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Abstract Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-

studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In

principle, microbes can divide tasks to reap the benefits of specialization, as in human economies.

However, the benefits and stability of an economy of microbial specialists are far from obvious.

Here, we physically model the population dynamics of microbes that compete for steadily supplied

resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass

production under the constraint of a limited enzyme budget. We find that population dynamics

generally leads to the coexistence of different metabolic types. We establish that these microbial

consortia act as cartels, whereby population dynamics pins down resource concentrations at values

for which no other strategy can invade. Finally, we propose that at steady supply, cartels of

competing strategies automatically yield maximum biomass, thereby achieving a collective

optimum.

DOI: 10.7554/eLife.22644.001

Introduction
Microbial diversity is ubiquitous. Every gram of soil or liter of seawater contains hundreds or more

microbial species (Daniel, 2005). In humans, the gut microbiome comprises at least 500 microbial

species (Lozupone et al., 2012). These diverse microbial communities are widely credited with divi-

sion of labor, collectively reaping the benefits of specialization by dividing tasks among different

organisms. In a few well-studied cases, microbial communities have been observed to coordinate

their metabolic fluxes. For instance, depleting the pool of external resources available to a microbial

community can lead to the establishment of mutualism via the exchange of metabolic by-products

between species (Hillesland and Stahl, 2010). Shotgun sequencing has begun to unveil the bio-

chemical networks at work in complex environmentally sampled communities (Tyson et al., 2004;

Gill et al., 2006), and reconstructing the genomes of member species suggests that microbial com-

munities exploit metabolic interdependencies to adapt to their environment (Wrighton et al., 2014;

Hug et al., 2015). However, the lack of knowledge about gene functions and gene distributions in

individual cells hinders the interpretation of this data (Cordero and Polz, 2014).

There are also serious conceptual challenges to understanding diversity in metabolically compet-

ing microbial communities. For instance, the emergence of diversity in ‘consumer-resource’ models

is limited by the competitive exclusion principle: at stationary state, the number of coexisting species

cannot exceed the number of available resources (Hardin, 1960; Levin and Equilibria, 1970). This

principle severely limits diversity in models that consider a few resources as in the case of the ‘para-

dox of the plankton’ (Petersen, 1975). Another essential challenge is understanding the persistence

of microbial diversity in the face of potentially more fit metabolic variants; these reinforce the chal-

lenge posed by the competitive exclusion principle: in consumer-resource models, a fitter strain
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colonizes a niche at the expense of those already present by depleting the pool of essential resour-

ces, generally leading to a collapse in diversity (Shoresh et al., 2008).

The above conceptual challenges call for a physically-based model for competing metabolic strat-

egies. However, classical consumer-resource models generally prescribe the rate of biomass produc-

tion via phenomenological functions of the abundances of essential resources without explicit

conservation of fluxes (Liebig, 1840; Monod, 1950). Here, we introduce a flux-conserving physical

model for microbial biomass production to address two intertwined questions: Can metabolic com-

petition leads to microbial division of labor? And what efficiencies can microbes achieve via such a

division of labor?

Considering that biomass (primarily protein [Simon and Azam, 1989; Feijó Delgado et al.,

2013]) results from the assembly of building blocks (amino acids or amino acid precursors), we

explicitly model the fluxes associated with the metabolic processing of these building blocks, includ-

ing enzyme-mediated import and conversion (Almaas et al., 2004). Different metabolic strategies —

or cell types — are defined by specific distributions of these enzymes, which collectively satisfy a

budget constraint. The population dynamics of different cell types is governed by competition for

external building blocks that are steadily supplied in a spatially homogeneous environment. We con-

sider that the system is constantly subjected to colonization attempts by other cell types, possibly

leading to invasion of the already present microbial population. For fixed external concentrations of

building blocks we therefore seek uninvadable strategies, i.e. optimal cell types that achieve the fast-

est possible growth rate. Metabolic division of labor stably emerges if competitive population

dynamics leads to the coexistence of jointly optimal cell types with distinct strategies, which we refer

to as a microbial ‘consortium’.

In human economies, consortia that avoid competition by controlling prices are called ‘cartels’. At

fixed building-block supply, we find that metabolic competition between microbes similarly leads to

the emergence of a kind of cartel that controls resource availability via population dynamics.

eLife digest Microbes are found in virtually every environment on Earth. Like other organisms,

microbes grow by using enzymes to convert nutrients into proteins, DNA and other molecules that

make up their cells. Together, these chemical transformations define the “metabolism” of a

microbe.

In any given environment, there is almost always a diverse variety of microbes living together.

Different microbes in these communities will use different combinations of enzymes to exploit the

available nutrients, and members of well-studied communities have been found to work together to

make the most of the nutrient source. This is remarkable because one might expect competition

between microbes to select for a single “best” microbe, rather than diverse communities.

The economic concept of “division of labor” suggests that if microbes divide chemical tasks

between each other, they will use the available resources more efficiently. The concept provides a

possible explanation for metabolic diversity amongst microbes, yet it remains to be shown whether

microbial communities actually benefit from a division of labor.

Here, Taillefumier et al. used mathematical models to reveal that even in a uniform environment,

metabolic competition generally leads to the steady coexistence of distinct microbes, collectively

called a “consortium”. In a consortium, distinct microbes organize themselves to create a

community-level metabolism that best exploits the nutrients present. The models showed that while

growing, a consortium depletes the available pool of nutrients to such low levels that only members

of the consortium can survive. The findings suggest that the benefit of metabolic diversity stems

from the ability of a consortium to automatically deplete nutrients to levels at which no other

microbes can invade.

Taillefumier et al. propose that consortia that arise naturally under conditions where there is a

steady supply of nutrients produce the maximum mass of microbes. Future experiments that analyze

the impact of fluctuating nutrient supply may help us to understand the benefit of metabolic

diversity in real-world microbial communities.

DOI: 10.7554/eLife.22644.002

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 2 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644.002
http://dx.doi.org/10.7554/eLife.22644


Specifically, cartels avoid competition by pinning down resource concentrations at values for which

no other strategy can outcompete the cartel’s members. We employ optimization principles from

transport-network theory to elucidate the structure of these cartels, relating the metabolic strategies

of their constituent cell types to the hierarchy of external building-block availabilities. This analysis

illustrates how division of labor among distinct metabolic types can be predicted from optimization

principles. Finally, we propose that cartels also yield maximum biomass, constituting a microbial

example of Adam Smith’s ‘invisible hand’ leading to collective optimal usage of resources. In this

regard, microbial cartels improve on human cartels insofar as price-fixing by the latter generally

leads to non-optimal use of resources.

Model
In this section, we present a model for the population dynamics of cell types metabolically compet-

ing for external resources (see Figure 1). Importantly, biomass production is governed by a physical

model that respects flux conservation.

Figure 1. Model for metabolically competing cell types. (A) The rate of biomass production gðc1; . . . ; cpÞ is a function of the internal building-block

concentrations. (B) Biologically relevant growth-rate functions gðc1; . . . ; cpÞ are increasing with respect to ci with diminishing returns. (C) Different cell

types, i.e. metabolic strategies, are defined as specific distributions of enzymes for import ai and conversion kji, subject to a finite budget. (D) Cell

types (e.g. s1 and s2) compete for external building blocks that are steadily and homogeneously supplied in volume V .

DOI: 10.7554/eLife.22644.003
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Resource-limited growth model
As cellular growth is primarily due to protein biosynthesis, we consider biomass production to result

from the incorporation of building blocks (amino acids or amino acid precursors) into biologically

functional units (proteins). Specifically, we assume that biomass production requires p types of build-

ing blocks and we denote by bi, 1 � i � p, the concentration of block i in cellular biomass. To main-

tain the stoichiometry of building blocks in biomass, microbes that grow at rate g incorporate block i

at rate gbi. As the incorporation of building blocks is limited by the internal availability of free build-

ing blocks, we model the growth rate as a function g c1; . . . ; cp
� �

, where ci is the internal concentra-

tion of block i. To obtain a plausible functional form for g c1; . . . ; cp
� �

, we consider the rate of

incorporation of a building block to be proportional to its concentration. We also consider that

building blocks are sequentially incorporated into biomass (e.g. via protein elongation). Then the

time to produce a unit of biomass (e.g. a protein) is the sum of the incorporation times for each type

of block i, which we take to be proportional to bi=ci, the ratio of the building-block concentration in

cellular biomass to the internal free building-block concentration. The growth rate, which is propor-

tional to the inverse of this time, therefore has the form

gðc1; . . . ;cpÞ ¼ g
b1

c1
þ . . .þ bp

cp

� ��1
; (1)

where g is a rate constant. For simplicity, we consider that all microbes use the same molecular

machinery and building-block stoichiometry to produce biomass. Thus, we consider that the rate

function gðc1; . . . ;cpÞ is universal, independent of the metabolic strategy used by a microbe to accu-

mulate building blocks. As defined by Equation (1), gðc1; . . . ;cpÞ is an example of a growth-rate func-

tion satisfying the biologically relevant requirements that more internal resources yield faster

growth, i.e. gðc1; . . . ;cpÞ is an increasing function of its arguments, and that the relatively scarcest

resources are the most growth-rate limiting, i.e. gðc1; . . . ;cpÞ has the property of diminishing returns.

Importantly, our analysis and conclusions hold for all growth-rate functions that satisfy these natural

requirements.

In order to accumulate block i internally, a microbe can import block i from the external medium

or produce it internally via conversion of another building block j. Thus, to produce biomass,

microbes can substitute resources for one another. We allow all possible imports and conversions.

The quantitative ability of a microbe to import and convert building blocks constitutes its ‘metabolic

strategy’, and corresponds to the cell’s expression of the enzymes that mediate building-block

import and conversion. For simplicity, we assume that metabolic fluxes are linear in both enzyme

and substrate concentrations. This assumption corresponds to enzymes operating far from satura-

tion, which is justified during resource-limited growth. Specifically, denoting the external concentra-

tion of block i by cexti , the enzyme-mediated fluxes associated with import and conversion of block i

have the form aic
ext
i and kjici, respectively, where ai and kji are enzymatic activities, which are pro-

portional to the number of enzymes dedicated to each metabolic process. In addition to these active

fluxes, we include passive transport of building blocks across cell membranes via facilitated diffusion

(Pi et al., 1991; Wehrmann et al., 1995). For simplicity, we model passive transport via a single

leakage rate b, yielding a net influx bðcexti � ciÞ for building block i. As cells can only devote a certain

fraction of their resources to the production of enzymes, we require the enzymatic activities of each

microbe to satisfy a budget constraint,
X

i

aiþ
X

j;i

kji � E ; (2)

where E denotes the total enzyme budget. The metabolic strategy of a cell type s is specified by a

set of enzyme activities fai;s;kij;sg that satisfy the budget constraint Equation (2).

