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Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of 

brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI 

parameters such as mean kurtosis (MK) provide additional subtle information to that provided by 

popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect 

white matter abnormalities, especially in populations that are not expected to show severe brain 

pathologies. However, DKI parameters often yield artifactual output values that are outside of the 

biologically plausible range, which diminish sensitivity to identify true microstructural changes. 

Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with 

implausible DKI parameters, and demonstrated its improved performance against other approaches 

that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve 

method to improve the identification of white matter abnormalities in group comparisons. To do 

so, we compared group differences, with and without the MK-Curve correction, between 115 

individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also 

compared the correlation of the corrected and uncorrected DKI parameters with clinical 

characteristics. Following the MK-curve correction, the group differences had larger effect sizes 

and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to 

detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI 

parameters displayed stronger correlations with clinical variables in CHR individuals, 

demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve 

correction our analyses found widespread lower MK in CHR that overlapped with lower fractional 

anisotropy (FA), and both measures were significantly correlated with a decline in functioning and 

with more severe symptoms. These observations further characterize white matter alterations in 

the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. 

The improvement in group differences and stronger correlation with clinical variables suggest that 

applying MK-curve would be beneficial for the detection and characterization of subtle group 

differences in other experiments as well.

1. Introduction

Diffusion kurtosis imaging (DKI) (Jensen et al., 2005) is a diffusion MRI (dMRI) approach 

to characterize non-Gaussian water molecule diffusion that reflects microstructural changes 

in molecular restrictions and tissue heterogeneity (Cheung et al., 2009; Steven et al., 2014; 

Tabesh et al., 2011). Non-Gaussian diffusion may arise in the brain when diffusion is 

restricted by barriers, such as cell membranes and organelles, and also when microstructural 

compartments with distinct diffusion properties reside in the same voxel (Fieremans et al., 

2011; Westin et al., 2016; Yang et al., 2012). Since DKI is a clinically feasible extension of 

diffusion tensor imaging (DTI) (Basser et al., 1994), it characterizes general shape and size 

parameters akin to standard DTI, such as fractional anisotropy (FA) and mean diffusivity 

(MD) Pierpaoli and Basser (1996), but in addition it estimates kurtosis-specific parameters 

that quantify the non-Gaussian contribution to the diffusion profile, including mean kurtosis 

(MK), axial kurtosis (AK) and radial kurtosis (RK) (Hui et al., 2008; Jensen et al., 2005; Lu 

et al., 2006).

In the white matter, kurtosis parameters (e.g., MK, AK, and RK) have been suggested to 

indicate the complexity of the brain’s microstructural environment (Steven et al., 2014). 
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Since non-Gaussian contributions can originate from restricted diffusion, changes in kurtosis 

parameters are thought to better reflect changes to the microstructure of the fiber bundles 

themselves, e.g., to the barriers posed by the myelin sheath, when compared to DTI 

measures. Other microstructural differences (e.g., dispersion and density of fibers), as well 

as partial volume effects, which reflect more on the organization of fiber bundles could also 

cause changes in kurtosis parameters.

While DKI parameters are useful for identifying subtle microstructural differences, there are 

technical difficulties that limit the accuracy of DKI. Specifically, DKI parameters calculated 

directly from dMRI data, with no additional processing, often have implausible values, 

which are values outside of the expected range within biological tissue (Jensen et al., 2005; 

Shaw and Jensen, 2017; Tabesh et al., 2011; Zhang et al., 2019a). In MK images, 

implausible values often appear as very dark or very bright voxels within brain tissue, which 

no longer truly represent any microstructural effects (e.g., negative MK values). The number 

of voxels with implausible values in a typical MK map is considerable (see for example Fig. 

