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A fundamental understanding of extracellular microenvironments of O2 and reactive
oxygen species (ROS) such as H2O2, ubiquitous in microbiology, demands high-
throughput methods of mimicking, controlling, and perturbing gradients of O2 and
H2O2 at microscopic scale with high spatiotemporal precision. However, there is a pau-
city of high-throughput strategies of microenvironment design, and it remains challeng-
ing to achieve O2 and H2O2 heterogeneities with microbiologically desirable
spatiotemporal resolutions. Here, we report the inverse design, based on machine learn-
ing (ML), of electrochemically generated microscopic O2 and H2O2 profiles relevant for
microbiology. Microwire arrays with suitably designed electrochemical catalysts enable
the independent control of O2 and H2O2 profiles with spatial resolution of ∼101 μm
and temporal resolution of ∼10° s. Neural networks aided by data augmentation
inversely design the experimental conditions needed for targeted O2 and H2O2 microen-
vironments while being two orders of magnitude faster than experimental explorations.
Interfacing ML-based inverse design with electrochemically controlled concentration
heterogeneity creates a viable fast-response platform toward better understanding the
extracellular space with desirable spatiotemporal control.

spatiotemporal heterogeneity j microwire array j O2 and H2O2 microenvironments j neural networks j
inverse design

Ubiquitous spatiotemporal heterogeneity of natural environments fosters the diverse and
fascinating biology that our world embraces, and motivates researchers to mimic natural
environments with high spatiotemporal resolution (1–5). Given their close relevance in
biochemical metabolisms, dioxygen (O2) and hydrogen peroxide (H2O2) as a surrogate
of reactive oxygen species (ROS) are two ubiquitous biologically relevant species in extra-
cellular medium (1, 6). Their extracellular spatial and temporal distributions, particularly
at the microscopic scale ranging from 1 μm to 100 μm (7–11), are critical for signal
transduction, protein expression, biochemical redox balance, and regulation for cellular
metabolism with extensive ecological, environmental, and biomedical implications (Fig.
1A) (1, 3, 8–13). A programmable creation of the spatiotemporal concentration profiles
of O2 and H2O2 offers the freedom to mimic, control, and perturb the microenviron-
ments of O2 and H2O2 and hence advance our understanding in microbiology.
Despite recent progress (14–18), there remain major technical challenges, particularly

in the achievable spatiotemporal resolution and high-throughput design of concentration
profiles to suit a plethora of scenarios in microbiology. Approaches based on microflui-
dics and hydrogels have been able to achieve concentration gradients of O2 and H2O2

through the provision of either O2/H2O2 source (14, 19–21), O2/H2O2 scavenging
agents (15, 22, 23), or a combination of both (24) across liquid-impermeable barriers
such as agar layers or polymeric thin films (25, 26). Yet such approaches, dependent on
passive mass transport and diffusion across more than 102 μm, are inherently incapable
of achieving spatial features of less than 100 μm and temporal resolution smaller than
∼101 s, the prerequisites to investigate microbiology at cluster or single-cell levels
(10–12). Moreover, the large variations of extracellular O2 and H2O2 gradients in differ-
ent microbial systems demand an inverse design strategy, which, with minimal expendi-
ture, quickly programs a desired concentration profile catering to a specific biological
scenario (2–5). The current lack of inverse design protocol impedes the adoption of
controllable extracellular heterogeneity to mimic and investigate microbial systems that
are of environmental, biomedical, and sustainability-related significance.
We envision that the integration of electrochemically generated concentration gra-

dients with inverse design based on machine learning (ML) will address the aforemen-
tioned challenges (Fig. 1B). Electrochemistry offers a venue for transducing electric
signals into microscopic concentration profiles within ∼100 μm to ∼102 μm away from
electrodes’ surface, following the specific electrode reaction kinetics and the mass trans-
port governing equations in the liquid phase (27). Proper designs of electrodes’
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microscopic spatial arrangement and electrochemical kinetics lead
to concentration gradients that are spatiotemporally programma-
ble by time-dependent electric signals of varying voltages (28).
Such benefits of electrochemically generated concentration gra-
dients lead us to employ electrochemistry as a tool to spatiotem-
porally control the concentration profiles in the extracellular
medium. In one example, we found that wire arrays electrochem-
ically active toward O2 reduction create anoxic microenvironment
about 20 μm away from the aerobic external bulk environments,
modulate the size and extent of O2 depletion in the anoxic
microenvironment by the wire array’s morphology and applied
electrochemical potential (Eappl), and hence enable O2-sensitive
rhizobial N2 fixation in ambient air powered by renewable elec-
tricity (29). Moreover, while not reported before as far as we
know, electrochemically generated concentration heterogeneity is
commensurate with ML-based inverse design (30, 31), thanks to
the mathematically well-defined electrochemical processes that
can be numerically simulated (32, 33). We recently reported neu-
ral networks, trained by numerically simulated data, that explore
the influence of electrode geometry on electrochemical N2 fixa-
tion and achieve optimized morphologies of wire array electrodes
untenable without such an ML-based strategy (34). An inverse
design for the electrochemically generated gradients will quickly
program desirable microenvironments of O2 and ROS with high
spatiotemporal resolutions, thanks to the well-reported electro-
chemical transformation related to O2 and H2O2 with high elec-
trochemical selectivity (35, 36).
In this work, we report an inverse design based on neural net-

works for independent electrochemical creation of O2 and ROS
microscopic gradients that are relevant, and mimic their extracel-
lular heterogeneities in microbial systems. We hypothesize that
careful design of electrocatalysis of O2 reduction reaction (ORR)
can either facilitate four-electron ORR on Pt electrocatalyst for a

controllable O2 spatiotemporal profile or promote two-electron
ORR on Au electrocatalyst for a programmable generation of
H2O2 gradient without significantly perturbing the O2 one,
thanks to their concentration differences in biological mediums
(∼10�1 μM to ∼101 μM for H2O2 and ∼101 μM to ∼102 μM
for O2) (2, 7–11). Electrochemically active microwire array elec-
trodes as exemplary model systems (Fig. 1C) are experimentally
shown to achieve tunable heterogeneities of O2 and H2O2 inde-
pendently, with spatial resolution of ∼101 μm and temporal reso-
lution of ∼10° s, and are suitable as a platform for independently
perturbing biologically relevant O2 and H2O2 profiles in micro-
bial systems. We further established and experimentally validated
two neural networks that inversely design the wire array electro-
des’ morphologies toward targeted microenvironments of O2 and
H2O2, respectively, which is at least one order of magnitude
faster than trial-and-error numerical simulation and two orders of
magnitude faster than experimental explorations. The demon-
strated inverse design of electrochemically generated controlled
gradients not only demonstrates a full electrochemical control of
concentration profiles in an electrode’s proximity but also estab-
lishes an approach of spatiotemporally mimicking and perturbing
extracellular space guided by artificial intelligence.