Note that for given external building-block concentrations, a cell type is ‘optimal’, i.e. achieves

the fastest growth rate, if no other cell type can achieve the same growth rate with a lower enzyme

budget. If such a cell type existed, allocating the saved enzyme budget to importing more building

blocks would yield a new cell type with higher internal building-block concentrations, and thereby

faster growth.
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Our model considers a very simplified coarse-grained description of metabolic pathways. In real-

ity, the details of biochemistry play an important role in determining metabolic efficiency. While our

modeling framework can be easily generalized to realistic metabolic networks, capturing the com-

plexity of real metabolic pathways is not the purpose of the present analysis, which aims at general

principles. Indeed, because our model is anchored in flux conservation, we expect our results con-

cerning the emergence and benefit of division of labor in microbial communities to hold indepen-

dent of specific pathway biochemistry.

Conservation of building blocks
We consider various cell types s growing in a homogeneous environment of volume V . We denote

the dimensionless population count of cell type s by ns and the total population count by

N ¼Ps ns. In the volume V , we consider that the p building blocks are steadily supplied at rates si

(concentration/time) and can be lost, e.g. via degradation and/or diffusion out of the volume, at a

rate �. Each cell type processes building blocks according to its own metabolic strategy. Conserva-

tion of internal building block i for cell type s prescribes the dynamics of the internal concentration

ci;s (see Appendix 1),

_ci;s ¼ ðaiþbÞcexti �bci;s�
X

j 6¼i
kjici;sþ

X

j 6¼i
kijcj;s� gbi ; (3)

where the only nonlinearity is due to the growth function g. Populations of the various cell types

exchange building blocks with the external resource pool via import and passive transport, and also

via biomass release upon cell death (Simpson et al., 2007; Schütze et al., 2013). Conservation of

extracellular building block i prescribes the dynamics of the external concentration cexti (see Appendix

2),

_cexti ¼ si��cexti �
v

V �Nv

X

s

nsfi;s

 !

; (4)

with cell-type-specific fluxes

fi;s ¼ ðai;sþbÞcexti �bci;s� f dbi ; (5)

where d is the rate of cell death (assumed constant) and f is the fraction of biomass released upon

cell death. Per-cell fluxes fi;s contribute to changing the external concentration cexti via a geometric

factor v=ðV �NvÞ, the ratio of the average individual cellular volume v to the total extracellular vol-

ume V �Nv. As intuition suggests, the smaller the number of cells of a particular type, the less that

cell type impacts the shared external concentration via metabolic exchanges.

Competitive population dynamics
The inverse of the cellular death rate d, i.e. the lifetime of a cell, is much larger than the timescales

associated with metabolic processes such as building-block-diffusion, conversion, and passive/active

transport. This separation of timescales justifies a steady-state approximation for the fast-variables:

_ci;s ¼ 0 and _cexti ¼ 0. With this approximation, Equations (3) and (4) become flux-balance equations

for building blocks. Solving Equation (3) with _ci;s ¼ 0 yields the internal concentrations

ci;sðcext1
; . . . ; cextp Þ as functions of the external concentrations. In turn, solving Equation (4) with _ci;s ¼ 0

and using the functions ci;sðcext1
; . . . ; cextp Þ yields the external concentrations cexti ðfnsgÞ, as well as the

growth rates of cell types gsðfnsgÞ, as functions of the populations of cell types. Hence, the popula-

tion dynamics of the cell types is described by a system of ordinary differential equations

_ns

ns
¼ gs

�

fnsg
�

� d ; (6)

which are coupled via the external concentrations. Note that the population dynamics is driven and

dissipative: building blocks are constantly both supplied to and lost from the external media, while

cell death leads to loss of building blocks because only a fraction of biomass is recycled ðf<1Þ. In par-

ticular, we expect the dissipative character of the dynamics to drive the microbial population toward
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a stationary state, with at most p coexisting cell types due to the competitive exclusion principle

(Hardin, 1960; Levin and Equilibria, 1970).

The population dynamics prescribed above can be simulated by standard numerical methods. If

the number of distinct strategies initially introduced exceeds the number of resources, then over

time some cell types will become ‘extinct’, i.e. ns<1. We exploit this property to simulate competi-

tion between distinct cell types: whenever a cell type s is driven to extinction, we replace it with

another randomly sampled strategy s0 with ns0 ¼ 1. If the already present cell types are not optimal,

newly introduced cell types s0 may increase in population at the expense of those present. In any

case, we continue to introduce new cell types over the time course of the dynamics. The closer to

optimality the already present cell types are, the smaller the probability that a new random strategy

will successfully colonize. Eventually, at long times, the surviving population will consist entirely of

optimal cell types and will no longer change. It is this final population that concerns us; we only simu-

late metabolic competition to gain insight into the final optimized population, which is independent

of the specific dynamics of the simulation.

In the following, we characterize the enzyme distributions fai; kijg of the cell types that are pres-

ent in the final population established via competitive population dynamics for equal stoichiometry

(bi ¼ 1). This characterization requires us to define the ‘metabolic class’ of each cell type in terms of

its set of utilized enzymes. In particular, two strategies s and s0 belong to the same metabolic class

M if and only if ai ¼ 0, a0i ¼ 0 and kij ¼ 0, k0ij ¼ 0, where ai, a
0
i, kij, and k0ij are enzyme activities.

We will show that metabolic competition leads to the emergence of consortia of cell types belong-

ing to specific metabolic classes. In our analysis, the term ‘consortium’ designates a community of

distinct cell types that cannot be invaded, or equivalently, that cannot be outgrown by any other cell

types at specific fixed supply rates. In particular, consortia are composed of co-optimal cell types.

The term ‘cartels’ refer to special communities that, in addition of being consortia, can also pin

down building-block concentrations at fixed values for a range of different supply rates. Such cartels

comprise at least as many distinct cell types as there are resources.

Results

Numerical results
In this section, we demonstrate the possibility of stable coexistence at steady supply rates by simu-

lating competitive population dynamics subject to continual invasion by new metabolic variants. We

consider that coexistence is stable when a population of distinct cell types can resist invasion by any

other metabolic variants. In our simulations, cell types have distinct metabolic strategies defined by

randomly chosen enzyme distributions fai, kjig satisfying the budget constraint Equation (2), with

the universal growth-rate function Equation (1) and uniform biomass stoichiometry (bi ¼ 1).

First, we show that competitive population dynamics with the continual introduction of new cell

types leads to a stationary state with fixed building-block availability and with fixed populations of

distinct cell types. Second, we show that these final cell types achieve optimal growth given the fixed

building-block supply rates. Third, we show that final, optimal populations generally consist of con-

sortia of distinct cell types and that a consortium of identical cell types can emerge for different

building-block supplies.

Competitive dynamics leads to stationary states
We simulated the population dynamics Equation (6) subjected to continual invasion by metabolic

variants and found that metabolic competition leads to stationary states. In our simulations, the vol-

ume of the colony V is chosen so that the carrying capacity is »V=v ¼ 10
5 cells and the dynamics is

simulated for a duration of 105=d, i.e. on the order of 105 generations. Figure 2 shows three inde-

pendent simulations for p ¼ 3 and supply rates s1 ¼ 11; s2 ¼ 9; s3 ¼ 0, starting with 24 different initial

metabolic strategies for each simulation. While 3 types may coexist for extended periods according

to the competitive exclusion principle, the 21 other types have populations ns that decay exponen-

tially until extinction, i.e. until ns � 0:9999. Upon extinction, a new type is introduced at ns ¼ 1.

To begin each simulation, the 24 randomly chosen cell types s are introduced at low population

(ns ¼ 1) in the volume V where the building blocks are abundantly supplied (cexti ’ si=�). Cellular

growth quickly depletes the external concentrations of building blocks, until the overall population
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Figure 2. Simulated competitive dynamics. In all panels, the left schematic indicates supply rates, the central plot shows an example of competitive

population dynamics, and the right diagram depicts the strategies and their internal building-block per-cell fluxes. The initial strategies and the newly

introduced strategies were randomly generated with a different seed in A, B, and C, but for the same supply rates s1 ¼ 11; s2 ¼ 9; s3 ¼ 0. In each

simulation, the external building-block concentrations quickly converge toward the same specific values, with cext
1
¼ cext

2
>cext

3
. Also in each case, the

simulation converges to the coexistence of the same three strategies. The dominant type with a population ~ 75;000 has a pure-importer strategy, the

two other types convert one of the most abundant blocks (either block 1 or block 2) into block 3 and the strategy converting the most abundantly

provided block has the larger population ( ~ 16;500 vs. ~ 8;500). New cell types only manage to invade the already present bacterial population if they

are ‘fitter’ versions of these three specific metabolic types. In particular, a ‘fitter’ strategy invades the overall population by replacing the already

present strategy of the same metabolic type (curve crossings), with little effect on the other metabolic types or on the external building-block

concentrations.

DOI: 10.7554/eLife.22644.004
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of cell types nears carrying capacity. At this point, the external building-block concentrations plum-

met to low values for which the growth rate of each cell type approximates the fixed death rate, i.e.

gs » d. This is when metabolic competition begins in earnest. From this point on, in each simulation,

the external building-block concentrations tend to the same stationary values, with the two exter-

nally provided building blocks 1 and 2 stabilizing at numerically identical values and building block 3

stabilizing at a lower concentration.

As external building-block concentrations approach their stationary values, virtually all newly

introduced metabolic variants quickly become extinct because randomly chosen cell types are

unable to compete with those already present. As a result, new cell types are continually introduced,

for a total of more than 10
9 different cell types during each simulation. Among these introduced

metabolic variants, only a cell type that improves on an already present (nearly optimal) one can

invade, and displace the existing cell type. In particular, for each displacement event, we find that

the invading and invaded cell types employ almost identical distributions of enzymes and always

belong to the same metabolic class. Moreover, during displacement events, the external building-

block concentrations are only marginally perturbed, while the overall population of the invaded and

invading strategy (e.g. the sum of crossing curves) is nearly constant. This behavior indicates conver-

gence toward a stationary state with fixed building-block availability and with fixed populations of

cell types. We confirmed the generality of this convergent behavior with additional simulations over

a broad range of different supply rates.