2b), and is especially high in clinical acquisitions (Zhang et al., 2019a). If not corrected, 

implausible values introduce large biases and increased variability in any resulting DKI 

parameters. Biases and increased variability can in turn lead to challenges in interpreting the 

findings, and detecting between-group differences (Shaw and Jensen, 2017). Recently, we 

introduced the mean-kurtosis-curve (MK-Curve) method, as a robust approach to correct 

implausible DKI parameter values (Zhang et al., 2019a). MK-curve was validated on 

synthetic phantom, ex-vivo phantom, and in-vivo brain dMRI data, and was found to correct 

more implausible voxels than other available methods (Zhang et al., 2019a). The method 

generates a curve for each voxel that explains how MK values change as a function of the b0 

signal. The shape of the resulting curve defines ranges of b0 values that generate implausible 

MK values, enabling detection and correction of implausible DKI voxels by projecting out-

of-range b0 values to the plausible range. By correcting voxels with implausible values, 

MK-Curve intends to improve the accuracy of DKI measures, and therefore to re-enable 

assigning a biological interpretation to those voxels.

In this work we demonstrate that applying MK-curve to correct voxels with implausible MK 

values increases the sensitivity of DKI to identify white matter alteration. To evaluate this 

improvement we test for group differences in DKI and MK-curve corrected DKI measures 

between healthy controls and individuals at clinical high risk of developing psychosis 

(CHR). DKI measures have been found useful for the identification and characterization of 

neurological changes in psychosis (Cho et al., 2019; Kochunov et al., 2016; Pasternak et al., 

2018; Ramani et al., 2007; Zhu et al., 2016, 2015), but have not yet been applied to CHR. 

Previous dMRI studies in CHR repeatedly identified subtle white matter abnormalities 

(Bloemen et al., 2010; Clemm von Hohenberg et al., 2014; Karlsgodt et al., 2009; Peters et 

al., 2010, 2009; Tang et al., 2019), which were explained as likely having a 

neurodevelopmental root contributing to the etiology of psychosis. These studies help 

establish the presence of white matter abnormalities in CHR populations, but since they are 

mostly based on standard DTI analysis, they provide limited information about the 

microstructural properties underlying these abnormalities. Therefore, more advanced dMRI 

methods are required to characterize further their microstructural properties (Karlsgodt, 

2020; Pasternak et al., 2018), which may shed light on their origin and cellular basis. To 
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increase the homogeneity of the CHR group while maintaining a sufficiently large group to 

identify subtle differences we include only those CHR individuals who were not medicated, 

and that did not develop psychosis within a one-year follow-up period. Therefore, the group 

difference in dMRI measures between this CHR chort and HCs is expected to have small 

effect sizes and could be amplified by improved sensitivity following the MK-curve 

correction. We compare the DKI parameters (including FA and MK) calculated directly from 

the dMRI data to those after correction for implausible values using the MK-Curve method 

(Zhang et al., 2019a). For each of the calculated DKI parameters, tract-based spatial 

statistics (TBSS) (Smith et al., 2006) is performed to identify white matter differences in a 

large sample of CHR subjects compared to healthy controls (HCs). Group differences of 

DKI parameters averaged across the white matter skeleton and on a voxel-wise level are 

reported. Correlation analyses are used to test for associations between the DKI parameters 

and clinical characteristics.

2. Methods

2.1. Participants

Participants in this study are 115 help-seeking individuals from the Shanghai At Risk for 

Psychosis (SHARP) program (Shanghai Mental Health Center, Shanghai, China) that were 

recruited at their first outpatient assessment, and 93 age and gender matched healthy control 

(HC) subjects that were recruited through online advertisements. The mean intervals 

between recruitment and MRI scan were 2.5 days (SD = 7.7). All recruited subjects in the 

CHR group met CHR criteria, defined by the Chinese version of the Structured Interview for 

Prodromal Syndromes (SIPS) and the Scale of Prodromal Symptoms (SOPS) (Zheng et al., 

2012), administered by a senior psychiatrist (T.Z and L.X.) (Zhang et al., 2015, 2014).