Results

Wire Array Electrodes for Electrochemical Generation of O2

and H2O2 Gradients. We applied a microwire electrode array
loaded with selective ORR electrocatalysts to establish customiz-
able O2 or H2O2 gradients (Fig. 1C). Si-based microwire arrays
in a square lattice were constructed through photolithography
and reactive ion etching in a five-step fabrication process (see
Materials and Methods). After thermal annealing to generate an
electrically insulating oxide layer, indium-doped tin oxide (ITO)

Fig. 1. AI-based inverse design of electrochemically generated O2 and H2O2 heterogeneities. (A) The ubiquitous spatiotemporal heterogeneities of O2 and
H2O2 in microbiology and the challenges posed in this research topic. (B) The combination of electrochemistry and ML-based inverse design offers a viable
approach to mimicking and controlling the heterogeneities of O2 and H2O2 in microbiology. O, oxidant; R, reductant; Eappl (t), the time-dependent electro-
chemical voltages applied on electrodes. (C) The design of the electrochemically active microwire array electrodes for the generation of O2 and H2O2

gradients; 4e� ORR & 2e� ORR, four-electron and two-electron oxygen reduction reaction into H2O and H2O2, respectively. (D and E) The 45°-tilting images
of SEM for the representative microwire arrays used for the training of the ML model (D) and the ones inversely designed for targeted O2 and H2O2

gradients (E); k = (P, D, L), the morphological vector that includes the P, D, and L of the synthesized wire arrays in units of micrometers. (Scale bars, 20 μm.)
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of 500 nm was deposited via sputtering near conformally onto
the wire array, followed by the deposition of about 7 nm of Pt
and Au for the generation of O2 and H2O2 gradients via selec-
tive ORR, respectively. Here the deposition of the electrically
conducted ITO layer ensures a uniform distribution of the
applied electrochemical potential (Eappl). We employed Pt as the
selective electrocatalysts of four-electron ORR (35, 37, 38) in
the generation of O2 gradients, and employed Au for two-
electron ORR (35, 39, 40) in the generation of H2O2 gradients.
The morphologies (Fig. 1 D and E and SI Appendix, Fig. S1)
and compositions (SI Appendix, Figs. S2 and S3) of the estab-
lished wire array were characterized and confirmed by scanning
electron microscopy (SEM) equipped with energy dispersive
X-ray spectroscopy (EDS), with a vector k = (P, D, L) present-
ing the wire arrays’ periodicity (P), diameter (D), and length (L)
in units of micrometers.
The prepared wire array electrodes coated with Pt and Au

exhibit desirable electrochemical properties for creating O2 and
H2O2 heterogeneities, respectively. In phosphate-buffered saline
(PBS) solution, linear scan voltammograms (20 mV/s) of the
deposited Pt electrocatalysts on the wire array (SI Appendix, Fig.
S4) exhibited an onset potential of ORR at around 0.8 V vs.
reversible hydrogen electrode (RHE). Linear scan voltammograms
of the deposited Au electrocatalysts showed a similar onset poten-
tial of ORR at around 0.6 V vs. RHE (SI Appendix, Fig. S5).
Experiments of rotating ring-disk electrode for the Au electrocata-
lysts (SI Appendix, Fig. S6) displayed a selectivity of H2O2 gener-
ation from O2 reduction up to 50% at 0.5 V vs. RHE. Thanks
to the reaction–diffusion model in the electrolyte and the electro-
chemical boundary conditions imposed by the microwire mor-
phology (29, 41, 42), the Pt- and Au-loaded wire array electrode
transduces electric voltages Eappl into the concentration gradients
of O2 and H2O2, respectively, at microscopic length scales.

Electrochemical Generation and Control of O2 Concentration
Profiles. The Pt-deposited microwire array electrode is capable of
spatiotemporally controlling the electrochemically generated O2

gradient. Thanks to its triplet–triplet quenching with 3O2 (43),
the phosphorescence emission of Tris(1,10-phenanthroline)ruthe-
nium(II), Ru(phen)3

2+, from the intersystem crossing after opti-
cal excitation between ∼350 nm and ∼500 nm (44), was utilized
to spatiotemporally probe the local concentration of O2 ([O2])
(Fig. 2A). The constructed microwire array electrode was housed
in a homemade fluidic device (SI Appendix, Fig. S7) under a con-
focal microscope with 470-nm optical excitation (see Materials
and Methods). Under a constant flow of aerated PBS solution
with 0.15 mM Ru(phen)3

2+ [[O2] = 0.246 mM saturated
with ambient air (45)], the phosphorescence emission intensity
(Ip, ∼610 nm to ∼650 nm), inversely proportional to the value
of [O2], was collected, and a calibration curve was established for
the quantification of local [O2] values (see Materials and Methods
and SI Appendix, Fig. S8). When k = (15, 4, 50) for the wire
array (Fig. 2 B and C), the three-dimensional Ip mapping was
recorded in a time sequence when the Pt-coated wire array was
initially under an open-circuit condition (t < 15 s), subject to an
electrochemical potential (Eappl = 0.5 V vs. RHE) from t = 15
and 45 s, and reverted back to the open-circuit condition when
t > 45 s (see Materials and Methods). The side views of the three-
dimensional Ip mapping were displayed when Eappl was initially
absent (t = 0 s), Eappl = 0.5 V vs. RHE (t = 16 s), and Eappl was
absent again at t = 48 s (“t = 0 sec,” “ t = 16 sec,” and “t = 48
sec,” respectively, in Fig. 2B). The intensity of Ip was noticeably
stronger within the wire array when Eappl = 0.5 V vs. RHE in
comparison to the Ip values under the open-circuit conditions

before and after the presence of Eappl. As Ip is inversely propor-
tional to the local values of [O2], this observation qualitatively
suggested a decrease of [O2], and hence an O2 gradient covering
the wire array region with microscopic resolution under a reduc-
tive electrochemical potential.