Cell types achieve optimal growth at stationary state
Our numerical simulations indicate that competitive population dynamics subjected to continual

invasion leads to the emergence of stationary states. To show that these stationary states emerge

independently of how metabolic variants are introduced, we developed an iterative optimization

algorithm that yields stationary states without relying on random sampling of cell types. Specifically,

the algorithm iterates two optimization steps: First, given distinct cell types s, the algorithm imple-

ments a Newton-Raphson scheme to compute the steady-state external building-block concentra-

tions cexti and the steady-state populations ns within a relative precision 10
�11. Second, given

external building-block concentrations cexti , the algorithm adapts a gradient-based constrained-opti-

mization algorithm (Wächter and Biegler, 2006) to compute the strategies of the cell types s0 which

locally optimize cellular growth rate. Provided the growth rate of a locally optimal cell type s0

exceeds the previous steady-state growth rate by a relative difference gs0=d� 1>� ¼ 10
�9, we initiate

a new iteration with a set of starting cell types made of the union of the surviving cell types of the

previous iteration fsjns � 1g and the newly optimized cell type fs0jgs0>dg with ns0 ¼ 1. The algo-

rithm halts when no cell type s0 can grow at a rate that exceeds the steady-state growth rate d by

more than a relative difference �, thereby yielding theoretically optimal cell types with high accuracy.

By design of the algorithm, the cell types present in the stationary state achieve the optimal growth

rate allowed by the external building-block availabilities.

Crucially, for fixed supply rates, this optimization algorithm yields steady-state cell types that are

virtually identical to the final cell types obtained via simulations. Moreover, additional simulations

show that when present among the initial types, optimal steady-state cell types resist invasion by the

more than 10
9 random metabolic variants introduced over the course of 105 generations. To demon-

strate that simulations effectively converge toward optimal stationary states, we define the ‘relative

fitness’ of a cell type s as the ratio gsðcext1
; . . . ; cextp Þ=maxs0 gs0ðcext1

; . . . ; cextp Þ, where s0 denotes a theo-

retically optimal cell type. Figure 3 shows the evolution of cell-type relative fitnesses during simula-

tions of competitive dynamics. When metabolic competition begins in earnest, all cell types have

relative fitnesses smaller than one, indicating that optimal cell types would grow faster at identical

external building-block concentrations. Ensuing displacement events by fitter cell types lead to an

overall increase in the relative fitness of the surviving cell types. As a result, the relative fitness of all

surviving cell types approaches one, demonstrating the convergence toward a stationary population

of optimal cell types. Consequently, the final steady-state cell types resist invasion because no meta-

bolic variant can outgrow them.
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Distinct optimal cell types emerge as consortia
At steady supply, our numerical simulations together with numerical optimization reveal that com-

petitive population dynamics leads to the stable emergence of optimal cell types. The metabolic

strategies of these optimal cell types exhibit network structures that are directly related to external
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Figure 3. Relative fitness during competitive dynamics. In all panels, the top plot shows the same competitive

population dynamics on different time scales for s1 ¼ 11; s2 ¼ 9; s3 ¼ 0, while the bottom plot shows the

corresponding normalized fitness. The normalized fitness of a cell-type s is defined as the ratio gs=max gs0 , where

s0 are the theoretical steady-state cell types computed via iterative optimization. (A) Before the overall population

reaches capacity, cell types can have a fitness larger than one as the external building-block concentrations are

substantially higher than their steady-state values. Once competition begins in earnest, all cell types present have

a fitness smaller than one, indicating that an optimal cell type would outcompete any present cell for identical

external building-block concentrations. (B) On longer timescales, competition between increasingly fit cell types

leads to the transient coexistence of 3 cell types with the same metabolic strategies as in Figure 2. Note that

invasions by fitter cell types yield displacement events that increase the fitness of the surviving cell types. (C) On

even longer timescales, the fitnesses of surviving cell types converge to one, showing that the final strategies

obtained via competitive population dynamics achieve the optimal growth rate.
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Figure 4. Simulated competitive dynamics. In all panels, the left schematic indicates supply rates, the central plot shows an example of competitive

population dynamics, and the right diagram depicts the final strategies and their internal building-block per-cell fluxes. (A) If the building blocks are

supplied with equal stoichiometry s1 ¼ s2 ¼ s3, metabolic strategies that carry out conversions are wasteful and a single pure-importer cell type prevails.

(B) If two building blocks are supplied with equal stoichiometry, e.g. s1 ¼ s2>0 and s3 ¼ 0, three cell types can coexist: two ‘symmetric’ types using

supplied blocks as a precursor for block 3, which accumulates externally due to passive leakage and release upon cell death, and, if cext
3

is large

enough, a third pure-importer type. (C) For large enough imbalance in the supply of building blocks 1 and 2, e.g. s1>s2>s3 ¼ 0, three distinct cell types

can coexist: a pure-converter type imports block 1 and converts blocks 2 and 3; if cext
2

is large enough, a mixed type emerges, importing blocks 1 and 2,

and converting 1 to 3; and, if cext
3

is large enough, a pure-importer type. (D) If only one building block is supplied, e.g. s1>s2 ¼ s3 ¼ 0, two strategies

coexists: a pure-converter type releases blocks 2 and 3, which can lead to the emergence of a pure-importer type. The external building-block

concentrations fluctuate, albeit only slightly later in the simulations, due to the invasion by and extinction of metabolic variants.
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building-block availability. In fact, the building-block supply determines whether many distinct cell

types can be jointly optimal, i.e. whether a consortium emerges. For instance, as shown in

Figure 4A, if the building blocks are supplied with equal stoichiometry (s1 ¼ s2 ¼ s3), the one survivor

is a pure-importer strategy that imports each building block. Because this pure-importer strategy is

the single most efficient cell type when building blocks are equally abundant, no other cell type can

coexist with it and so no consortium emerges. However, when building blocks are supplied with a

different stoichiometry, (e.g. with s3 ¼ 0 in Figure 4B–D), the pure-importer strategy coexists with

other cell types that produce the non-supplied building block by conversion, thereby forming con-

sortia of optimal cell types. The stability and optimality of these consortia is a collective property:

No pure-importer strategy can survive without the converting cell types, and without a pure-

importer strategy, there is a wasteful external accumulation of converted blocks.

Can the same metabolic consortia emerge for different building block supplies? To answer this

question, observe in Figure 2 that for supply rates s1 ¼ 11; s2 ¼ 9; s3 ¼ 0, competition leads to a sta-

tionary state where the concentrations of both supplied building blocks are equal. Correspondingly,

the optimal cell types have symmetric strategies with respect to the usage of block 1 and block 2.

However, the cell type that converts the most abundantly supplied block is more numerous than its

symmetric counterpart, allowing for a symmetric steady state despite asymmetrical supply. For sym-

metric supply s1 ¼ s2 ¼ 10; s3 ¼ 0, Figure 4B shows that competition yields the same steady-state

external concentrations, but with an equal population of each symmetric converter type. Thus,

exactly the same consortium of cell types can emerge for different supply conditions, with different

population counts but reaching the same external building-block concentrations. By definition, such

consortia are cartels. Figure 4 shows the different consortia that can emerge for representative sup-

ply conditions, highlighting which ones are cartels. Both numerical simulations and optimizations

confirm that microbial cartels emerge for a large range of supply conditions.

Analytical results
In this section, we mathematically elucidate the emergence of microbial consortia at steady state

and characterize the benefit of the division of labor in these consortia. Our analysis exploits the dem-

onstrated convergence of competitive population dynamics toward a stationary state, which allows

us to analytically derive the metabolic strategies of optimal cell types. The benefit of division of labor

among these optimal cell types follows geometrical considerations in the space of stationary states.

First, we exploit arguments from transport-network theory to systematically identify the metabolic

classes of optimal cell types at steady state. Second, we elucidate the structure of microbial consor-

tia by establishing which metabolic classes can be jointly optimal within a consortium. Third, we char-

acterize the benefit of division of labor showing that consortia can act as cartels, whereby

population dynamics pins down resource concentrations at values for which no other strategy can

invade.

Consortia cell types belong to optimal metabolic classes
A metabolic class is defined as the set of strategies that utilize the same enzymes, i.e. for which a

particular subset of enzymes satisfies ai>0 and kji>0. In total, there are p import enzymes and pðp�
1Þ interconversion enzymes, for a total of p2 enzymes. Thus, in principle, there are at most 2p

2

meta-

bolic classes according to whether or not each type of enzyme is present (ai>0 or kij>0). However,

our simulations suggest that at steady state, the cell types that form consortia and achieve optimal

growth belong to very specific metabolic classes: these ‘optimal’ classes utilize only a few, non-

redundant metabolic processes (that is, many ai and kji are zero).

Can we specify the network structures of optimal metabolic classes using rigorous optimization

principles? Exploiting the linearity of metabolic fluxes, we adapt arguments from transport-network

theory (Bohn et al., 2007) to achieve this goal for an arbitrary number of building blocks (see Fig-

ure 5 and Appendix 3). Our approach consists in gradually reducing the number of candidate meta-

bolic classes by showing that some classes M cannot contain an optimal strategy. Specifically, we

consider a representative strategy s inM with enzyme budget E ¼
P

i ai þ
P

ij kij at arbitrary exter-

nal concentrations cexti . For the same external concentrations cexti , we show that one can always find a

strategy s0 from another metabolic classM0 that achieves the same internal concentrations using a

smaller enzyme budget E0 ¼Pi a
0
i þ
P

ij k
0
ij<E. As the existence of a more ‘economical’ strategy s0
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Figure 5. Optimal metabolic classes. A metabolic class is defined by the set of enzymes for which ai>0 and kji>0. If a metabolic class is optimal, i.e.

achieves the fastest growth rate, no other metabolic class can achieve the same growth rate with a lower enzyme budget. (A) Optimal metabolic classes

cannot have topological 2-cycles. If cell type s (left) is such that the net conversion flux from block i to block j is positive, i.e. kjici>kijcj, a cell type s0

(right) that only differs from s by k0ij ¼ 0 and k0ji ¼ kji � kijcj=ci achieves the same growth rate as s but more economically. More generally, optimal

metabolic classes have no topological cycles, i.e. the graphs of their metabolic networks have a tree structure. (B) Optimal metabolic classes use a

single precursor for each converted building block. If cell type s (left) accumulates block j by import and by conversion from block i, there is always a

more economical strategy s0 (right) for which either aj ¼ 0 or kji ¼ 0. (C) Optimal metabolic classes convert building blocks in the minimum number of

steps. If cell type s (left) accumulates block k via a 2-step conversion from block i, there is always a more economical strategy s0 (right) that converts

block i directly into block k. (D) Optimal metabolic classes can only have a single tree of direct conversion(s).
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contradicts the optimality of metabolic classM, we can restrict our consideration to metabolic clas-

ses other thanM.