Exclusion criteria at study entry for all participants included head injury with loss of 

consciousness of any duration; any history of substance use, neurological disease, severe 

somatic diseases; IQ below 70; and dementia. Control subjects were additionally excluded if 

they met the criteria for a psychotic disorder or a clinical high-risk syndrome (determined by 

the SIPS) or any other mental disorder defined by DSM-IV. Exclusion criteria for CHR 

included prior treatment with psychotropic medication such as antipsychotics, 

antidepressants or benzodiazepines. In the current study we did not include CHR subjects 

who had developed psychosis within a 1-year follow-up evaluation (additional 16 subjects 

that were excluded). These subjects were excluded to simplify the clinical heterogeneity of 

the CHR group at test, and are saved for future longitudinal studies that will focus on 

clinical trajectories and outcomes.

On all subjects, and as part of the SIPS evaluation, the Global Assessment of Functioning 

Scale (GAF) was administered to evaluate a functioning score for the time of recruitment, 

and retrospectively for the 12 months prior to the initial assessment. Functional decline, 

which is required for the SIPS definition of CHR was calculated as the drop in the current 

GAF score at the time of assessment compared with the subject’s highest estimated GAF 

score in the 12 months prior to the initial assessment (Tang et al., 2019; Zhang et al., 2015, 

2014). We also investigated additional symptom measures that are assessed as part of SIPS. 

These were a total of 19 variables, including 5 positive symptoms, 6 negative symptoms, 4 
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disorganization symptoms, and 4 general symptoms. We note that while SIPS was 

administered by two highly trained psychiatrists, for the current study we did not have data 

that allowed us to assess inter-rater reliability in SIPS-derived scores.

A summary of the demographics of all CHR and HC individuals is presented in Table 1. All 

individuals passed imaging quality control evaluation (see Section 2.2). We note that 39 of 

the CHR and 50 of the HC individuals were included in a previous dMRI study (Tang et al., 

2019). The study protocol and consent form were reviewed and approved by the local ethics 

committees. Written informed consent was obtained from all participants.

2.2. MRI data acquisition and image preprocessing

All participants underwent MRI scanning at the Shanghai Mental Health Center using a 3-T 

Verio scanner (Siemens, Munich) with a 32-channel head coil. The acquisition parameters 

used for the dMRI data were TE = 109 ms, TR = 15800 ms, phase partial Fourier = 6/8, and 

voxel size = 2 × 2 × 2 mm3 . A total of 74 images were acquired for each subject, including 

5 baseline images with b = 0 s/mm2, 3 diffusion-weighted (DW) images with b = 200 s/

mm2, 5 DW images with b = 500 s/mm2, and 30 DW images with b = 1000 s/mm2, and 30 

DW images at 3000 s/mm2. Scanning parameters and acquisitions at the Shanghai Mental 

Health Center were supervised by members of the Psychiatry Neuroimaging Laboratory 

(PNL) at Brigham and Women’s Hospital (BWH), with visits to Shanghai and ongoing 

communication with the chief technical scientist (Y.T.) in Shanghai. All data processing was 

performed at the PNL.

The dMRI data was preprocessed using in-house data processing pipeline (github.com/

pnlbwh/pnlpipe), including brain masking using the SlicerDMRI extension (dmri.slicer.org) 

(Norton et al., 2017; Zhang et al., 2020b) in 3D Slicer (www.slicer.org) and eddy current-

induced distortion correction, outlier replacement and motion correction using Eddy 

(Andersson et al., 2016; Andersson and Sotiropoulos, 2016), FSL (Jenkinson et al., 2012). 

Motion parameters were derived from the FSL permutations and compared between the 

CHR and HC subjects, where no significant differences were identified (p = 0.52). All dMRI 

scans included in the study passed quality control, which included visual inspection of the 

raw data and visual inspection of the output images by trained raters at the PNL.

2.3. Calculation of DKI and DTI parameters

For each of the preprocessed dMRI scans, we computed the following DKI-based 

parameters: FADKI and MKDKI, which were computed using the standard DKI model fit 

(Tabesh et al., 2011) without any correction for implausible values (Section 2.3.1), and 

FAMKC and MKMKC, which were corrected for the implausible values using MK-curve 

(Zhang et al., 2019a) (Section 2.3.2). As a comparison, we also computed a DTI-based FA 

parameter, i.e., FADTI (Section 2.3.3). See Fig. 1 for an overview of the compared 

parameters.