The averaged [O2] values ([O2]avg) at different distances
above the bottom of the wire array z = 5, 50, and 100 μm
were quantified and are displayed as a function of time t in Fig.
2C. While a negligible change of [O2]avg was recorded at
z = 100 μm (black in Fig. 2C), which was quite far away from
the wire array, at z = 5 and 50 μm (blue and red, respectively,
in Fig. 2C), significant changes of [O2]avg up to a complete
anoxic condition were observed, concurrent with the temporal
presence of Eappl. Such data suggest that the established O2 gra-
dient can be temporally switched by electrochemical potentials
faster than the temporal resolution of the confocal microscopy
under the tested conditions (∼2.7 s). The electrochemically
established O2 gradients for wire array k = (30, 3, 50) were
similarly quantified at Eappl = 0.4, 0.5, and 0.6 V vs. RHE as a
function of the distance above the bottom of the wire array (z)
(black, red, and blue, respectively, in Fig. 2D). The steepness of
the generated O2 gradient increased at lower Eappl values under
which the electrochemical activities of O2 consumption on Pt
were more pronounced thanks to the increased magnitude of
reductive overpotential (SI Appendix, Fig. S4). Such an Eappl-
dependent O2 gradient showed that electrochemical input was
capable of spatially controlling and yielding a desirable O2 gradi-
ent for potential biological applications given biologically rele-
vant [O2] values and the spatial resolutions detected here (2–4,
46, 47). The electrochemically driven O2 gradients were also
quantified at Eappl = 0.5 V vs. RHE for k = (15, 4, 50), (30, 3,
50), and (30, 3, 30) (black, red, and blue, respectively, in Fig.
2E). Noticeably different O2 gradients were observed, suggesting
the capability of the wire array morphology to yield a specific O2

gradient. Particularly, a strictly O2-free local environment in aer-
ated medium was established for k = (15, 4, 50). Such a custom-
izable O2 gradient will be of interests for the study of communal
interactions among microorganisms of varying degrees of O2

demands that are prevalent in nature (2).

Electrochemical Generation and Control of H2O2 Concentration
Profiles. We can similarly establish the gradients of H2O2, a
potent ROS relevant to biology (48), with the use of electro-
chemically active wire array electrodes and H2O2-yielding Au
ORR electrocatalysts. The local concentration of generated
H2O2 ([H2O2]) was quantified based on the fluorogenic rection
that converts nonfluorescent 10-acetyl-3,7-dihydroxyphenoxa-
zine (Amplex Red) to fluorophore resorufin (λex = 550 nm;
λem = ∼590 to ∼650 nm) catalyzed by horseradish peroxidase
(HRP) (49). Under the similar setup mentioned above (SI
Appendix, Fig. S7), the emission intensities of resorufin (If), and
hence the local [H2O2] value, were determined for an
Au-coated wire array electrode under confocal microscopy, assis-
ted by the corresponding calibration curves (SI Appendix, Figs.
S9–S12; see Materials and Methods). When k = (15, 4, 50) for
the wire array (Fig. 3 B and C), the three-dimensional If mapping
was similarly recorded in a time sequence when the Au-coated
wire array was initially under an open-circuit condition (t < 20 s),
subject to an electrochemical potential (Eappl = 0.5 V vs. RHE)
from t = 20 and 50 s, and reverted back to the open-circuit
condition when t > 50 s (see Materials and Methods). The side
views of the three-dimensional If mapping were also displayed
when Eappl was initially absent (t = 0 s), Eappl = 0.5 V vs. RHE
(t = 22 s), and Eappl was absent again at t = 52 s (“t = 0 sec,”
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“ t = 22 sec,” and “t = 52 sec,” respectively, in Fig. 3B). While
the absence of Eappl correlates with the absence of fluorescent
emission from resorufin (“t = 0 sec” and “t = 52 sec” in Fig.
3B), the presence of Eappl = 0.5 V vs. RHE (“t = 22 sec” in
Fig. 3B) yielded significant fluorescent emission near the wire array
that suggested electrochemical generation of H2O2. Meanwhile,
concurring monitoring of [O2] suggests that the local [O2] are not
significantly perturbed (SI Appendix, Fig. S13A), due to the rela-
tively lower current density of ORR on the Au-based electrocata-
lysts under similar Eappl values (SI Appendix, Figs. S4 and S5). This
suggests that the electrochemically controlled H2O2 gradient is
nearly independent of aeration of the liquid medium, thanks to
the catalytically selective generation of H2O2 and the low value of
observed [H2O2] (at most, up to 30 μM) relevant for biological
studies (8, 48, 50) in comparison to the air-saturated O2 solubility
in water (246 μM) (45).
The average change of [H2O2] values ([H2O2]avg) at differ-

ent distances above the bottom of the wire array z = 5, 50, and
90 μm were quantified and displayed as a function of time t in
Fig. 3C. At all z values, the time-dependent generation of
[H2O2]avg measured from If was well correlated with the pres-
ence of Eappl. A more gradual yet still relatively fast transition of
the measured If (∼10 s), and hence [H2O2]avg, was observed,
which was presumably due to the limited temporal resolution of
the fluorogenic reaction that was needed to track local [H2O2]
(51). Nonetheless, such data indicated the capability of tempo-
rally controlling the formation of H2O2 electrochemically, which
can be handy as a perturbation to study the microbial response

toward H2O2-based ROS (52). We also determined the electro-
chemically induced H2O2 gradient for wire array k = (15, 4, 50)
at Eappl = 0.45, 0.5, and 0.55 V vs. RHE (black, red, and blue,
respectively, in Fig. 3D). Significant different local accumulations
of H2O2 up to 30 μM for different Eappl values were observed
despite the 50-mV change of Eappl. Such an observation suggests
that the generated H2O2 gradient is highly sensitive and subse-
quently tunable by electrochemical driving forces. In addition,
the morphology of wire array electrodes impacts the generated
H2O2 gradient. The characterized H2O2 gradients for k = (15,
4, 50), (30, 3, 50), and (15, 4, 20) (black, red, and blue, respec-
tively, in Fig. 3E) were noticeably different at the same Eappl =
0.5 V vs. RHE. The achievable range of H2O2 gradients at the
microscopic level is commensurate with biologically observed
ROS microenvironments (8), heralding the utility of the elec-
trochemically generated H2O2 gradients in microbial studies.