Using the above approach, we show that optimal metabolic networks process building blocks via

non-overlapping trees of conversions (Figure 5A), each tree originating from an imported building

block (Figure 5B), and each converted building block being obtained via the minimum number of

conversions (Figure 5C). Intuitively, these properties ensure the minimization of waste (loss of build-

ing blocks via passive transport) during metabolic processing. Moreover, we show that optimal net-

works use a single building-block resource as precursor for conversions, i.e. there is at most one tree

of conversions (Figure 5D). Thus, at steady state, requiring that a metabolic class is optimal, i.e. con-

tains the fastest growing cell type, strongly constrains the graph of its metabolic network. These

constrained graphs can be fully characterized and enumerated for p building blocks: there are p dis-

tinct graphs, each utilizing p distinct enzymes, which defines a total of 1þ pð2p�1 � 1Þ metabolic clas-

ses after accounting for building-block permutations.

Structure of metabolic classes in consortia
To find the composition of consortia, we must identify the enzyme distributions fai, kjig within a

metabolic class that yield the fastest growth for fixed external building-block concentrations. Know-

ing analytically the optimal enzyme distributions in each metabolic class allows us to characterize the

structure of consortia at steady state via the maximum growth rate as a function of external build-

ing-block concentrations,

Gðcext
1
; . . . ;cextp Þ ¼max

s
gsðcext1

; . . . ;cextp Þ : (7)

At competitive stationary state, the maximum growth rate must equal the death rate d by Equa-

tion (6). Otherwise, either there is a cell type such that gs� d>0, yielding a diverging population ns,

or gs� d<0 for all cell types, yielding a vanishing microbial population. Thus, solving Gðcext
1
; . . . ;cextp Þ ¼

d determines the set of steady-state external concentrations c$
1
; . . . ;c$p for which an optimal strategy

s$ is present. By virtue of its optimality, the strategy s$ achieves the fastest possible growth rate

and is non-invadable at steady state. Consortia emerge for external building-block concentrations

for which there is more than one optimal strategy, i.e. when there are distinct strategies s$ for which

the maximum-growth function is attained: gs$ðc$
1
; . . . ;c$pÞ ¼Gðc$

1
; . . . ;c$pÞ ¼ d.

Obtaining analytical expressions for optimal enzyme distributions proves intractable for a nonlin-

ear growth-rate function such as Equation (1). However, optimal distributions can be obtained ana-

lytically for the minimum model gðc1; . . . ; cpÞ ¼ gminðc1; . . . ; cpÞ, which is closely related to

Equation (1) (see Appendix 4). In Figure 6, we represent the corresponding set of external building-

block concentrations compatible with steady states, together with the associated optimal metabolic

classes. For p building blocks (see Appendix 5), we find that there exist p! microbial cartels, each

with p distinct cell types for well-ordered external concentrations, e.g. cext
1
>cext

2
> . . .>cextp . In such car-

tels, cell type 1 converts building block 1 into the p� 1 other building blocks, cell type 2 converts

building block 1 into the p� 2 least abundant building blocks and imports building block 2, and so

forth, and cell type p has a pure-importer strategy. We also find that for degenerate ordering with

q� 1 equalities, e.g. cext
1
¼ . . . ¼ cextq >cextq�1> . . .>cextp , there exist ðp� qÞ!Cq

p microbial cartels with 1þ
qðp� qÞ distinct cell types. In such cartels, cell type q0, 1 � q0 � q imports all blocks 1; . . . ; q but only

uses block q0 as a precursor for blocks j>q, cell type q00, q<q00 � 2q imports all blocks 1; . . . ; qþ 1 but

only uses block q00 � qþ 1 as a precursor for blocks j>qþ 1, and so forth, and cell type 1þ qðp� qÞ
has a pure-importer strategy. Moreover, we find that cartels that share p� 1 metabolic classes are

joined by continuous paths in the space of external concentrations over which these p� 1 shared

metabolic classes remain jointly optimal. Such paths define a graph which characterizes the topologi-

cal structure of cartels in relation to changes in external building-block concentrations (see Appendix

6). Importantly, our analysis shows that the above cartels emerge with the same graph structure for

all growth-rate functions satisfying gðc1; . . . ; cpÞ � gminðc1; . . . ; cpÞ for some g>0 and having diminish-

ing returns (quasi-concave property), which includes Equation (1).
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Figure 6. Emergence of microbial cartels at steady state. For large enough supply rates, population dynamics drive the external building-block

concentrations towards steady-state values c$
1
; . . . ; c$p that satisfy growth rate equals death rate, Gðc$

1
; . . . ; c$pÞ ¼ d. Consortia emerge at concentrations

for which distinct metabolic classes are jointly optimal. Cartels are consortia with at least p distinct metabolic classes. (A) For p ¼ 2, a pure-converter

strategy is optimal on each of the red curves, while a pure-importer strategy is optimal on the grey curve. Cartels with two distinct cell types exist at the

intersection of the grey curve and a red curve. (B) For p ¼ 3, a pure-converter strategy is optimal on the red patches, mixed strategies are optimal on

the blue and green patches, while a pure-importer strategy is optimal on the grey patch. There are two types of cartels at the intersection of 3 patches:

6 distinct cartels with well-ordered external concentrations (yellow and pink), e.g. cext
1

>cext
2
>cext

3
, and 3 distinct cartels with degenerate external

concentration ordering (cyan), e.g. cext
1
¼ cext

2
>cext

3
. (C) Graph structure of microbial cartels for p ¼ 4 building blocks. As cartels can be labelled by

ordering of resource availability, their graph structure is closely related to permutohedron solids, such as the truncated octahedron for p ¼ 4 (inset: the

interior of the truncated octahedron for p ¼ 4 corresponds to the grey patch shown in (B) for p ¼ 3) In addition to the metabolic types shown, each

cartel includes a pure-importer strategy, so that blue and pink cartels have 4 distinct types while yellow cartels have 5 distinct types. In all panels, the

circular arrow diagrams depict the metabolic strategies present.
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Relevance of microbial cartels
Microbial cartels only exist for specific external building-block concentrations (cf. the intersection

points in Figure 6A and B). Can competitive population dynamics lead to these cartels for generic

supply conditions? To answer this question, we compute the set of supply conditions compatible

with the emergence of a cartel. We label a microbial cartel S$ by its associated external concentra-

tions c$
1
; . . . ; c$p, which satisfy a specific (possibly degenerate) order relation. At concentrations

c$
1
; . . . ; c$p, cartel cell types s 2 S

$ jointly achieve the optimal growth rate and are therefore the only

surviving cell types. The per-cell fluxes f$

i;s experienced by these cell types take fixed values that can

be obtained via Equation (5). Then, the resulting flux-balance equations for extracellular building

blocks,

si
�

fnsg
�

¼ �c$i þ
v

V �Nv

X

s2S$

nsf
$

i;s ; (8)

yield the supply rates as a function of the populations ns>0, s 2 S$. In fact, Equation (8) defines the

sector of supply rates compatible with the existence of the cartel S$ as a p-dimensional cone. Cru-

cially, although c$
1
; . . . ;c$p specify isolated points in the space of external concentrations, the cartel

sectors have finite measure in the space of supply rates, showing that cartels can arise for generic

conditions.

In Figure 7, we illustrate the supply sectors associated with cartels. What is the relation between

supply sectors and steady-state external concentrations? To answer this question, we consider in

Figure 7A–E the case of p ¼ 2 building blocks and first focus on supply rates for which the optimal

cell type is either a pure converter (white dots in Figure 7A–B) or a pure importer (white dots in

Figure 7C–D). With only one cell type present and fixed cext
1

and cext
2
, varying ns in Equation (8)

defines a half-line in the supply plane (cf. Figure 7B and Figure 7D). This half-line originates from

the point ð�cext
1
; �cext

2
Þ, which are the supply rates that first support a nonzero population ns for

steady-state concentrations cext
1

and cext
2
. Thus, all supply half-lines originate from a surface that is

identical to the steady-state external concentrations, simply rescaled by the external building block

leakage rate �. Changing the supply rates transverse to such a half-line yields different steady-state

concentrations cext
1

and cext
2
. In particular, one can increase the supply of one block until another opti-

mal type can invade, i.e. until one reaches the cartel-specific concentrations c$
1
and c$

2
(pink dots in

Figure 7A and Figure 7C). At the corresponding point ð�c$
1
; �c$

2
Þ in the supply space, the pure-con-

verter half-line and the pure-importer half-line have distinct direction vectors, i.e. co-optimal cell

types s have distinct per-cell fluxes fs: e.g. for s1>s2, a pure-converter s consumes block 1 to pro-

duce and leak block 2, i.e. f1;s>0 and f2;s<0. By contrast, a pure importer s consumes all building

blocks according to the biomass stoichiometry, i.e. f1;s ¼ f2;s. For each point ð�c$
1
; �c$

2
Þ in the supply

space, these distinct per-cell fluxes fs define conic regions where a pure importer can invade a

pure-converter population and a pure converter can invade a pure-importer population, i.e. where a

cartel is stable. These cones are therefore cartel supply sectors (pink and yellow sectors in

Figure 7E).

The above argument can be generalized for p>2 building blocks by considering the metabolic

fluxes of optimal cell types (cf. Figure 7F for p ¼ 3). For all values of p, we find that supply sectors

associated with cartels define non-overlapping cones (see Appendix 7). Moreover cones associated

with two connected cartels, i.e. cartels that share at least p� 1 metabolic classes, have parallel facets

in the limit of large budget E � b. As a consequence, at a fixed overall rate of building-block supply

s ¼ s1 þ . . .þ sp, the fraction of supply conditions for which no cartel arises becomes negligible with

increasing overall supply rate s. For instance, for large rate s, every building block has to be supplied

at exactly the same rate for a single pure-importer strategy to dominate rather than a cartel. There-

fore, for very generic conditions, a cartel will arise and drive the external building-block concentra-

tions toward cartel-specific values, thereby precluding invasion by any other metabolic strategy. This

ability to eliminate competition is reminiscent of the role of cartels in human economies, motivating

the name ‘cartels’ for stable microbial consortia that include at least p distinct metabolic strategies.