2.3.1. DKI model fit for computation of FADKI and MKDKI—The DKI model 

(Tabesh et al., 2011) describes the dMRI signal in each voxel as a combination of a diffusion 

tensor and a kurtosis tensor, reflecting the Gaussian and excessive non-Gaussian water 
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molecule diffusion, respectively. A non constrained weighted linear least square (WLLS) 

fitting (Veraart et al., 2013) was applied to compute the diffusion tensor and the kurtosis 

tensor (“dki_fit.m” and “dki_parameters.m” from github.com/NYU-DiffusionMRI/

DESIGNER). From the estimated diffusion tensor, we calculated FADKI, and from the 

estimated kurtosis tensor, we computed MKDKI (Tabesh et al., 2011).

2.3.2. MK-Curve correction for computation of FAMKC and MKMKC—MK-Curve 

is a continuous plot that shows the dependency of MK on variations in the b0 signal. It has 

been used to robustly correct implausible DKI and DTI parameter values (Zhang et al., 

2019a) and to improve brain tissue segmentation (Zhang et al., 2020a). An MK-Curve is 

generated for each voxel by replacing the original b0 value with a range of synthetic values, 

while not altering any of the diffusion-weighted signals, and then calculating and plotting 

MK for each signal realization (github.com/zhangfanmark/MK-Curve). The MK-Curve has 

a similar shape for all brain tissue/regions (Fig. 2a): Looking from right to left, and starting 

from the maximal synthetic b0, as the synthetic b0 value decreases, the MK values steadily 

increase until reaching a peak (i.e., max-MK), which we define as a characteristic b0 value 

and call max-MK b0. The curve then continues with a sharp decrease in the MK value, 

which crosses MK = 0 (i.e., zero-MK) at another characteristic b0 value that we define as 

zero-MK b0. Then, when the synthetic b0 value is further reduced, the MK value enters an 

unstable phase where MK fluctuates dramatically, often reaching extreme low and high 

values. This range of b0 values was found to include the vast majority of implausible MK 

values (see (Zhang et al., 2019a) for details). By comparing the original b0 with the two 

characteristic b0 values (i.e., zero-MK b0 and max-MK b0), the MK-curve enables detection 

and correction of implausible voxels by projecting out-of-range b0 values to a new value that 

is within the plausible range. The corrected DKI parameters, i.e., FAMKC and MKMKC, are 

then those that were fitted from the dMRI data with the new b0 value. The corrected 

parameter maps eliminate the vast majority of implausible values (e.g. comparing dark 

voxels in the original MK map and bright voxels in the original FA map with the corrected 

MK and FA maps in Fig. 2b). At the same time, the MK-Curve method minimally changed 

the dMRI data by slightly changing only the b0 signals of those voxels that were detected to 

have implausible MK values (see Fig. 2a).

2.3.3. DTI model fit for computation of FADTI—We also applied DTI by a nonlinear 

fit estimation of a diffusion tensor in each voxel, and computed FADTI (Pierpaoli and Basser, 

1996). For the DTI model fit, we only included b = 0 and b = 1000 s/mm2 shells.

2.4. Statistical comparison

We used tract based spatial statistics (TBSS) (Smith et al., 2006) to generate a white matter 

skeleton and calculate statistical differences of dMRI measures on the skeleton between the 

CHR and HC groups. The FADTI images of all subjects were registered to the Enhancing 

Neuro Imaging Genetics through Meta-Analysis (ENIGMA) FA template, and projected 

onto the ENIGMA predefined white matter skeleton (Thompson et al., 2014). The FADTI-

based registration transformation was then applied to the other dMRI parameter maps (i.e., 

FADKI, MKDKI, FAMKC and MKMKC ) and they were subsequently projected onto the same 

white matter skeleton.
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We then performed group comparisons using two different levels of analyses: averaged-

skelton analysis to identify group differences over the entire white matter skeleton (Section 

2.4.1), and voxel-wise analysis to identify the spatial extent of group differences (Section 

2.4.2).