Establishing Neural Networks for an Inverse Design Strategy.
We seek to establish computational models that can inversely pre-
dict the values of Eappl and k = (P, D, L) of the Pt- and Au-loaded
wire array electrodes for targeted corresponding O2 and H2O2 gra-
dients ([O2](z) and [H2O2](z)), respectively. Such an inverse design
strategy for O2 and H2O2 microenvironments is proposed to be
much more time efficient in comparison with the classical trial-and-
error approach (Fig. 4A), and will find plentiful applications given
the high variabilities of biological applications in both spatial and
temporal domains (2, 3, 8). Critical inside such computational
models are neural networks, trained with sufficient amounts of
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Fig. 2. Spatiotemporal control of O2 gradient on Pt-loaded microwire array. (A) Design of Pt-loaded microwire array and the fundamentals of spatiotempo-
ral mapping local O2 concentrations ([O2]) based on the intensity of phosphorescence emission (Ip) from Tris(1,10-phenanthroline)ruthenium(II)
(Ru(phen)3

2+); 3O2 and 1O2, the triplet and singlet dioxygen molecules, respectively; S0 and S1, the ground state and the first excited singlet state, respec-
tively; T1, the first excited triplet state; ISC, intersystem crossing; λex and λem, the wavelengths of optical excitation and emission, respectively. (B and C)
Cross-sectional Ip profiles on wire array k = (15, 4, 50) at t = 0, 16, and 48 s (B) and the subsequent temporal evolution of averaged local O2 concentrations
([O2]avg) at different distances z from the base of the wire array (C). The values of Eappl are reported against RHE. The microwires are depicted in dashed lines
in B. (Scale bars, 15 μm.) (D) Plots of [O2]avg versus z under different values of Eappl for wire array k = (30, 3, 50). (E) Plots of [O2]avg versus z in wire arrays of
different k when Eappl = 0.5 V. Error bars represent SDs across multiple separate measurements in the device (n ≥ 3).
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data, which correlate fEappl, k = (P, D, L)g with the [O2](z)
and [H2O2](z) distributions. In such a regard, we employed
numerical simulations based on finite element methods (FEM)
(32) to augment the available data (Fig. 4B). FEM-based electro-
chemical simulations have been widely used in the understand-
ing and design of electrochemical applications, with satisfactory
accuracies (32, 33, 53–55). We established electrochemical
microkinetic models that include the mass transport of redox
species and the electrochemical reduction of O2 for the Pt and
Au electrocatalysts (see Materials and Methods). FEM-based
numerical simulations were conducted with COMSOL Multi-
physics (version 5.3) for the O2 and H2O2 gradients near the Pt-
and Au-loaded wire array electrodes, respectively. Experimental
[O2]avg and [H2O2]avg values were compared with simulation
results at different heights above the base of the wire array (z), as
shown in the exemplary case when consistent results of O2 and
H2O2 gradients were observed for k = (30, 3, 50) and Eappl =
0.5 V vs. RHE (SI Appendix, Fig. S13 B and C). The mean-
squared errors (MSEs) between FEM-based simulations and
experimental results are 9.81 × 10�4 mM2 and 4.84 × 10�6

mM2 for O2 and H2O2 gradients, respectively (see Materials and
Methods). Such a consistency of results between experimental
characterization and FEM-based simulations motivates us to use
the augmented data from FEM-based simulations to establish
neural networks to inversely predict O2 and H2O2 gradients.
The established neuron networks display good accuracies for the

[O2](z) and [H2O2](z) distributions near the wire array electrodes
loaded with Pt and Au electrocatalysts. We previously constructed

multilayer perception neuron networks (MLPNNs) that expand the
explorable parameter space of wire array electrode morphologies in
electrocatalytic reduction of N2 (34). Here, we constructed
MLPNNs that predict [O2](z) and [H2O2](z) based on inputs of
fEappl, k = (P, D, L)g, which were trained based on 10,000 data
points augmented from the FEM-based simulations (see Materials
and Methods). As the model-training process proceeds with an
increasing number of epochs, monotonic decreases of the average
MSE (AMSE) between the training and predicted data points for
the datasets of both validation and training (red and black dots,
respectively) were observed in Fig. 4 C and D for the O2 and
H2O2 gradients near Pt- and Au-loaded wire array electrodes,
respectively. The fact that the values of AMSEs against the valida-
tion datasets were similar to the ones from the training datasets in
Fig. 4 C and D indicates that there was no overfitting in the ML
process (56). In the end, near-unity coefficients of determination
(R2 ! 1) were observed for both MLPNNs (MLPNN 1 that pre-
dicts O2 gradient and MLPNN 2 that predicts H2O2 gradient)
(Fig. 4 E and F, respectively). The values of AMSEs from the
MLPNNs reach 1.74 × 10�4 mM2 and 1.81 × 10�6 mM2 for the
prediction of [O2](z) and [H2O2](z) based on inputs of fEappl, k =
(P, D, L)g, respectively. Such small values of AMSEs suggest good
accuracy of the developed neural networks for the inverse design of
desirable O2 and H2O2 microenvironments.

Exemplary Inverse Design of O2 and H2O2 Microenvironments
Near Wire Array Electrodes. Exemplary inverse design processes
with direct biological relevance were experimentally tested, with

A Controlling H2O2 heterogeneity

N

OHO OH

O

Amplex Red

N

OHO O

Resorufin

H2O2
HRP

H2O

λex = 550 nm
λem = 590~650 nm

[H2O2] ~ If

B

C

t (sec)
0 20 30 40 5010 60 0 10020 40 60 80

z (μm)
0 10020 40 60 80

z (μm)

0

30

20

10

D 40

0

30

20

10

[H
2O

2] av
g (

μM
)

0

30

20

10

EE
appl

 = 0.55 V
E
appl

 = 0.5 V
E
appl

 = 0.45 Vz = 5 μm

z = 90 μm

k = (15, 4, 20)
k = (30, 3, 50)
k = (15, 4, 50)

t = 0 sec t = 22 sec t = 52 sec

z

k = (15, 4, 50), Eappl = 
0.5 V when 20 sec < t < 50 sec
open circuit when t < 20 sec & t > 50 sec

Low I
f

Low [H2O2]

High I
f

High [H2O2]

z = 5 μm

z = 50 μm

z = 50 μm

k = (15, 4, 50)
[H

2O
2] av

g (
μM

)

[H
2O

2] av
g (

μM
)

k = (15, 4, 50)