At supply conditions for which no cartel arises, an optimal cell type or a consortium of cell types

dominates at steady state but these cell types cannot control external resource availability. Indeed, a

consortium that is not a cartel cannot compensate for changes in supply conditions via population
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Figure 7. Supply sectors associated with microbial cartels. (A–B): For steady-state concentrations cext
1
<cext

2
, only a

converter strategy can survive (white dot in A). The corresponding set of supply rates s1 and s2 lie on a line

(labelled by a white dot in B). Increasing the supply rate s1 causes concentration cext
1

to increase, until a pure-

importer strategy can survive at c$
1
and c$

2
(pink dot in A). Any further increase of s1 no longer affects c$

1
and c$

2
and

is solely dedicated to biomass growth. (C–D): For steady-state concentrations cext
1
’ cext

2
, only a pure-importer

strategy can survive (white dot in C). The corresponding set of supply rates s1 and s2 lie on a line (labelled by a

white dot in D). Increasing the supply rate s2 causes concentration cext
2

to increase, until a converter strategy can

survive at c$
1
and c$

2
(pink dot in C). Any further increase of s2 no longer affects c$

1
and c$

2
and is solely dedicated to

biomass growth. (E–F): Supply conditions compatible with the emergence of a cartel for (E) p ¼ 2 and (F) p ¼ 3.

The set of supply rates for which cartels can arise define non-overlapping polyhedral p-dimensional cones, with

parallel or diverging faces between neighboring cartels, i.e. cartels that share p� 1 metabolic classes. For p ¼ 2,

the boundaries of the pink cartel supply sector correspond to the lines labelled by pink dots in (B) and (D).

Outside of these cones, only fewer than p strategies can survive.
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dynamics. In particular, simply multiplicatively increasing the building-block supply augments the

steady-state biomass of a consortium but also modifies steady-state resource availabilities, and

therefore the distributions of enzymes that optimally exploit these resources. In other words, for

consortia that are not cartels, optimal metabolic strategies must be fine-tuned to specific supply

conditions.

By contrast, within a cartel supply-sector, any increase of the building-block supply is entirely

directed toward the cartel’s growth of biomass. Remarkably, it appears that microbial cartels auto-

matically achieve maximum carrying capacity, i.e. they optimally exploit the resource supply. At

steady state, the total number of cells N is related to supply rates si via the overall conservation of

building blocks by

N ¼ V

v
1þ pdð1� f Þ

P

i si��
P

i c
ext
i

� ��1
; (9)

which implies that maximizing biomass yield at fixed supply rates si amounts to minimizing the over-

all external building-block concentrations
P

i c
ext
i . In Figure 8, for p¼ 2 building blocks, we use the

preceding equivalence to show that in each cartel sector, no consortium can yield a larger steady-

state biomass than the supply-specific cartel. For a homogeneous growth-rate function such as

Equation (1), this result generalizes to arbitrary p if we conjecture that (i) in a cartel supply sector,

the cartel’s metabolic classes can invade any other consortium, and that (ii) the maximum-growth-

rate function associated with a given metabolic class has the property of diminishing returns (see

Appendix 7). Intuitively, conjecture (i) means that the emergence of a cartel does not depend on the

history of appearance of distinct metabolic classes and conjecture (ii) means that beating diminishing

returns requires a switch of metabolic classes. Together, these conjectures ensure that adding a new

metabolic class when possible implies a decrease in the total abundance of building blocks, i.e. a

better use of resources. Because a better use of resources is equivalent to a steady-state biomass

BA

c1
ext

c2
ext

s1

s2

Figure 8. Cartels yield optimal biomass at steady supply. Steady-state concentrations cext
1

and cext
2

that satisfy

cext
1
þ cext

2
>c$

1
þ c$

2
(above the dashed black line in A) imply smaller biomass yields than achieved by the microbial

cartel that exists for c$
1
and c$

2
(pink dot in A). The supply sector associated with the cartel defines a cone (pink

region in B). For given supply rates in the cartel supply sector (white dot in B), the black lines represent the supply

sectors of the pure-importer strategy and of the pure-converter strategy that are optimal when present alone (as

opposed to being in a cartel). The intersection of these non-cartel supply sectors (black lines in B) with the steady-

state curves (red and grey curves in B) define concentrations cext
1

and cext
2

for which cext
1
þ cext

2
>c$

1
þ c$

2
(white dots in

A). This result is generic for any supply rates in the cartel supply sector; thus a pure-importer or a pure-converter

strategy alone leads to steady-state concentrations with a smaller biomass yield than the cartel. We did not take

into account the other converter strategy, belonging to the other cartel (yellow sector in Figure 7E), since this

cartel can only be optimal for cext
1
>cext

2
, which never happens for s2>s1.

DOI: 10.7554/eLife.22644.010
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increase (by virtue of building-block conservation), this establishes that competing microbes achieve

the global collective optimum by forming cartels.

Discussion
Building on a physical model for metabolic fluxes, which importantly includes a finite enzyme bud-

get, we showed that competitive population dynamics leads to the emergence of microbial cartels.

Cartels are defined as consortia of at least as many distinct optimal cell types — each with a fixed

metabolic strategy — as there are shared resources. Constituent cell types of a cartel are optimal

because they achieve the fastest possible growth rate for that cartel’s self-regulated external

resource concentrations, and can therefore resist invasion by metabolic competitors. Within this

framework, the benefit of metabolic diversity to the participating cells stems from the ability of car-

tels to control resource availability (Sanchez and Gore, 2013). In particular, cartels maintain fixed

external resource concentrations by adjusting their populations to compensate for slow changes in

supply. For steady supply, the emergence of microbial cartels at long times is independent of the

specific dynamics of competition, which may reflect invasions by existing competitors and/or the

appearance of mutant strategies. Strikingly, our results support the conclusion that such cartels of

competing microbes achieve the optimal collective carrying capacity, as if led by an ‘invisible hand’

to efficiently exploit the resources (Smith, 1776).

Assumptions and scope of the model
For simplicity, we assumed linear metabolic fluxes and uniform enzymatic rates, production costs,

and building-block stoichiometries. However, the emergence of optimal cartels does not rely on

these assumptions. Even allowing for fluxes that are nonlinear (e.g. Michaelis-Menten) with respect

to building-block concentrations, microbes must utilize their enzymes in the linear regime to be met-

abolically optimal: Because resources are depleted by competitive growth between metabolic clas-

ses, fluxes mediated by saturated enzymes do not limit growth. Cells can improve their growth rate

by reallocating their enzyme budget from saturated enzymes to the unsaturated enzymes mediating

growth-limiting linear fluxes. Moreover, independent of rates, production costs, and stoichiometries,

optimal metabolic types must consist of non-overlapping trees of conversions. Indeed, the optimality

of such metabolic networks, obtained from transport-network theory, only requires the linearity of

metabolic fluxes with respect to enzyme concentrations. As a result, optimal metabolic types, as well

as cartels, can still be enumerated. Interestingly, we discovered that distinct cartels can arise for very

similar external building-block availabilities, and cartels can even merge under special conditions. In

an extended model that includes fluctuations, e.g. in enzyme expression (Wang and Zhang, 2011;

Kiviet et al., 2014), we expect ‘ghosts’ of these neighboring cartels associated with similar resource

availabilities to persist against the background of the dominant cartel. As our primary concern is the

emergence of a division of labor, we consider only relatively large populations of cells for which we

can neglect stochastic population fluctuations.

Realistic metabolic networks
What relevance might our results have for real metabolic networks? Microbes regulate metabolic

processes via complex networks with, e.g., multistep reaction chains and metabolic branch points

(Almaas et al., 2004). However, there is evidence of optimal partitioning of enzymes in these real

networks: microbes produce components of multiprotein complexes in precise proportion to their

stoichiometry, whereas they produce components of functional modules differentially according to

their hierarchical role (Li et al., 2014). Recent experimental studies have revealed that optimal meta-

bolic flux partitioning is an operating principle for resource allocation in the proteome economy of

the cell (Hui et al., 2015; Hermsen et al., 2015). Provided optimality considerations apply to real

metabolic networks, the approach we have taken can provide insight into flux partitioning and divi-

sion of labor in microbial communities. For instance, we expect that for a group of interconvertible

resources that are collectively growth limiting, the expressed metabolic network should have the

topological properties discussed above — no ‘futile cycles’ and no ‘convergent pathways’. Such pre-

dictions are not at odds with the existence of well-known metabolic cycles such as the TCA cycle

and the GOGAT cycle because these cycles are not futile but rather are energy yielding or assimila-

tory, respectively. Our predictions apply directly to irreversible conversion processes, e.g via chains
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of reactions with committed steps, as well as to reversible chains of reactions, for which the only

cycles in optimal metabolic networks are two-cycles due to reversibility. The overall acyclic nature of

anabolic fluxes can be tested experimentally by measuring reaction fluxes in metabolic networks,

e.g. using isotope tracers and mass spectrometry.

Spatial and temporal heterogeneities
Abiotic and biotic processes controlling resource turnover in nutrient reservoirs, such as the ocean

or soil sediments, operate on many different temporal and spatial scales (Braswell et al., 1997;

Whitman et al., 1998). In our framework, steady but spatially inhomogeneous supply of diffusive

building blocks should lead to the tiling of space by locally dominant cartels. Because of our model

cells’ ability to shape their environment, we expect sharp transitions between neighboring tiles, con-

sisting of cartels that differ by a single metabolic class. We expect spatial tiling to emerge in real

microbial communities growing in inhomogeneous conditions, e.g. in a gradostat with spatially struc-

tured nutrient supply (Lovitt and Wimpenny, 1981). In such spatial communities, the detection of

well-delimited patches of resource availabilities, with specific nutrient ratios, would be evidence of

spatial tiling by microbial cartels.

The spatial structure of microbial communities may also reflect the extracellular division of labor.

Extracellular division of labor involves metabolic pathways with obligatory external reactions, i.e.

with enzymes that are public goods. In a homogeneous environment, ‘cheating’ cell types that do

not produce the public good are always at an advantage and their introduction causes the collapse

of the entire population. In our framework, we expect producer cartels to spatially segregate from

neighboring non-producer cartels (Drescher et al., 2014).

Temporally varying supply can also be addressed within our framework. For supply fluctuations

on long timescales � 1=d (the lifetime of a cell), the population dynamics within cartels keeps

resource levels fixed, whereas fluctuations on short timescales � 1=d are self-averaging. In practice,

slow supply fluctuations can arise due to seasonal biogeochemical cycles (Schoener, 2011), while

fast supply fluctuations can arise from the transient biomass release upon cell death (Yoshida et al.,

2003). The effect of supply fluctuations occurring on timescales ~ 1=d, which includes day-night

cycles, is more complex. Transport-network theory predicts that fluctuating resource conditions

select for networks with metabolic cycles, whose structures depend on the statistics of the driving

fluctuations (Katifori et al., 2010; Corson, 2010). Characterizing the benefit of cycles in such net-

works may well reveal new optimization principles that underlie the microbial metabolic diversity.