2.4.1. Averaged skeleton analysis—For the first level of analysis, all dMRI 

parameter values were averaged across the white matter skeleton in order to identify 

differences between groups that are spatially diffuse. First, to assess the impact of the MK-

curve correction on the dMRI values themselves, we performed a paired t-test to compare 

FA and MK before and after correction (FADKI versus FAMKC , and MKDKI versus 

MKMKC ). Second, to assess the impact of the MK-curve correction on the ability to identify 

group differences, for each parameter, a generalized linear model (GLM) was constructed to 

compare the CHR and HC groups, where the average dMRI parameter was the dependent 

variable, group was a predictor variable, and age and gender were covariates.

Linear correlation analyses (controlled for age and sex) were used to test for associations 

between average dMRI parameter values and functional decline in both CHR and HC. A 

comparison of the correlation coefficient of the diffusion measures before and after MK-

curve correction (FADKI versus FAMKC, and MKDKI versus MKMKC ) was conducted using 

a Fisher r-to-z transformation test Williams (1959). For correlations with additional 

symptom measures see Supplementary Experiment 1.

In all averaged skeleton analyses significant group differences were defined as those with p 
< 0.05, and Cohen’s d measure was computed to assess the effect size for differences 

between group means.

2.4.2. Voxel-wise analysis—In the second level of analysis, a GLM was fitted to each 

voxel on the white matter skeleton to identify the spatial extent of group differences. This 

analysis was performed using the permutation test in the randomize tool of FSL (Winkler et 

al., 2014). Threshold-free cluster enhancement (TFCE) Smith and Nichols (2009) was 

applied to control for family-wise errors, with a significance threshold (TFCE modified) of p 
< 0.05. Age and gender were included as covariates. Anatomical locations of the identified 

voxels were identified using the ICBM-DTI-81 atlas (Mori et al., 2005).

Similar to the averaged-skelton analysis, we performed linear correlation analyses 

(controlling for age and sex) between average parameter value over the significant voxels 

and the functional decline measure in both CHR and HC, and considered p < 0.05 as 

significant. We also utilized additional data from the Human Connectome Project (Glasser et 

al., 2013) to evaluate test-retest reliability of the MK and FA measures before and after MK-

curve correction (See Supplementary Experiment 2).

3. Results

3.1. Averaged skeleton analysis

MK-curve corrected measures had significantly lower FA (p<0.001, Cohen’s d = 5.50, in 

HC; p < 0.001, Cohen’s d = 5.38, in CHR; compare FADKI with FAMKC in Fig. 3), and 
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significantly higher MK (p < 0.001, Cohen’s d = 5.50, in HC; p < 0.001, Cohen’s d = 5.41, 

in CHR; compare MKDKI and MKMKC in Fig. 3) when averaged across the whole white 

matter skeleton. Comparing the average dMRI measures between CHR and HC, we found 

that the CHR group had lower values in both FA-based (FADTI, FADKI, and FAMKC ) and 

MK-based (MKDKI and MKMKC ) parameters (Fig. 3). When comparing before and after 

correction (Fig. 3), the MK-curve corrected parameters (FAMKC or MKMKC ) had higher 

effect sizes (Cohen’s d) for group differences and lower p-value than the corresponding non-

corrected (FADKI or MKDKI ) parameters, although, FAMKC was the only parameter to show 

a statistical significant group difference (p = 0.013). Following the MK-curve correction, the 

FAMKC parameter had a slightly stronger correlation coefficient (r = −0.268; p = 0.004) than 

the FADKI parameter before correction (r = −0.265; p = 0.005), and both had a stronger 

correlation coefficient than the FADTI parameter (r = −0.241; p = 0.01) (Fig. 4). The MK 

parameter was significantly correlated with clinical decline following the MK-curve 

correction (i.e., MKMKC, r = −0.261; p = 0.005) but not before the correction (i.e., MKDKI r 
= −0.106; p = 0.264), although a Fisher r-to-z transformation test did not show a significant 

difference (z = 1.191; p = 0.117) between the two correlation coefficients (Fig. 4). Similar 

results, i.e., stronger correlation with dMRI measures following MK-curve correction were 

found for the symptom measures (see Supplementary Experiment 1). There were no 

significant correlations between dMRI and clinical measures within HC (Fig. 4), both before 

and after MK-curve correction.

