS) via suppression of the MMP-2 and MMP-9
activation [88,93]. MMPs inhibition occurs via the down-regulation of protein kinase C and the blocking
of mitogen activated protein kinases (MAPK) and phosphatidylinositide-3 kinases (PI3K) signaling
pathways and both cyclo-oxygenase-2 (COX-2) and NF-κB [93]. Moreover, quercetin affects the ratio
of anti-/pro-apoptotic proteins in SAS cell lines, which may lead to the dysfunction of mitochondria
followed by the release of cytochrome c (cyto c), apoptosis-inducing factors and endonuclease G from
mitochondria, inducing cell-destruction by triggering apoptosis [94].

Quercetin treatment enhances microRNA-16 (miR-16) expression and inhibits homeobox A10
(HOXA10) levels. The overexpression of miR-16 blocks cell viability, migration and invasion by
targeting HOXA10, and its knockdown reverses the quercetin-mediated progression of oral cancer
cells [95].

Several lines of evidence both in vitro and in vivo support the notion that quercetin is a potential
therapeutic agent for a subset of human OSCC involving the activation of fork-head box O (FOXO1).
In fact, quercetin suppresses cancer cell growth and promotes phase G2 cell cycle arrest and apoptosis in
EGFR-overexpressing HSC-3 and TW206 cells, thus inducing the activation of FOXO1, the knockdown
of which attenuates the quercetin induction of p21 and Fas ligand (FasL) expression [96]. From the
above, it can be concluded that quercetin exerts chemo-preventive effects on the oral keratinocytes,
and after a tumor has formed, quercetin could continue to have beneficial anti-tumor effects at higher
doses by exerting cytotoxic effects.

Anthocyanins are flavonoids found mainly in grape skin and are responsible for the bluish-red color
of the skin of red grapes and, therefore, for the color of red wine. Grape seed proanthocyanidins (GSPs)
reduce cell viability and induce cell death in a dose- and time-dependent manner in human HNSCC
cell lines from different sub-sites such as the oral cavity (SCC1), larynx (SCC5), tongue (OSC19) and
pharynx (FaDu). GSPs reduce the expression of EGFR in those cell lines. Moreover, these anthocyanins
increase the apoptosis of SCC1 and OSC19 cells with the induction of Bax (Bcl-2-associated X protein),
reduction of the expression of Bcl-2 and the activation of caspase-3 [97]. GSPs inhibit the proliferation,
migration and invasion of tongue squamous cell carcinoma cells (Tca8113) through suppression of the
Akt/NF-κB signaling pathway [98].

Blueberries, a rich source of anthocyanins, and malvidin inhibit STAT-3 (signal transducers and
activators of transcription-3), which prevents the proliferation and induces the apoptosis of oral
cancer cells in vitro, a result further confirmed in vivo. Blueberry and malvidin suppress STAT-3
phosphorylation, block the nuclear translocation of the active dimer and prevent the transactivation of
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the STAT3 target genes that play crucial roles in cell proliferation and apoptosis [99]. Anthocyanins
from the wild blueberries of Inner Mongolia suppress the growth of the oral cancer cell line KB
in a dose-dependent manner as well as induce G2/M cell cycle arrest and apoptosis of the cells.
Anthocyanin treatment increases the expression of caspase-9 and cyto c. Anthocyanins can also
down-regulate the methylation of tumor protein p53 [100]. In a different study, it was observed that
besides blueberry, cranberry, blackberry, black raspberry, red raspberry and strawberry extracts also
inhibit the proliferation of human oral cancer cell lines [101,102]. The result for black raspberry was
observed in another study in which extracts of this fruit inhibited the growth of oral pre-malignant and
malignant cells by targeting cell cycle regulatory proteins [103]. Isolated cell lines from human OSCC
tumors were used to investigate the effects of a freeze-dried black raspberry ethanol extract on cellular
growth [104]. As in the other studies, black raspberry extracts suppressed cell proliferation without
perturbing viability, inhibited the translation of the complete angiogenic cytokine vascular endothelial
growth factor (VEGF), suppressed nitric oxide synthase activity and induced both apoptosis and
terminal differentiation [104].