Microbes also adjust to fluctuating conditions by switching their metabolic type via gene regula-

tion instead of relying on population dynamics. Within our framework, to consistently implement the

optimal mix of metabolic strategies, the role of sensing and regulation is then primarily to determine

the relevant ‘supply sector’ by assessing the relative abundance of various resources. Thus, in princi-

ple, division of labor within a single species can lead to cartels with distinct metabolic strategies

associated with distinct phenotypic states. However, the persistence of cartels requires the coexis-

tence of all cartel strategies, which within a single species could be facilitated by cell-to-cell commu-

nication (quorum sensing). We therefore anticipate that extension of our analysis to fluctuating

supply conditions may provide insight into the design principles underlying regulation and signaling

in microbial communities.

Acknowledgements
This work was supported by the DARPA Biochronicity program under Grant D12AP00025, by the

National Institutes of Health under Grant R01 GM082938, and by the National Science Foundation

under Grant NSF PHY11-25915. We thank Bonnie Bassler, William Bialek, Curt Callan, and Simon

Levin for many insightful discussions.

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 19 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


Additional information

Funding

Funder Grant reference number Author

Defense Advanced Research
Projects Agency

D12AP00025 Thibaud Taillefumier
Ned S Wingreen

National Institutes of Health R01 GM082938 Thibaud Taillefumier
Yigal Meir
Ned S Wingreen

National Science Foundation NSF PHY11-25915 Anna Posfai
Ned S Wingreen

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

TT, Conceptualization, Software, Formal analysis, Investigation, Methodology, Writing—original

draft, Writing—review and editing; AP, Formal analysis, Validation; YM, Supervision; NSW, Concep-

tualization, Supervision, Validation, Writing—original draft, Writing—review and editing

Author ORCIDs

Thibaud Taillefumier, http://orcid.org/0000-0003-3538-6882

Ned S Wingreen, http://orcid.org/0000-0001-7384-2821

References
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Wehrmann A, Morakkabati S, Krämer R, Sahm H, Eggeling L. 1995. Functional analysis of sequences adjacent to
dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid
transporter. Journal of Bacteriology 177:5991–5993. doi: 10.1128/jb.177.20.5991-5993.1995, PMID: 7592354

Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. PNAS 95:6578–6583. doi: 10.
1073/pnas.95.12.6578, PMID: 9618454

Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, Handley KM, Mullin SW, Nicora CD, Singh
A, Lipton MS, Long PE, Williams KH, Banfield JF. 2014. Metabolic interdependencies between phylogenetically
novel fermenters and respiratory organisms in an unconfined aquifer. The ISME Journal 8:1452–1463. doi: 10.
1038/ismej.2013.249, PMID: 24621521
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Appendix 1:Resource-limited growth-model

In this section, starting from simple biological considerations, we develop a physical model

for the growth of microbes that produce biomass from a finite set of resources. In section

"Nonlinear biomass-production model", we present a simple model for cellular biomass

production, e.g. protein synthesis, from intracellularly available building blocks, e.g. amino

acids. In section "Internal flux-balance equations", we specify the balance of fluxes

associated with the import and processing of building blocks prior to biomass production. In

section "Positive monotonic cell growth", we show that biomass production and the

intracellular building-block concentrations are increasing functions of the influxes of building

blocks.

Nonlinear biomass-production model
We denote by g the growth rate averaged over a population of cells, which has the units of

inverse time, and by r the rate of biomass production , which has units of biomass per

second. Both these rates are related by a simple relation. To see this, observe that

neglecting the fluctuations in cellular biomass, e.g. due to individual cell divisions, justifies

the adoption of a continuous model where the cellular biomass b, i.e. the concentration of

protein, is a characteristic of cells that remains constant. Then, taking into account the

dilution by cell growth, the stationarity of cellular biomass, _b ¼ r � gb ¼ 0, directly implies a

proportionality relation: g ¼ r=b. In particular, setting the concentration units of our model to

satisfy b ¼ 1 allows us to formally equate the growth rate g and the rate of biomass

production r.

Importantly, we consider that biomass is produced by incorporating p building blocks into

biologically functional units. Accordingly, we denote by bi, 1 � i � p, the concentration of

building block i in cellular biomass. In the context of protein synthesis, bi corresponds to the

cellular concentration of amino acid i incorporated in proteins. Achieving a rate of growth g

requires cells to consume building block i at rate big to satisfy their fixed building-block

requirements. As the consumption of building blocks, and thus biomass production, is

limited by the internal availability of each building block, we model the rate of growth as a

function g c1; . . . ; cp
� �

of the internal concentrations of building blocks ci, 1 � i � p. We

assume that g c1; . . . ; cp
� �

¼ 0 whenever any building block is lacking, i.e. when

minðc1; . . . ; cpÞ ¼ 0 and that qcig>0 so that elevated internal concentrations of building blocks

promote cell growth. We expect the above assumptions to generally hold for building

blocks that are absolutely required for cell growth.

A relevant choice for such a rate function is to take g c1; . . . ; cp
� �

proportional to the harmonic

mean of the internal concentrations

g/ b1

c1
þ . . .þ bp

cp

� ��1
: (A1)

Such a rate function adequately models protein biosynthesis, where biomass production

results from the sequential incorporation of amino acids, each amino acid being

incorporated at a rate proportional to its concentration. The time to produce a unit of

biomass is the sum of the incorporation time of each building block i, which is proportional

the relative requirement for each building block bi, in turn yielding the overall rate of growth

as the harmonic mean Equation (A1). Tellingly, the harmonic mean function has the quasi-

concave property, whereby its level sets gðc1; . . . ; cnÞ>r are convex sets. This mathematical

property can be intuitively interpreted in terms of diminishing marginal utility: the benefit of

increasing the availability of a resource decreases with its abundance. In the interest of
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analytical tractability, we will also consider the ‘minimum’ model, where only the scarcest

resource is rate limiting, leading to a growth-rate function

g/min
c1

b1
; . . . ;

cp

bp

� �

: (A2)

Such a rate function corresponds to the extreme case when increasing the abundance of

resources that are not the most rate limiting is unproductive. Observe that, to fully define a

growth-rate function g, we need to specify a kinetic rate constant relating g to the right-hand

sides of Equation (A1) and Equation (A2).

Internal flux-balance equations
In order to produce biomass, a cell can import a building block i from the external medium, or

produce it by internally converting another building block j. As each import/conversion

process is enzymatically controlled, a metabolic strategy is specified by the allocation of the

enzyme budget to these various processes. For simplicity, we adopt the enzyme budget

constraint:

X

i

aiþ
X

i 6¼j
kij � E ; (A3)

where the constants ai and kij are enzymatic activities, assumed proportional to the

concentrations of enzymes, associated with the import of resource i ðaiÞ and the conversion

of j into i ðkijÞ, and where E denotes the total enzyme budget.

We assume a separation of timescales between fast metabolic reactions and slow biomass

production. As a result, we consider that over the timescale of cellular growth the internal

concentrations reach their stationary state: _ci ¼ 0. Assuming that every enzymatic process

operates in the linear regime, the internal building-block concentrations ci satisfy p flux-

balance equations, one for each building block:

ðbþaiÞcexti � gþbþ
X

j 6¼i
kji

 !

ciþ
X

j 6¼i
kijcj� big¼ 0 ; (A4)

where g is the cellular rate of growth, cexti is the external building-block concentration, and

the flux big specifies the building-block consumption rate in units of concentration per

second. The above set of flux-balance equations defines a network of metabolic reactions,

where the only nonlinearity of the model is due to the growth-rate function g. For every

building block, we model passive transport across the cell membrane via the leak rate b.

Finally, in writing Equation (A4), we made the assumption that the overwhelming majority of

cellular building blocks are incorporated in the biomass, i.e. bi � ci. This biologically relevant

approximation justifies neglecting the dilution rate cig due to cell growth by comparison

with big, the consumption rate of building block i.

Positive monotonic cell growth
Physically, we expect that for given external building-block concentrations cexti , the set of

internal flux-balance Equation (A4) specifies a unique set of positive internal concentrations

ci, and that the cellular growth is an increasing function of the resource influxes ðbþ aiÞcexti .

Using the monotonic property of growth rate g together with conservation of building-block
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fluxes, it is indeed possible to show that our growth model exhibits the desired property of

positive monotonic cell growth.

To demonstrate this point, it is convenient to consider the biomass production rate as a free

parameter g (independent of the requirement that g ¼ gðc1; . . . ; cpÞÞ, in which case the

system of Equation (A4) becomes linear, yielding internal concentrations c1ðgÞ; . . . ; cpðgÞ. In
turn, the solutions to the nonlinear problem are obtained from the self-consistent relation

g ¼ g
�

c1ðgÞ; . . . ; cpðgÞ
�

, that states that the growth rate g is achievable by the parametrized

internal concentrations c1ðgÞ; . . . ; cpðgÞ. These parametrized concentrations c1ðgÞ; . . . ; cpðgÞ
can be found as

�

c1ðgÞ; . . . ;cpðgÞ
�

¼K�1
�

ðbþa1Þcext1
� b1g; . . . ; ðbþapÞcextp � bpg

�

(A5)

where K is the matrix of enzymatic activities defined as

K ij ¼
bþPk 6¼i kki if i¼ j

�kij if i 6¼ j

�

: (A6)

Because K is strictly diagonally dominant, i.e. K ii>
P

j 6¼i jK ijj for all i, with negative off

diagonal coefficients, it is a monotone matrix, which means that all the coefficients of K�1

are positive. Thus, the internal concentrations c1ðgÞ; . . . ; cpðgÞ are decreasing functions of g.

Moreover, ðbþ aiÞcexti � big is positive for small enough g � 0 and negative for large enough

g. Thus, defining

g0 ¼ inffg>0jmin
i

ciðgÞ ¼ 0g ; (A7)

the function gðgÞ ¼ g
�

c1ðgÞ; . . . ; cpðgÞ
�

is decreasing on ð0; g0Þ, from gð0Þ>0 to gðg0Þ ¼ 0. In

particular, the equation gðgÞ � g ¼ 0 admits a unique positive solution g$ in ð0; g0Þ, which is

the actual cellular growth rate (g$ ¼ gðg$Þ). Moreover, the corresponding internal

concentrations ciðg$Þ are all positive. Indeed, suppose ciðg$Þ<0, then there is g, 0<g<g$, such

that ciðgÞ ¼ 0, implying gðgÞ � g ¼ �g<0, which contradicts the uniqueness of g$. This shows

that there is a unique set of positive internal concentrations satisfying Equation (A4).