3.2. Voxel-wise analysis

The comparison of the voxel by voxel group differences in dMRI measures between HC and 

CHR identified voxels with significantly lower values in the CHR group for all five dMRI 

parameters. There were no voxels with significantly higher values. The number of voxels 

with significant group difference was higher following the MK-Curve correction (Fig. 5 and 

Table 2), in particular for the MK parameter (MKDKI vs MKMKC ). The locations implicated 

by the FADKI and FAMKC maps were similar, with a large spatial overlap between the maps 

(Fig. 5). For the MK maps, most voxels with significantly lower MKDKI had also 

significantly lower MKMKC, although the significant MKMKC voxels were further 

widespread across the white matter skeleton (Fig. 5 and see also Supplementary Figure S1 

for the effect on each ROI in the ICBM-DTI-81 atlas). Similarly to the averaged skeleton 

analysis, calculating the correlation with functional decline over those voxels that showed 

significant group difference, demonstrated stronger correlation for the MK-curve corrected 

parameters compared with the uncorrected parameters (Supplementary Figure S2). Finally, 

MK-curve corrected measures had better test-retest reliability than uncorrected DKI 

measures when averaged across the entire skeleton, and also across individual white matter 

ROIs (Supplementary Experiment 2).

4. Discussion

In this work, we demonstrate that applying the MK-curve method improves identification of 

DKI abnormalities in the white matter by comparing a population of CHR individuals with 

HC. Following the MK-curve correction, the group differences had higher effect sizes and 

statistical significance (i.e., lower p values), demonstrating increased sensitivity to group 
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differences. Furthermore, the MK-curve-corrected DKI parameters had stronger correlation 

with clinical variables in CHR individuals, demonstrating the clinical relevance of the 

corrected parameters. Overall, our analyses found lower FA and lower MK in the CHR 

individuals, which is consistent with previous dMRI findings that were reported across the 

psychosis spectrum. Following the MK-curve correction, we found that both FA and MK 

abnormalities are widespread and are overlapping.

The MK-curve correction, both averaged across the white matter skeleton and in voxel-wise 

analyses, increased sensitivity to identify group differences and also improved the clinical 

relevance, demonstrating stronger correlation with clinical characteristics. Although direct 

statistical comparisons did not demonstrate a significant change in the correlation 

coefficients themselves following the MK-curve correction which means that the 

interpretation of the underlying biology did not substantially change, the improvement in 

effect size and correlation coefficients did affect the inferred significance of some of the 

correlation tests. For example, the correlation of MK with functional decline was not 

significant prior to the MK-curve correction, and significant after correction. This serves as a 

demonstration for how potentially small improvement in the accuracy of measures could 

change the conclusion of studies, especially when the effect under study is subtle or small. 

Without the MK-correction, the measures include many implausible values, which do not 

fully reflect the actual microstructural properties of the white matter (as illustrated in 

Supplementary Experiment 3). This is particularly obvious for the MK measure that is 

highly affected by implausible values. Instead, the implausible parameters represent image 

artifacts that are not group specific, and thus diminish real group differences. The causes for 

implausible DKI parameter values include various image artifacts such as Gibbs ringing 

(Perrone et al., 2015; Veraart et al., 2016), noise and subject motion (Shaw and Jensen, 

2017; Tabesh et al., 2011). These factors typically have greater effect on kurtosis parameters 

than on DTI parameters (Perrone et al., 2015; Shaw and Jensen, 2017; Tabesh et al., 2011), 

corresponding to our observation that correcting implausible values mostly improved the 

effect size and correlation coefficients of the MK values. In addition we also show that the 

test retest reliability of the MK and FA measures are improved following the MK-curve 

correction. Taken together, our analyses demonstrate the utility and importance of the MK-

curve correction for statistical analyses of DKI-based parameters.