Crude extracts of strawberry and pure anthocyanins, namely cyanidin-3-O-glucoside, pelargonidin
and pelargonidin-3-O-rutinoside, inhibit the proliferation of KB and CAL27 human oral cancer cells,
which has been associated with an antioxidant mechanism of action [105]. In human oral CAL 27 cells,
it has also been observed that anthocyanins from a species of black rice could decrease cells’ metastasis
by the reduction of MMP-2, MMP-9 and NF-κB p65 expression through the suppression of the PI3K/Akt
pathway and the inhibition of NF-κB levels [106]. Recently, it was shown that anthocyanin promotes
the death of OSCC cells through the activation of pyroptosis [107].

The mechanism of action of anthocyanins seems to involve their ability to modulate epithelial cell
growth and quench ROS, which is achieved because anthocyanins affect intracellular signaling and
gene expression [108]. In fact, the anti-mutagenic and anti-carcinogenic activities of anthocyanins are
generally ascribed to their antioxidant properties as conveyed by their phenolic structure. They may
play an important role in the anti-cancer effects in OCC and are worthy of further investigation.

Resveratrol is a stilbene and the major non-flavonoid found in red wines, and it can modulate
the signal transduction pathways that control cell division and growth, apoptosis, inflammation,
angiogenesis and metastasis [109,110]. Its anti-cancer properties have been shown on various types
of cancer cells including those of HNSCC origin [110,111]. Resveratrol’s anti-cancer effects are
related to the inhibition of the proliferation of different oral cancer cells through the induction of
apoptosis [112,113]. Moreover, resveratrol has considerable efficacy against the growth and proliferation
of HNSCC through its selective induction of DNA damage and apoptosis, independently of Smad4
status, the mutation/absence of which is one of the primary causes of failed cellular DNA repair
machinery in HNSCC [114].

Another study aimed to find potential compounds for the treatment of OCC, based on a large
scale of reliable compound- and bioactivity-databases which showed that resveratrol is a natural
product with a high potential to treat OCC. Resveratrol inhibits matrix MMP-9 expression and
metastasis in oral cancer cells by down-regulating the signaling pathways of c-Jun N-terminal
kinase1/2 and extra-cellular signal-regulated kinase1/2 signals, thus exerting beneficial effects in
chemo-prevention [115]. Concentrations of 100 µM resveratrol decrease the adhesion, migration and
invasion of OSCC cells (KB) [116] and of human oral cancer cell lines (SCC-9) [115]. Cell migration
induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) is also inhibited by resveratrol, which reduces
the expression of MMP-9 and blocks the extra-cellular signal-regulated kinase (ERK) and JNK-MAPK
(c-Jun N-terminal protein kinase family of mitogen-activated protein kinases) pathways. The reduction
of MMP-9 activity by resveratrol is related to the suppression of the phosphorylation of ERK and JNK
induced by TPA [115]. Using the oral cancer cell line SAS, it was observed that resveratrol induces
apoptosis through nuclear factor-erythroid 2-related factor 2, heme oxygenase 1, tumor protein p53
and Bax signaling pathways [117].
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The exposition of an OSCC cell line to a combination of resveratrol and doxorubicin loaded in
liposomal nanoparticles exerts apoptosis-inducing effects by controlling the cell cycle and downstream
apoptosis-inducing proteins such as caspase-3 and ribose polymerase-1 [118]. Their data indicate
that the drug-loaded nanoparticle exerted apoptosis-inducing effects by controlling the cell cycle and
downstream apoptosis by inducing proteins such as caspase-3 and poly (ADP-ribose) polymerase 1.

Nano-diamino-tetrac (NDAT) inhibits programmed death-ligand 1 (PD-L1) expression which
is essential for proliferation in oral cancer cells. Recently, it was shown that a combined treatment
of resveratrol and NDAT is more effective in reducing programmed death-ligand 1 expression and
anti-proliferation as compared with resveratrol treatment alone in two oral cancer cell lines [119].
Thyroxine is an enhancer of the proliferation and progression of oral cancer cells by the down-regulation
of apoptotic factor BAD (B-cell lymphoma 2 (Bcl-2)-associated agonist of cell death) and up-regulation
of PD-L1. Resveratrol inhibits the function of thyroxine so that resveratrol supplementation enhances
the expression of BAD and inhibits PD-1 to suppress oral cancer cells [120]. Chen et al [121] found that
blocking expressions of inflammatory genes in oral cancer cells makes resveratrol an attractive agent
that could possibly be employed in combination with other anti-STAT3 drugs.