Importantly, this reasoning also shows that an increase in the influx of a resource leads to an

increase in internal concentration, and therefore an increase in growth rate. For instance, if

the influx ðbþ aiÞcexti is increased by an amount �>0, then the new function g�ðgÞ is strictly
larger the original function gðgÞ. Thus, g$ satisfies 0 ¼ gðg$Þ � g$<g�ðg$Þ � g$, which implies

that the growth rate associated with g�ðgÞ, defined as the solution to g�ðgÞ � g ¼ 0, is strictly

larger than the growth rate g$ associated with gðgÞ.
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Appendix 2: Population dynamics of metabolic strategies

In this section, we establish a model for the population dynamics of competing metabolic

strategies, e.g. cell types, in a microbial colony. In section "External flux-balance equations",

we model the external metabolic fluxes at the population level, where different cell-types

compete for steadily supplied building blocks. In section "Competitive growth of metabolic

strategies", we model the growth of metabolically competing cell types, ensuring the overall

conservation of building-block fluxes. In section "System of ordinary differential equations",

we show that our model reduces to a set of coupled ordinary differential equations, which

prescribe bounded population dynamics.

External flux-balance equations
A metabolic strategy is an assignment fai;s; kij;sg that satisfies the enzyme budget constraint

Equation (A3), thus defining a cell type s. We consider that these different cell types s are

growing in a homogeneous environment of volume 
. We denote the dimensionless

population count of cell type s by ns and the total population count of cells by N ¼Ps ns.

For simplicity, we also consider that every cell type has the same average lifetime. The

inverse of this lifetime defines the cellular death rate d, which is independent of the cell type

and assumed much slower than the timescales associated with metabolic processes such as

diffusion, interconversion, and passive/active transport.

In the volume 
, we consider that the p building blocks are steadily supplied with rate by

volume si and can be lost, e.g. via degradation or diffusion out of the volume at a rate �. In

the absence of microbes, the change in external concentration of building block i due to

supply and loss obeys _cexti ¼ si � �cexti , so that we simply have cexti ¼ si=� at steady state.

When present, microbes modifies this steady state via building-block intake during growth

and via biomass release upon cell death. We denote by f the fraction of biomass recycled

upon cell death (0 � f<1). Then, ns cells of type s create a net flux nsfi;s for each building

block i, where the per-cell flux fi;s equals the net individual metabolic intake of building

block i minus the rate of release of building block i from the biomass of dying cells:

fi;s ¼ ðbþai;sÞcexti �bci;s� dðfbiþ ci;sÞ (A8)

» ðbþai;sÞcexti �bci;s� dfbi : (A9)

In theory, upon death, cells release the free internal building blocks i that are present in the

cell at the time of death, as well as a fraction f of the building blocks i that were

incorporated in the cellular biomass. In practice, as cell growth sets the slow timescale of our

model ðd� bÞ, we can neglect the fluxes due to the release of the internal pool of building

blocks upon cell death.

Importantly, individual cell fluxes fi;s contribute to changing the external concentration cexti

via a geometric factor. The conservation of the number of building blocks determines this

geometric factor to be !=ð
� N!Þ, the ratio of the average individual cellular volume ! and

of the cell-free volume 
� N!. Accordingly, the smaller the fractional volume of a cell type,

the less that cell type can change the shared external concentration via metabolic

exchanges. Thus the total number of cells has to satisfy N<
=!, where 
=!, the number of

cells that would fill the volume 
, plays the role of a carrying capacity. Moreover, the change

in the cell-free volume 
� N! due to cell growth affects the change in external building-

block concentration cexti via another geometric term. Indeed, denoting by Mi the number of

molecules of external building block i in the cell-free volume, we have
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_cexti ¼
d

dt

Mi


�N!

� �

¼
_Mi


�N!
þ

_N!


�N!
cexti : (A10)

In the equation above, the first term of the right-hand side arises from the supply and loss of

building blocks and from the fluxes created from the various cell types, while the last term is

purely geometrical in nature and vanishes at steady state. Writing these terms explicitly, the

stationary condition for the external building-block concentrations cexti on the timescale of

cellular growth (_cexti ¼ 0) leads to p external flux-balance equations that govern the external

availability of building blocks:

0¼ si� ��
_N!


�N!

� �

cexti �
!


�N!

X

s

nsfi;s

 !

: (A11)

The above equations shows that microbial growth affects the external availability of building

blocks via both the metabolic fluxes the microbes create and the change in external cell-free

volume. In the next section, we show that the latter geometric contribution is negligible

when compared to the former.

Competitive growth of metabolic strategies
In the previous section, we presented a model for the external metabolic fluxes in a

homogeneous environment where populations of different cell-types compete for steadily

supplied building blocks. When growing, cells compete with each other by depleting the

pool of external building blocks: as the population ns of cell type s grows, the flux of

nutrients imported by these cells increases, thereby reducing the availability of the particular

mix of nutrients they feed on. This competition for building blocks couples the growth of

different microbial strategies s according to the population dynamics

_ns

ns
¼ gs� d : (A12)

When used in combination with the internal and external flux-balance Equations (A4) and

(A11), the above population dynamics allows us to justify the neglect of variations in

external cell-free volume due to cell growth.

We justify the neglect of variations in external cell-free volume due to cell growth by

analyzing overall building-block fluxes at the population level. The per-cell fluxes for cell-

type s are

fi;s ¼ ðbþai;sÞcexti �bci;s� dfbi : (A13)

Then, summing the internal flux-balance Equation (A4) for every building block leads to the

relation between the growth rate of a cell type s and its per-cell building-block fluxes:

X

i

bi

 !

gs ¼
X

i

fi;sþ df
X

i

bi : (A14)

In turn, summing the external flux-balance Equation (A11) for every building block leads to

the overall conservation of building-block fluxes
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X

i

si� ��
_N!


�N!

� �

X

i

cexti �
!


�N!

X

i

X

s

nsfi;s

 !

¼ 0 : (A15)

Using relation Equation (A14), the above conservation of building-block fluxes can be

rewritten as

X

i

si� �� !


�N!
_N

� �

X

i

cexti þ
!


�N!

X

i

bi
X

s

ns df � gsð Þ ¼ 0 : (A16)

As the growth Equation (A12) imply that
P

snsgs ¼ _N þ dN, upon substitution in

Equation (A16), we finally obtain the conservation of building-block fluxes as

X

i

si��
X

i

cexti �
!


�N!
_N
X

i

bi�
X

i

cexti

 !

þNdð1� f Þ
X

i

bi

 !

¼ 0 : (A17)

We consider cell types for which, as a result of active import, internal building-block

availability exceeds the external building-block availability, i.e. cexti <ci;s � bi. Thus, in

Equation (A17), the overall fluxes of building blocks required for growth vastly exceed the

effect of variations in free volume due to cell growth: _N!
P

i bi � _N!
P

i c
ext
i . This justifies

neglecting the purely geometric term due to variations in free volume in the external flux-

balance Equation (A11).

System of ordinary differential equations
On the timescale of cell growth, set by the average lifetime of a cell » 1=d, the internal and

external concentrations can be considered as fast variables that have reached steady state.

In particular, fcexti g and fci;sg satisfy the set of flux-balance Equations (A4) and (A11). In

Section "Positive monotonic cell growth", we have established that, given external

concentrations cexti , the internal concentrations ci;s of a cell type s can be determined by

solving the system of Equation (A4), which specifies the functions ci;sðcext1
; . . . ; cextp Þ. Then,

the growth rate of cell type s,

gs ¼ g
�

c1;sðcext1
; . . . ;cextp Þ; . . . ;cp;sðcext1

; . . . ;cextp Þ
�

; (A18)

only depends on the external concentrations of building blocks cexti . Solving Equation (A11)

yields the external concentrations cexti can be obtained as functions of fnsg, the population

vector of cell types. Thus, Equation (A12) governing the growth of the competing metabolic

strategies constitute a set of ordinary differential equations coupled via the external

concentrations of building blocks, considered as p auxiliary variables. In this section, we

show that the corresponding population dynamics is bounded with (i) finite overall

population count N and (ii) finite positive external concentrations cexti . We devote the rest of

this section to show these two points.

i. Neglecting the variations in free volume due to cell growth, the overall conservation of
building blocks implies that the total cell population N remains strictly below the carrying
capacity 
=!, ensuring that our population dynamics model is well-posed. To see this,

remark that, by positivity of the external building-block concentrations cexti , we have
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_N ¼
�N!

!

P

i si��
P

i c
ext
i

P

i bi
�Ndð1� f Þ

�


!

P

i si
P

i bi
�N dð1� f Þþ

P

i si
P

i bi

� �

The above inequality implies that the total cell population is decreasing for any N larger than




!
1þ dð1� f Þ

P

i bi
P

i si

� ��1
<



!
; (A19)

and that, for any initial population satisfying Nð0Þ<
=!, the left-hand side of the above
expression is an upper-bound of the long-term population dynamics.

ii. Neglecting the variations in free volume due to cell growth, the external flux-balance
Equation (A11) reads

si ¼ �cexti þ
!


�N!

X

s

nsfi;sðcext1
; . . . ;cextp Þ ; (A20)

where the per-cell building block fluxes are defined as in Equation (A13). Summing the
above equations for different building blocks, we obtain the overall conservation of building
blocks as

X

i

si ¼ �
X

i

cexti þ
!


�N!

X

i

bi
X

s

ns
�

gsðcext1
; . . . ;cextp Þ� df

�

: (A21)

By positivity of the growth function for each cell types, i.e. gs � 0, it follows that

X

i

si � �
X

i

cexti �
N!df


�N!

X

i

bi : (A22)

In turn, the boundedness of the overall population of cell types N implies the boundedness

of the external building block concentrations cexti via

cexti �
1

�

X

i

siþ
N!d


�N!

X

i

bi

 !

: (A23)
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Appendix 3: Optimization over network topologies

In this section, we explain how the optimization of microbial growth rate over the set of

metabolic strategies allowed by the enzyme budget constraint determines the nature of

microbial coexistence at steady state. In section "Maximum-growth-rate function", we

introduce the maximum growth-rate function, which fully characterizes microbial coexistence

at steady state. In section "Metabolic classes", we explain how to compute the maximum

growth-rate function, by focusing on the analysis of a constrained number of metabolic types.

In section "Network-theory analysis", we identify the metabolic types that are relevant to our

optimization problem by identifying the allowed topological structures of their metabolic

networks.