Si
SiO2

ITO

Au
(2e− ORR)e–

O2

H2O2

z

E
appl

 = 0.5 V

Fig. 3. Spatiotemporal control of H2O2 gradient on Au-loaded microwire array. (A) Design of Au-loaded microwire array and the fundamentals of spatiotem-
poral mapping local H2O2 concentrations ([H2O2]) based on the intensity of fluorescence emission (If) in the fluorogenic reaction from Amplex Red to resoru-
fin catalyzed by HRP. (B and C) Cross-sectional If profiles on wire array k = (15, 4, 50) at t = 0, 22, and 52 s (B) and the subsequent temporal evolution of the
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good predictabilities for the establishment of desirable O2 and
H2O2 microenvironments. In microbiology and microbial ecol-
ogy, it is desirable to establish well-defined microenvironments
whose sizes are ∼20 μm to ∼100 μm in order to mimic natural
heterogenous distribution of biologically relevant extracellular
species such as nutrients and other microbial resources (57).
Within such length scales, establishing microoxic niche (i.e.,
[O2] ≈ 100 μM) in the midst of an oxic external environment
(Fig. 5A), prevalent in aquatic, terrestrial, and host-associated
environments, is challenging yet desirable for understanding the
physiology and ecology of microaerophiles and advancing our
understanding of microbiomes (2); extracellular H2O2 whose
concentration can achieve 15 μM (58) (Fig. 5B) is also of particu-
lar interest in order to study microbial sensing, communal signal-
ing, metabolic regulation, and genetic expression toward ROS
(48, 59). In such biological contexts, we aim to inversely design
one O2 gradient (Δ[O2] ≈ 100 μM and Δz ≈ 40 μm) and one
H2O2 gradient (Δ[H2O2] ≈ 15 μM and Δz ≈ 100 μm) based
on our developed MLPNNs (Fig. 5 A and B). We utilized the
established MLPNNs that predict [O2](z) and [H2O2](z) under
different inputs of fEappl, k = (P, D, L)g, and we scored the sim-
ilarity percentages between the MLPNN-predicted O2/H2O2 gra-
dients and the desirable ones. Fig. 5 C and D exemplarily display
the sliced mappings of similarity scores for the aforementioned

O2 and H2O2 gradients on Pt- and Au-loaded wire arrays, respec-
tively, as a function of k = (P, D, L) at Eappl = 0.5 V vs. RHE.
Such multidimensional mapping, composed of 10,000 data
points each in Fig. 5 C and D, showcases the parameter spaces
that are predicted to yield the desirable O2 and H2O2 microen-
vironments within a certain relative uncertainty threshold (red
region) (see Materials and Methods). It is intriguing to note that
there existed multiple different wire array morphologies to yield
the same desirable O2 and H2O2 gradients, which may not be
straightforward, intuitively. We estimated that the determination
of O2/H2O2 gradients for one parameter coordinate in the space
of fEappl, k = (P, D, L)g will take ∼4 s for the MLPNN-based
method, ∼90 s from FEM-based simulations, and ∼20 mins for
the confocal characterization alone at one specific Eappl for a single
wire array morphology, notwithstanding any time spent in any pre-
ceding protocols (see Materials and Methods). Therefore, a compre-
hensive exploration of the parameter space fEappl, k = (P, D, L)g
with more than 104 trials as shown above is only possible with the
use of MLPNN-based inverse design, because only the MLPNN is
capable of screening 10,000 parameter combinations within a rea-
sonable amount of time in practice (∼12 h) in comparison to the
ones based on FEM (∼250 h, i.e., ∼10 d) and experimental char-
acterization (at least 3,000 work-hours without considering any
practical concerns) (Fig. 4A).

Fig. 4. The development of inverse design for electrochemically generated O2 and H2O2 gradients. (A) Comparison between the conventional protocol and
our inverse design approach for the development of suitable experimental conditions, represented as fEappl, kg in order to achieve desirable spatiotemporal
distributions of O2 and H2O2 concentrations ([O2](r, t) and [H2O2](r, t), respectively). MLPNN 1 & 2, multiple-layer perceptron neural networks for O2 and
H2O2 gradients, respectively. (B) Protocols of data augmentation for the establishment of MLPNN; i0,4e,Pt/Au and i0,2e,Au, the exchange current densities of
four-electron and two-electron ORRs on Pt and/or Au electrocatalysts, respectively. (C and D) The AMSE in the training (blue) and validation (pink) datasets at
different epochs for the gradients of O2 (MLPNN 1 in C) and H2O2 (MLPNN 2 in D). (E and F) Comparisons between the MLPNN-predicted values ([O2]predict
and [H2O2]predict) and training values ([O2]train and [H2O2]train) for the local average concentrations of O2 (E) and H2O2 (F), respectively. R2, coefficient of
determination.
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We also conducted a spot check for the predicted O2 and H2O2

microenvironments by experimental validations. A Pt-based wire
array electrode with k = (46, 6, 20) was picked from Fig. 5C as a
desirable geometry, experimentally prepared (Fig. 1E), and experi-
mentally tested for the established O2 gradient at Eappl = 0.5 V vs.
RHE. Satisfactory consistency with MSE = 5.63 × 10�4 mM2 was
achieved between the experimental and targeted values of [O2](z)
(dots and line, respectively, in Fig. 5E). Similarly, an Au-based wire
array electrode with k = (17, 3, 30) was picked from Fig. 5D,
experimentally prepared (Fig. 1E), and experimentally tested for the
H2O2 gradient at Eappl = 0.45 V vs. RHE. We also observed satis-
factory consistency with MSE = 7.22 × 10�6 mM2 between the
experimental and targeted values of [H2O2](z) (dots and line,
respectively, in Fig. 5F). While we were unable to experimentally
exhaust all of the predicted parameter space for the desirable micro-
environments of O2 and H2O2, our experimental validations offer
convincing evidence for the validity of the developed MLPNN-
based inverse design for future microbiology-related research.

Discussion

In summary, we presented a ML-based inverse design strategy for
O2 and H2O2 concentration profiles with the use of electrochemical
catalysis of ORR. We demonstrated a proof-of-concept closed-loop
protocol for inversely designing O2 and H2O2 gradients with prop-
erly designed microwire electrodes in PBS solution, the go-to cultur-
ing medium in microbiology. By achieving concentration differences

and spatial resolutions that are relevant to microbial microenviron-
ments, the demonstrated O2 and H2O2 gradients are applicable for
studies in microbiology. While the reported research focuses on one
specific form of electrochemical boundary conditions, namely,
microwire array, the reported inverse design procedures are generally
applicable for any electrochemical systems that can be parameterized
and analyzed by neural networks. As mass transport and concentra-
tion profiles in an electrode’s proximity are important components
in electrochemistry, this work demonstrates the power of ML-based
inverse design in electrochemistry. Moreover, our results will lead to
a general platform that inversely designs suitable electrochemical sys-
tems for any targeted environments of O2 and H2O2 in microbiol-
ogy. Future research will focus on the platform’s application of
in vivo microbial communities and fundamental insights that can be
fetched thanks to our system’s unique capabilities. Moreover, since
electrochemistry is capable of modulating any redox active species
such as extracellular Fe(II)/(III) species (60), as well as other extracel-
lular metabolites sensitive to oxidative stress, such as pyocyanin
(61–63), our inverse design approach based on electrochemistry is
capable of controlling the other microenvironments beyond O2 and
ROS and is generally applicable in the study of ubiquitous microen-
vironments in extracellular medium.