Beyond the technical implications, our analyses also add to the understanding of 

microstructural properties of white matter abnormalities in CHR. Our statistical comparisons 

overall suggested significantly lower FA and MK in the CHR individuals, with widespread 

changes in the white matter, including the corpus callosum (including the tapetum), the 

bilateral posterior thalamic radiation and the fornix, which are consistent with the locations 

implicated in previous dMRI studies of CHR individuals (Baumann et al., 2016; Carletti et 

al., 2012; Clemm von Hohenberg et al., 2014). Most of the previous dMRI studies in CHR 

apply DTI-based tissue modeling and report reduced FA (Bloemen et al., 2010; Carletti et 

al., 2012; Clemm von Hohenberg et al., 2014; Karlsgodt et al., 2009; Peters et al., 2009). 

However, DTI cannot identify the biological compartment responsible for the changes in FA, 

since FA is sensitive to multiple biological and geometrical effects that may not provide a 

good approximation of white matter integrity (Jones et al., 2013). More recent studies that 

applied compartmental models suggested that the changes in FA in CHR likely originate 
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from a cellular compartment, rather than from an extracellular compartment (Tang et al., 

2019; Wang et al., 2016). The widespread and overlapping non-gaussian (MK) and gaussian 

(FA) differences, that we found in the current study, further support the accumulating 

evidence of white matter abnormalities that precede psychosis. The uncorrected MK may 

suggest that there are specific brain areas with WM pathology that affects MK and is 

additional to a more widespread pathology that affects FA. However, the higher sensitivity to 

identify MK abnormalities revealed that the MK differences overlap with the FA differences, 

suggesting that different aspects of potentially the same underlying processes may affect 

both measures. These white matter abnormalities could be driven by changes in the 

microstructural organization of the cellular domain, such as alterations in cellular 

heterogeneity and/or alterations in cellular boundaries that cause restricted diffusion and that 

also affect anisotropy. These abnormalities are aligned with previous hypotheses suggesting 

that early pathologies, likely rooted in neurodevelopment, affect the composition of the 

white matter in CHR (Bloemen et al., 2010; Clemm von Hohenberg et al., 2014; Karlsgodt 

et al., 2009; Peters et al., 2010, 2009; Tang et al., 2019). Although, we note that our analyses 

here can not directly infer a neurodevelopmental source, also since much like other dMRI 

measures, MK is not specific to intracellular changes and may be affected by regions of 

complex fiber architecture and other partial volume effects. Alternatively, these cellular 

changes may reflect progressive changes; better differentiation between these etiological 

hypotheses would require future longitudinal and multi-modal or multi compartmental 

analyses.

Our findings should also be evaluated with respect to the unique cohort that was studied 

here, i.e., CHR that are not medicated, and that did not develop psychosis within one-year 

follow-up period. We chose to focus on non-medicated subjects and those that did not 

develop psychosis in order to maximize group homogeneity. Accordingly, subjects included 

in this cohort were all suffering from attenuated psychotic symptoms (as opposed to genetic 

risk), and the fact that both the (corrected) MK and FA measures were significantly 

correlated with decline in functioning and clinical symptoms further demonstrate the 

relevance of white matter microstructure. In the current study, we did not include subjects 

who eventually developed psychosis, and therefore we cannot comment on the utility of DKI 

measures as biomarkers of conversion. However, CHR subjects regardless of their outcome 

are considered as part of the same continuum (Addington et al., 2020; Carpenter, 2017; Lin 

et al., 2015), where events and environmental effects that occur following a baseline 

evaluation could be more determinant regarding clinical outcomes. The fact that the MK-

curve correction improved both sensitivity and the correlation with clinical measures 

suggests that future studies that will include a wider range of clinical outcomes would 

benefit from studying MK-curve corrected DKI parameters. In the current study, there was 

not a significant difference in the female/male proportions between HC and CHR (p = 0.09, 

see Table 1). However, since the groups were not perfectly matched, sex was included as a 

covariate in the statistical comparisons. The study of sex differences and interaction of 

diffusion meausres with sex in CHR is left for future work.