Hayashi et al. [122] found that the overexpression of tripartite motif family-like 2 (TRIML2)
contributes to tumor growth at the G1 phase as seen by cell cycle analysis, which results in insufficient
control by the down-regulation of p21Cip1 expression. The authors also observed that resveratrol
caused the up-regulation of p21Cip1 through the TRIML2 expression. Therefore, the authors concluded
that the expression status of TRIML2 might be an indicator of OSCC progression and resveratrol may
be a potential new therapeutic drug for oral cancer therapy via TRIML2 [122].

The combination of 50 µM resveratrol with 10, 25 and 50 µM of quercetin resulted in a significant
inhibitory effect on cell growth and DNA synthesis [123]. Resveratrol is the major compound of
Polygonum cuspidatum (PCE), which reduces human oral cancer cells’ viability in a concentration-
and time-dependent mode PCE treatment induced autophagic and apoptotic cell death. PCE also
stimulated caspase-9 and -3. These findings also suggest that resveratrol may be potentially efficacious
for the treatment of cisplatin-resistant human oral cancer [124]. Pinostilbene hydrate, a methylated
derivative of resveratrol, inhibits the migration and invasion ability, reducing the protein activity and
expression of matrix MMP-2 in three oral cancer cell lines (SCC-9, SAS and HSC) by down-regulating
the p38/ERK1/2 pathway, and it might be a promising agent for preventing OSCC cell metastasis [125].

3.2. In Vivo Studies

The chemo-preventive activity of grape skin extracts in oral carcinogenesis was evaluated
in 4-nitroquinoline 1-oxide (4-NQO)-induced rats. After 12 weeks of treatment, a significant
reduction in epithelial dysplasia was observed. Moreover, 8-hydroxy-2′–deoxyguanosine and ki-67
immuno-expression was reduced in animals treated with grape skin extracts. A Western blot analysis
showed a significant decrease in p-NFκBp50 and myeloid differentiation primary response 88 protein
expression in the groups treated with grape skin extracts. The authors concluded that grape skin extracts
displayed chemo-preventive activity in oral carcinogenesis assays, as depicted by its antioxidant,
anti-proliferative and anti-inflammatory properties [126].

Green tea polyphenols are also able to mitigate OCC in vivo. In 4-NQO-induced rats, green tea
polyphenols decreased the levels of glutathione reductase and total thiols while increasing the
levels of glutathione oxidase and conjugated dienes and increasing γ-glutamyl transferase activity.
Supplementation with green tea polyphenols also reduced the activity of γ-glutamyl transferase,
a tumor growth marker [127]. In a xenograft experiment on mice, EGCG treatment resulted in a 45.2%
reduction in tumor size without a loss of body weight [81].

The chemo-prevention potential of quercetin has also been tested in vivo. Quercetin reduced
tumor incidence and induced apoptosis through the modulation of NF-kB signaling and its target
genes Bcl-2 and Bax in the DMBA (7,12-dimethylbenz(a)anthracene)-induced carcinogenesis hamster
model [128].
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In DMBA-induced hamster cheek pouch tumors, the dietary administration of freeze-dried black
raspberries at a concentration of 5% of the diet inhibited the incidence, total number, multiplicity and size
of tumors [129]. The environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene
(DBP) was used to induce OSCC in mice and to explore the effects of 5% dietary black raspberry.
A reduction in the levels of DBP-DNA adducts in the mouse oral cavity with a comparable effect to
those of its constituents was observed [130].

The effect of dietary GSPs was assessed on the in vivo tumor xenograft growth of SCC1 cells
using athymic nude mice; these anthocyanins showed identical chemo-therapeutic efficacy to that
which was observed in vitro in the same study, as mentioned above. This efficiency was found to be
associated with the: (i) control of cell cycle regulation and (ii) induction of the apoptotic cell death
of tumor cells, as indicated by the analysis of the proteins of the Bcl-2 family, TUNEL-positive and
activated caspase-3-positive cells [97].