Materials and Methods

Chemical and Materials. ITO-coated glass slides (06499-AB) were purchased
from SPI Supplies(∼30 Ω/� to ∼60 Ω/�, 22 × 40 mm). Silver (Ag) paste
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(16040-30) was purchased from Ted Pella. Si wafers (p-type, boron-doped,
<100>, ∼1Ω�cm�1 to ∼10Ω�cm�1) were purchased from University Wafer,
Inc. Platinum (Pt) wires (CHI 115) and glassy carbon electrodes (CHI 104, diame-
ter = 3 mm) were purchased from CH Instruments. Unless specially mentioned,
all chemicals and materials were purchased from Sigma-Aldrich or VWR.

Experimental Establishment of Testing Platform. Modified from a previ-
ously published protocol (29), the experimental testing platform as shown in SI
Appendix, Fig. S7 consists of a fluidic cell with a three-electrode system, in order
to electrochemically generate desirable gradients of O2 and H2O2. As the work-
ing electrode in the setup, microwire array electrodes were fabricated similarly
as previously described (29). The microwire arrays were fabricated by photoli-
thography with the use of the deep reactive-ion etching process (DRIE). After
treatment in hexamethyldisilazane vapor for 10 min, precleaned Si wafers were
coated with photoresist (MicroChemicals, AZ5214E; 3000 rpm spin coating) by
soft baking (100 °C for 75 s), exposed in the hard contact mode by a contact
aligner (Carl Suss MA6), hard baked (120 °C, 5 min), and developed to generate
the periodic patterns for the array (mixture of MicroChemicals AZ400K water,
1:4 volume ratio). After creation by DRIE (Unaxis Versaline FDSE III), microwire
arrays of desirable lengths were annealed under ambient air at 1,050 °C for
9.5 h to yield the insulating oxide layer, coated by 500-nm ITO through reactive
sputtering (Denton Discovery 550 sputtering System), and finally deposited with
a 7-nm layer of Pt or Au by an Anatech Hummer 6.2 sputtering system. The
structure of the wire array was examined by SEM (ZEISS Supra 40VP SEM), and
the element distribution was examined by SEM (JEOL JSM-6700F) equipped
with EDS (Ametek). Patterned ITO-coated glass slides were used as the counter
electrodes in the established testing platform, after the selective removal of ITO
by 6 M HCl in undesirable areas on the glass slides. Ag paint as the pseudorefer-
ence electrode was applied on select areas of the ITO-coated slides so as to cover
a 5 mm × 5 mm square with a layer of silver, serving as the reference electrode,
while Pt was deposited on other ITO-coated areas for the creation of a counter
electrode in the setup. An optically transparent fluidic cell of 250-μm height
was constructed by assembling the microwire array electrodes with the prefab-
ricated ITO glass slides, while a Gamry Interface 1010B potentiostat was used
to enforce the electrochemical driving force. The setup was mounted on an
inverted laser confocal microscope (Leica SP8 SMD) with sufficient working dis-
tance (680 μm), and a syringe pump was used to maintain a fixed liquid flow
rate. As we particularly ensure the accuracy of applied electrochemical poten-
tials, cyclic voltammetry in a standard ZoBell’s solution (3.3 mM K3Fe(CN)6,
3.3 mM K4Fe(CN)6, and 0.1 M KCl, 0.43 V vs. standard hydrogen electrode)
was employed to calibrate the electrochemical potential of an Ag-based pseu-
doreference electrode as shown in SI Appendix, Fig. S14 (64, 65). The
Ag-based pseudoreference electrode was calibrated as 0.75 V vs. RHE in PBS
solution at pH = 7.4.

Electrochemical Characterization of the Deposited Electrocatalysts.

While the deposited Pt electrocatalysts have been characterized in our prior
report (29), experiments were conducted to analyze the electrocatalytic activities
of ORR for the coated Au electrocatalysts. An experiment of a rotating ring-disk
electrode (Pine Research, Inc., AFE6R1PT) was conducted in PBS solution using a
setup with a Pt-wire counter electrode, Ag/AgCl (1M KCl) reference electrode and
a modulated speed rotator (Pine Research, Inc., AFMSRCE). While a Pt ring elec-
trode was kept at 1.9 V vs. RHE, linear scan voltammograms (20 mV/s) were
recorded between 0.1 and 1.1 V vs. RHE with different rotating speeds
(100, 225, 400, 625 , 900, 1,225, 1,600 pm, and 2,025 rpm) in electrolytes sat-
urated with O2 and N2, respectively. The measurements in N2-saturated solution
were used as the signal background.

Quantification and Calibration of O2 Concentration Profiles. Aerated
PBS solution consisting of 150 μM Ru(phen)3Cl2 solution was prepared in the
dark and fed into the assembled testing platform at a flow rate of 0.8 mL/min.
The phosphorescence intensity mapping under confocal microscopy was mea-
sured in a 1-min time sequence. During the 1-min confocal microscopy measure-
ment, programmed 30-s electrolysis was performed with a particular potential
on the working electrode from t = 15 s to t = 45 s. The excitation wavelength
was set as 470 nm, and we gathered emission intensity from 600 nm to 640
nm as phosphorescence emission intensity Ip. We defined the phosphorescence
emission intensity with no potential applied as I0. Normalized phosphorescence

emission intensity Ipn was defined as Ipn ¼ Ip=I0. The phosphorescence emis-
sion intensity distribution was further translated into the concentration profiles,
based on the linear relationship between O2 concentration and the inverse of Ipn
(noted as Ipn

�1) that was experimentally determined. Ru(phen)3Cl2–containing
PBS solutions of different O2 concentrations, ranging from [O2] = 25 μM to 375
μM, were prepared by bubbling a N2/O2 mixture of tunable ratio through the
solution, and were pumped into the assembled fluidic device (0.8 mL/min) for
calibration.