Since previous studies did not apply DKI in a CHR population, it is informative to compare 

our results with other DKI studies of psychosis. Such studies typically report that MK 

abnormalities are implicated in different locations than the locations of FA abnormalities 
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(Docx et al., 2017; McKenna et al., 2019; Narita et al., 2016; Zhu et al., 2015), suggesting 

that MK and FA may potentially identify two different pathologies related to psychosis. Our 

results showed large overlaps between MK and FA, which is not in agreement with the 

previous studies in psychosis. We note, however, that similarly to the previous studies that 

did not apply MK-Curve, the uncorrected MK had a much smaller overlap with FA in our 

study, which may suggest that not correcting implausible MK in the previous studies limited 

the spatial extent of the MK abnormalities.

To conclude, in this paper we demonstrated the utility of applying the MK-curve correction 

to improve effect sizes in group comparisons and to improve the clinical relevancy of DKI 

derived white matter parameters. While we demonstrated these effects in a specific 

population of CHR, the application of MK-curve could be useful to any statistical analysis 

of DKI derived parameters in other populations as well. DKI studies have already 

demonstrated interesting findings in characterization of neurological changes in aging 

(Falangola et al., 2008; Grinberg et al., 2017) and in rodent brain maturation (Cheung et al., 

2009), as well as in neurological disorders, such as brain tumors (Raab et al., 2010), 

Alzheimer’s disease (Benitez et al., 2014), and traumatic brain injury (Zhuo et al., 2012). 

Since the MK-Curve method eliminates the effect of implausible DKI parameters (Zhang et 

al., 2019a), it is expected that MK-curve would improve the utility of DKI measures in such 

populations as well.
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Fig. 1. 
Workflow of the different outcome measures examined in this study. DTI and DKI 

parameters are calculated from the diffusion weighted images (DWIs). The DKI parameters 

also go through an MK-curve correction which eliminates implausible values. All maps are 

then projected on the white matter skeleton using TBSS, followed by averaged-skelton and 

voxel-wise analyses per parameter to study group differences between CHR and HC.
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Fig. 2. 
(a) A graphic illustration of the MK-Curve for an example voxel (red arrow), from which 

two characteristic b0 values (zero-MK b0 and max-MK b0) are calculated for identification 

and correction of implausible MK values. Out-of-range b0 values are projected to the 

plausible range by slightly modifying the b0 signals. (b) DKI parameter maps, without any 

correction, typically have multiple implausible values that appear as “black holes” on MK 

maps and very bright voxels on FA maps. The MK-curve method is able to identify and 

correct these values.
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Fig. 3. 
Group comparison between HC (blue) and CHR (red) of dMRI measures averaged over the 

whole white matter skeleton. Whiskers represent standard deviations around the mean. 

Following MK-curve correction, the effect sizes for group differences between HC and CHR 

increased, and FAMKC became significantly lower in CHR compared with HC. MK-curve 

correction significantly decreased FA (compare FADKI with FAMKC ), and significantly 

increased MK (compare MKDKI with MKMKC ).
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Fig. 4. 
Correlation of functional decline with the average dMRI values over the whole white matter 

skeleton in CHR and HC. MK-curve correction increased the correlation coefficient in CHR. 

Although the correlation coefficients did not change significantly following MK-curve 

correction, MKMKC became significantly correlated with Functional Decline. There were no 

significant correlations between dMRI measures and functional decline in HC. * indicates p 

< 0.05, and * * indicates p < 0.01.
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Fig. 5. 
All parameters had significantly lower values in CHR compared with HC. The number of 

significant voxels was higher for the MK-curve corrected values (FAMKC and MKMKC ). 

While location of significant voxels highly overlapped across the FA measures, the MKMKC 

measure had many more voxels identified as lower in the CHR group than the MKDKI 

measure.
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Table 2

Percentage of voxels detected to have significant group differences in voxel-wise TFCE analysis.

FADTI FADKI FAMKC MKDKI MKMKC

HC > CHR 12.70% 23.37% 26.10% 2.92% 25.79%

HC <= CHR 0% 0% 0% 0% 0%
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