Resveratrol locally applied and complexed with 2-Hydroxypropyl-beta-cyclodextrin (HPβCD)
(cream and mouthwash) in DMBA-induced OSCC in Syrian hamster cheek pouches prevents oral
pre-neoplastic lesions and OSCC appearance and growth. HPβCD-formulations (mainly mouthwash)
show the best chemo-preventive effects in terms of lesions’ prevalence, multiplicity, dimension and
histological signs of malignancy [131]. Recently, an in vivo study was carried out using loaded
GE11-conjugated liposomes (RSV-GL) and it was found that RSV-GL exhibited a two-fold decrease in
tumor volume compared with the free resveratrol and a three-fold decrease in volume compared with
the control [132].

3.3. Human Studies

There are few human studies, most of which have been conducted with green tea polyphenols.
In a phase II clinical trial, patients with high-risk oral pre-malignant lesions receiving 500–1000 mg/m2

of green tea extract for 12 weeks exhibited reduced VEGF levels, which are angiogenic stimuli for
tumors [133]. A double-blind intervention trial in patients with pre-cancerous lesions of the oral
mucosa (leukoplakia) found that a treatment regimen of green and black tea polyphenols (3 g/day orally
and a 10% ointment applied to lesions three times daily) resulted in lower numbers of micronucleated
cells from oral lesions, normal oral mucosa and peripheral blood lymphocytes, thus providing some
direct evidence for the protective effects of tea on OCC [134]. In patients with oral field cancerization,
at a high risk for developing recurrent oral pre-cancerous and cancer lesions, EGCG was administered
in a form of mouthwash for seven days and a decrease was found in the expression levels of some oral
carcinogenesis biomarkers [135].

A clinical study was conducted to assess the effects of topical application of 10% freeze-dried black
raspberry gel on oral intraepithelial neoplasia. The results showed histologic regression in a subset of
patients and a reduction in the loss of heterozygosity at tumor suppressor gene-associated loci [136].
The berry gel application uniformly suppressed genes associated with RNA processing, growth factor
recycling and the inhibition of apoptosis and suppression of epithelial COX-2 levels [137]. OSCC
patients who were treated with black raspberries showed an enhanced expression of pro4-survival
genes, such as EGFR, and a reduction in other pro-inflammatory genes, such as NF-kB1 and
prostaglandin-endoperoxide synthase 2 [138].

Moreover, adherence to a Mediterranean diet based on ingredients of polyunsaturated fatty acid,
polyphenols from olive oil and polyphenols from grapes, including the ones present in wine, decreased
the risk of developing head and neck cancer [139].

4. Conclusions

At the experimental level, some studies were carried out to explore ethanol’s carcinogenic
mechanisms whereas others analyzed the phenolic protective mechanisms. In the former group,
the in vivo bio-kinetic studies were mainly focused on the analysis of salivary acetaldehyde. In contrast,
the chemo-preventive/therapeutic properties of phenolic compounds against oral carcinogenesis were
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mainly studied using in vitro and in vivo test systems. Acetaldehyde resulting from wine intake
damages oral mucosa, which promotes the stimulation of cell regeneration. The various alterations
in DNA can result in the development of a pre-malignant or a potentially malignant oral epithelial
cell characterized by the ability to proliferate in a non-controlled mode. In fact, acetaldehyde leads
to the overexpression of oncogenes and/or the silencing of tumor suppressor genes. On other hand,
several studies showed that polyphenols activate the p53 tumor suppressor gene. This could explain
the induction of cell cycle arrest and apoptosis by polyphenols that was reported in some studies.
Acetaldehyde’s genotoxicity also results in the formation of DNA adducts, which can also be reduced by
polyphenols, as observed with black raspberry administration in vivo. On the other hand, polyphenols
are potent antioxidants and, therefore, they counteract ROS/RNS generation due to an increase in
CYP2E1 activity as promoted by ethanol consumption. Likely, the phenolic compounds from wine
mitigate the deleterious effects of ethanol, decreasing the risk of OCC. Although all these studies have
yielded important data for understanding the mechanisms of action of either ethanol or phenolic
compounds on either normal or tumor keratinocyte cells from the oral cavity, much remains to
be studied. More adequately powered, randomized, placebo-controlled human studies, as well as
experimental animal models, are required for a better understanding of the effect(s) of wine, particularly
when consumed regularly in moderate doses, on oral cells.

In conclusion, this area warrants further investigation as a new way of thinking, which is to assess
the wine-specific intake risk while considering the additive/synergistic or contrasting effects of its
different compounds.
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