Quantification and Calibration of H2O2 Concentration Profiles. Aerated
PBS solution consisting of 0.2 U/mL HRP and 120 μM Amplex Red (1× working
solution) was prepared in the dark and fed into the assembled testing platform
at a flow rate of 0.8 mL/min. The fluorescent intensity mapping under confocal
microscopy was conducted in a 1-min time sequence. During the 1-min confocal
microscopy measurement, programmed 30-s electrolysis with a particular poten-
tial on the working electrode from t = 20 s to t = 50 s. The excitation wave-
length was set as 550 nm, and we gathered emission intensity from 590 nm to
650 nm as fluorescence emission intensity If. The fluorescence emission intensity
distribution was further translated into the concentration profiles, based on the
corresponding calibration curves. In the experiments of calibrating H2O2 concen-
trations, darkly prepared PBS solution consisting of 0.4 U/mL HRP and 240 μM
Amplex Red was combined with PBS solutions of different H2O2 concentrations,
ranging from 5 μM to 60 μM, and was pumped into the assembled devices for
the measurement of confocal microscopy. We found that the H2O2-induced fluo-
rescence intensity If is also dependent on the specific morphologies of the wire
array (k) and the distance away from the bottom of the wire array (z)
(SI Appendix, Fig. S15), owing to the scattering and, possibly, optical absorption
of the wire array electrodes (66–68). Therefore, individual calibration curves were
determined for every z location in wire arrays with all possible k values
(SI Appendix, Figs. S9–S12). Specific If correction was made to compensate the
difference between the calibration experiment and gradient optical detection
due to practical restrictions (SI Appendix, Supplementary Text and Fig. S16).

FEM-Based Numerical Simulations for O2 Gradient and H2O2

Gradients. FEM simulation of both O2 gradient and H2O2 gradient was
achieved in “electroanalysis” module in COMSOL Multiphysics (Version 5.3).
Geometry description. The shape of wire was represented by a column with
diameter D and length L. We located each wire in the center of a cuboid of
P × P × 200 μm, and the difference between the cuboid and column was geo-
metrically defined for the electrolyte. For each point in the electrolyte, if its dis-
tance from the top of the wire not smaller than the diffusion distance, dD, we
considered that it belonged to the bulk electrolyte in which [O2] = 246 μM,
independent of time. The boundary surface was defined as the area of which
the distance to the top of the wire is dD. On the boundary surface, the [O2] was
the same as that in the bulk. A periodic boundary condition was applied to
describe the wire array. The value of dD was set as 20 μm for O2 gradient simu-
lation on Pt-loaded wire array electrodes (29). For O2 gradient and H2O2 gradi-
ent simulation on Au-loaded wire array electrodes, dD was measured as 50 μm
(SI Appendix, Fig. S17).
Transport properties. The diffusion of oxygen and hydrogen peroxide was sim-
ulated based on the following Eqs. 1 and 2. DO2 and DH2O2 are the diffusion
coefficients of oxygen and hydrogen peroxide in aqueous solution, which
were 2.2 × 10�9 m2/s and 1.5 × 10�9 m2/s respectively.

∂½O2�
∂t

¼ DO2∇
2½O2� [1]

∂½H2O2�
∂t

¼ DH2O2∇
2½H2O2�: [2]

Electroanalysis. The potential window of Eappl is from 0.6 V vs. RHE to 0.2 V
vs. RHE.

On the surface of Pt-loaded wire array electrodes, 4e-ORR took place within
the potential window.

O2 þ 4Hþ þ 4e� ! 2H2O:

On the electrode surface of Au-loaded wire array electrodes, two-electron and
four-electron ORR reactions (2e-ORR and 4e-ORR, respectively) took place at the
same time as potential-dependent selectivity.
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2e� ORR: O2 þ 2Hþ þ 2e� ! H2O2
4e� ORR: O2 þ 4Hþ þ 4e� ! 2H2O

:

On the surface of Pt-loaded wire array electrodes, the supply–consumption equi-
librium was simulated as Eqs. 3 and 4 in the formalism of concentration-
dependent Tafel kinetics (27),

iloc ¼ i4e ¼ �i0,4e,Pt
½O2�
CO2

exp
�αcFηPtn4e

RT

� �
[3]

JO2 ¼
iloc
4F

: [4]

Here i4e denotes the current density of 4e-ORR, i0,4e,Pt denotes the exchange cur-
rent density of 4e-ORR, iloc denotes the local current density of four-electron
reduction of O2 on the electrode surface, JO2 denotes the local flux of O2
consumption from electrolyte, and ηPt is the overpotential that is defined as the
difference between Eappl and the standard redox potential of O2/H2O, E0O2=H2O
(1.23 V vs. RHE). The αc equals 0.5 as the transfer coefficient, F denotes the Far-
aday constant, R is the gas constant, T is the temperature, and n4e is the
electron transfer number before the rate-determining step of 4e-ORR, of which
the value is one (SI Appendix, Fig. S4). The local oxygen concentration is
denoted as [O2]. CO2 is the oxygen concentration in air-saturated water at T. The
above equation follows the textbook equations that account for the mass trans-
port and chemical stoichiometry at electrode interfaces (27). On Pt-loaded wire
array electrodes, i0,4e,Pt is found to be 3.0 × 10�6 A/m2 (SI Appendix, Fig. S4).

On the electrode surface of Au-loaded wire array electrodes, the supply–
consumption equilibrium was simulated as Eqs. 5–7.

iloc ¼ i4e þ i2e ¼ �i0,4e,Au
½O2�
CO2

exp
�αcFηAun4e

RT

� �

�i0,2e,Au
½O2�
CO2

exp
�αcFηAun2e

RT

� � [5]

JO2 ¼
i4e
4F

þ i2e
2F

[6]

JH2O2 ¼ � i2e
2F

: [7]

While most of the definitions of variables in the case of Au-loaded wire array
electrodes with Eqs. 5–7 are the same as the Pt-loaded case in Eqs. 3 and 4, we
noted that iloc instead stands for the local current density of both two-electron
and four-electron reduction of O2 on the electrode surface, i2e, the current den-
sity of 2e-ORR, and n2e is electron transfer number before the rate-determining
step of 2e-ORR, of which the value is 0.7 (SI Appendix, Fig. S5). On Au-loaded
wire array electrodes, the catalysis selectivity of Au toward 4e-ORR and 2e-ORR is
dictated by the exchange current densities i0,4e,Au and i0,2e,Au, respectively. The
i0,4e,Au is 2.0 × 10�8 A/m2, and i0,2e,Au is 8.0 × 10�7 A/m2, based on literature
and measurement (SI Appendix, Fig. S5) (69, 70).

Based on a comparison with experimental gradients, the AMSE of O2 gradi-
ent simulation and H2O2 gradient simulation on Pt-loaded wire array electrodes
and Au-loaded wire array electrodes is 9.81 × 10�4 mM2 and 4.84 × 10�6

mM2, respectively. The range of Eappl was set within the ORR potential windows,
from 0.6 V vs. RHE to 0.2 V vs. RHE. Besides, a three-dimensional block was
defined in the space of (P, D, L) as the range of morphology, from P = 1 μm to
100 μm, L = 1 μm to 150 μm, and D = 0.2 μm to 10 μm. By using Simulink
in Matlab, we were able to generate random k value within the morphology space
and calculate the corresponding gradient curves. To fulfill the ML functions, gradi-
ent profiles under 10,000 experimental conditions were included in the dataset
for each developed multiple-layer perceptron neural network, respectively.

Model Selection and Training. The implementation of all ML code was done
on a MacBook Pro with a 1.4 GHz quad-core Intel Core i5 processor and 8GB of
RAM, with code specifically deployed using the JupyterLab Notebook, a Python-
based programming platform widely used in data science and ML (34). In this
paper, we selected MLPNNs as the ML model for inverse design. We use FEM-
simulated gradients to develop the MLPNNs. Gradient data were imported from
FEM results in the form of .csv files and combined into a library of data. Prior to
the model development, a random 20% of the data were split from the whole
dataset for later model validation. The rest of the data were split into training

data and validation data, of which the percentages were 65% and 15%, respec-
tively. Multiple cycles of model training, each cycle termed as one epoch, were
conducted in order to develop the targeted MLPNNs. In each epoch, MLPNNs
will be trained from the training data, followed by a validation process in the val-
idation dataset used to provide estimates of final model accuracy after each
round of training. The total ML process will include 10 epochs of forward and
backward propagations. The accuracies of the developed MLPNNs model as a
function of epoch numbers are plotted in Fig. 4 C and D.

As described in the section above, the training dataset was a collection of con-
centration gradients under different Eappl and k values. We used AMSE and SD,
defined in more detail below, from Eqs. 8–11 to quantify the ability of ML mod-
els to correctly reveal the connection between gradient curves and the two
impacting factors, Eappl and k. In model selection, we selected multiple-layer per-
ceptron neural networks for gradient prediction due to the low AMSE and SD
value gradient prediction (SI Appendix, Fig. S18).

For both O2 and H2O2 gradients, the predicted curve included 20 local con-
centration datum along the wire array from Z = 5 μm to 100 μm every 5 μm.
Z is defined as the distance from the bottom of the wire array. In O2 gradient
prediction, MSE and SD are defined as the following equations:

MSEO ¼ 1
20

∑
20

n¼1
ð½O2�NNs � ½O2�realÞ2 [8]

SDO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

n¼1
ðMSEOn � AMSEoÞ2

s
: [9]

In Eqs. 8 and 9, ½O2�NNs stands for the predicted oxygen concentration from
MLPNNs predicting the O2 gradient on the Pt-loaded wire array. ½O2�real is
the oxygen concentration in the simulation dataset. MSEO is defined based
on the average square of concentration difference over the whole gradient
profile. AMSEo is the average MSE over the whole dataset. We calculated the
SD over data under a wide range of experimental conditions to evaluate the
overall precision of predictions from MLPNNs predicting the O2 gradient on
the Pt-loaded wire array.

MSE and SD in the H2O2 gradient were defined in a similar pattern. In Eqs.
10 and 11, ½H2O2�NNs stands for the predicted hydrogen peroxide concentration
from MLPNNs predicting the H2O2 gradient on the Au-loaded wire array.
½H2O2�real is the hydrogen peroxide concentration in the simulation dataset.
MSEH is defined based on the average square of concentration difference over
the whole gradient profile. AMSEH is the average MSE over the whole dataset.

MSEH ¼ 1
20

∑
20

n¼1
ð½H2O2�NNs � ½H2O2�realÞ2 [10]

SDH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

n¼1
ðMSEHn � AMSEHÞ2

s
: [11]

Morphology Prediction for Desired O2 Gradient and H2O2 Gradient. In
morphology prediction for the desired O2 gradient, we assigned Eappl = 0.5 V
vs. RHE. Initially, MLPNNs predicting the O2 gradient on the Pt-loaded wire
array randomly selected one morphology in the morphology space and calcu-
lated the corresponding O2 gradient. The similarity score between the calcu-
lated O2 gradient and target O2 gradient, SO, was quantified by Eq. 12. In the
prediction process, the neural networks would find out the top 10,000 mor-
phologies with the highest SO values. In Eq. 12, ½O2�T is the local oxygen con-
centration in the target O2 gradient, and ½O2�NNs is the calculated local oxygen
concentration. The similarity score, SO, is the average relative error among a
collection of different z values, CO. CO ¼ ½5, 10, 15, 25, 35, 45, 70�, where
the unit is micrometers.

SO ¼ 1� 100% ×
1
7
∑
z∈CO

j½O2�NNs � ½O2�Tj
½O2�T

: [12]

In morphology prediction for the desired H2O2 gradient, we assigned Eappl =
0.45 V vs. RHE. Initially, MLPNNs predicting the H2O2 gradient on the Au-loaded
wire array randomly selected one morphology in the morphology space and cal-
culated the corresponding H2O2 gradient. The similarity score between the calcu-
lated H2O2 gradient and target H2O2 gradient, SH, was quantified by Eq. 13. In
the prediction process, the neural networks would find out the top 10,000
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morphologies with the highest SH values. In Eq. 13, ½H2O2�T is the local hydro-
gen peroxide concentration in the target H2O2 gradient, and ½H2O2�NNs is the
calculated local hydrogen peroxide concentration. The similarity score, SH, is the
average relative error among a collection of different z values, CH.
CH ¼ ½5, 20, 30, 40, 55, 70, 80�, where the unit is micrometers.

SH ¼ 1� 100% ×
1
7
∑
z∈CH

j½H2O2�NNs � ½H2O2�Tj
½H2O2�T

: [13]

In the sliced mapping of the H2O2 similarity score, the similarity score at L = 5
μm was the average of from L = 0 μm to 10 μm. The similarity score at L = 20
μm was the average of from L = 10 μm to 30 μm. The similarity score at L =
40 μm was the average of from L = 30 μm to 50 μm. The similarity score at
L = 60 μm was the average of from L = 50 μm to 70 μm. The similarity score
at L = 80 μm was the average of from L = 70 μm to 90 μm. The similarity score
at L = 95 μm was the average of from L = 90 μm to 100 μm.

Data Availability. All study data, except the code for the neural networks, are
included in the article and/or SI Appendix. The code for the neural networks is
available on B.B.H.’s GitHub account http://github.com/bbhoar/O2_H2O2_
ML_PNAS.
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