Maximum-growth-rate function
For steady building-block supply, extensive numerical simulations suggest that the population

dynamics of a finite number of metabolic strategies is globally convergent, i.e. for any initial

conditions, the population vector fnsðtÞg tends to a limit fn¥sg, avoiding oscillatory or chaotic

dynamics. Because the growth of certain cell types can benefit or impair the growth of other

cell types, we cannot use standard population dynamics arguments to prove the global

convergence of our model. However, we believe that global convergence holds and that two

key features explain this simple asymptotic behavior. First, because of our assumption of a

separation of timescales, the internal concentrations are effectively instantaneously

determined by the external concentrations and no imbalance can build up, as would be

required for oscillatory dynamics. Second, because of the strict conservation of building-block

fluxes, each step toward the production of biomass entails some building-block waste,

making the system dissipative.

Positive global convergence for steady building-block supply greatly simplifies the problem

of determining which metabolic strategies survive competition to coexist on long timescales.

To understand this point, we first need to introduce the maximum-growth-rate function G,

defined as a function of steady-state external building-block concentrations by

G
�

cext
1
; . . . ;cextp

�

¼max
s

gs
�

cext
1
; . . . ;cextp

�

: (A24)

Notice that in the above definition strategies s belong to a compact continuous set

determined by the budget constraint Equation (A3), which justifies that sups gs
�

cext
1
; . . . ; cextp

�

is attained and is therefore a max. The maximum growth-rate function G entirely determines

the long-time structure of coexisting strategies at stationary state. Indeed, the boundedness

of the population dynamics imposes that survival at stationary state implies

G
�

cext
1
; . . . ;cextn

�

� d ; (A25)

where d is the cell death rate, which we take as a constant. Otherwise, there is a strategy such

that gs � d>0, yielding a diverging population ns. Moreover, if G<d, we have gs � d<0 for

each strategy, yielding a vanishing population. Thus, the steady-state external building-block

concentrations c$i are specified as positive numbers satisfying

G
�

c$
1
; . . . ;c$p

�

¼ d : (A26)

Moreover, for each set of admissible steady-state concentrations c$i , the compatible set of

coexisting metabolic strategies is given by
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fs$g ¼ argmax
s

gs
�

c$
1
; . . . ;c$p

�

¼ d ; (A27)

where argmaxs gs denotes the set of strategies for which maximum growth is acheived.

Relation Equation (A27) states that, at fixed steady-state external concentrations c$
1
; . . . ; c$p,

the surviving strategies are those ones for which gs
�

c$
1
; . . . ; c$p

�

is optimal. In particular,

coexistence occurs when this maximum is attained for different strategies.

Metabolic classes
To compute the maximum-growth-rate function, we need to optimize the growth rate gs over

the continuous set of admissible metabolic strategies for arbitrary fixed external conditions.

This optimization can be carried out in two steps: First, by optimizing the growth rate over

metabolic network topologies, one can identify a finite number of metabolic classes, defined

as classes of strategies utilizing the same subset of transporters/enzymes, which are

potentially optimal. Second, within these metabolic classes, one can characterize optimal

strategies for fixed external concentrations. As a result, the maximum-growth-rate function

Gðc$
1
; . . . ; c$pÞ can be computed as a maximum over a finite number of metabolic classes.

Formally, metabolic classes are defined as equivalence classes, whereby two strategies s and

s0 belong to the same metabolic classM if and only if ai ¼ 0, a0i ¼ 0 and kij ¼ 0, k0ij ¼ 0,

where ai, a
0
i, kij, and k0ij are enzyme activities. How many metabolic classes do we need to

consider? There are p import enzymes and pðp� 1Þ interconversion enzymes, for a total of p2

enzymes. Thus, there are at most 2p
2

metabolic classes according to whether or not each type

of enzyme is present (ai>0 or kij>0). However, only a subset of metabolic classes are

potentially optimal. For instance, the class for which ai ¼ kij ¼ 0 for all i, j, is clearly not

optimal. More tellingly, irrespective of the external availability of building blocks, numerical

simulations show that optimal strategies generally belong to a very restricted set of metabolic

classes. Next, we will identify this reduced set of metabolic classes using arguments inspired

by analytic network theory.

Our strategy to discard a metabolic classM, and thus reduce the number of relevant classes,

is as follows. We will first consider a representative strategy s inM with budget E ¼
P

i ai þ
P

ij kij at arbitrary external concentrations cexti . The growth rate gs of strategy s only

depends on the internal concentrations ci;s. For the same external concentrations cexti , we will

show that one can always find a strategy s0 from another metabolic classM0 achieving the

same internal concentrations but using a smaller budget E0 ¼Pi a
0
i þ
P

ij k
0
ij<E. Then, by

virtue of the positive monotony of our cell growth model, one can reallocate the saved

budget E � E0 to building-block import and increase building-block influxes, thus yielding a

strategy s0 that outperforms s for the same budget constraint. Since the existence of a more

‘economical’ strategy s0 contradicts the optimality of metabolic classM, we can restrict our

consideration to the metabolic classes other thanM. In the following, we will use the above

procedure to show that optimal strategies belong to a very restricted set of metabolic

classes.

Network-theory analysis
Topologically, the most generic metabolic class is the one that utilizes every import and

conversion enzyme, i.e. ai; kij>0 for all i and j, as any other class can be obtained from it by

setting some ai or kij to zero. In this section, starting from the most generic metabolic class,

we show that the assumption of optimal growth implies that many ai and kij vanish, thereby

restricting candidate topologies for optimal networks.
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Optimal networks are ’forests of trees’
Inspired by classic network-theory arguments, we show that at steady state the network of

import and interconversion enzymes associated with optimal strategies is a directed forest of

trees rooted in some or all of the external building blocks.

Consider a strategy s that has a cycle of order 2, e.g. enzymes interconverting building block

i into building block j and building block j into building block i:

s : ci�!
kji

cj and cj�!
kij

ci (A28)

Altering the enzymatic activities according to kij  kij þ dkij ¼ k0ij and kji  kji þ dkji ¼ k0ji with

dkji ci ¼ dkij cj ; (A29)

leads to the same net flux between i and j. As a result, the net building-block fluxes are

preserved for the same internal concentrations ci and cj. The corresponding altered enzyme

budget is E0 ¼ E þ dE with

dE¼ dkji 1þ ci

cj

� �

; (A30)

showing that reducing the enzymatic activity kji leads to a smaller enzyme budget if kij � 0.

Thus, one can always find a more economical strategy s0 that uses only one enzyme to

perform an interconversion( the same reasoning applies to kij). This shows that the network of

interconversion reactions of optimal strategies has no cycle of order 2, so we can restrict our

consideration to metabolic classes satisfying kijkji ¼ 0 for all i and j.

We can generalize the above argument to show that an optimal strategy cannot exhibit

interconversion cycles of any order (see Appendix 3—figure 1). To see this, consider a

interconversion network of a strategy s with no 2-cycles and suppose that its undirected

graph has a 3-cycle, e.g. of the form

s : ci�!
kji

cj ; cj�!
kkj

ck ; ci�!
kki

ck : (A31)

Then, altering the enzymatic activities according to

dkji ci ¼ dkkj cj ¼�dkki ci ; (A32)

leaves the net internal fluxes unchanged, and the altered strategy s0 uses a budget E0 ¼
E þ dE with

dE¼ dkji
ci

cj

� �

: (A33)

Thus, for generic conditions, one can always form a more economical strategy s0 by either

reducing or increasing kji, until one of the activities along the cycle becomes zero. This shows

that the network of interconversion reactions of optimal strategies has no cycle of order 3, so

that we can restrict ourselves to metabolic classes satisfying kijkji ¼ 0 and kðijÞkðjkÞkðkiÞ ¼ 0 for

all i, j, and k, where kðijÞ ¼ max ðkij; kjiÞ. The above argument directly generalizes to cycles of

any order showing that, if a strategy is optimal, the undirected graph of its interconversion

network has no cycles. Therefore, the undirected graph of an optimal interconversion
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network is a ‘forest of trees’. Observe that, in particular, this result implies that cycles are

never optimal.

cj

κjiκij

ci

cj

ci

κij=0

cj

ci

κkj

ck

κji>0

cj

ci

ck

κji

κki

κji>0

κkj=0

κji>0

κki>0

a.

b.

c.

Appendix 3—figure 1. For fixed external concentrations, optimal networks are ‘forests of trees’.

(a) Optimal metabolic classes cannot have topological 2-cycles. If cell type s (left) is such that

the net conversion flux from block i to block j is positive, i.e. kjici>kijcj, a cell type s0 (right)

that only differs from s by k0ij ¼ 0 and k0ji ¼ kji � kijcj=ci achieves the same growth rate as s

but more economically. (b) Optimal metabolic classes cannot have topological 3-cycles. For

cell type s (left) with a topological 3-cycle, a cell type s0 (right) that differs from s by k0ki 6¼ kki,

k0ji 6¼ kji and kkj ¼ 0, achieves the same growth rate as s but more economically. (c) More

generally, optimal metabolic classes have no topological cycles, i.e. the graphs of their

metabolic networks have a tree structure.

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 32 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


DOI: 10.7554/eLife.22644.011

In the following, exploiting the same procedure as above, we show that optimal networks

satisfy an additional topological property: building blocks are accumulated internally from a

unique external source (see Appendix 3—figure 2). In graph theory, the defining property of

a forest is that, given any two nodes, there is at most one path joining them. For our network

of import and interconversion enzymes, this property implies that, given two external

building-block concentrations, e.g. cexti and cextj , there is at most one chain of processes

whose undirected path links cexti and cextj . For simplicity, consider a strategy s for which there

exists such a path of length 3, e.g. corresponding to:

s : cexti �!
ai
ci ; ci�!

kji
cj ; cextj �!

aj

cj : (A34)

Then, altering the enzymatic activities according to

dai c
ext
i ¼ dkji ci ¼�daj c

ext
j (A35)

leaves the net internal fluxes unchanged and the altered strategy s0, uses a budget E0 ¼
E þ dE with

dE¼ dkji 1þ ci

cexti

� ci

cextj

 !

: (A36)
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Appendix 3—figure 2. For fixed external concentrations, optimal metabolic classes use a single

precursor for each converted building block. If cell type s (left) accumulates block j by import

and by conversion from i, there is always a more economical strategy s0 (right) for which

either kji ¼ 0 (a) or aj ¼ 0 (b).

DOI: 10.7554/eLife.22644.012

Thus, for generic conditions, one can always form a more economical strategy s0 by either

reducing or increasing kji according to the sign of the term in between parenthesis in

Equation (A35), until one of the activities along the path becomes zero. In all rigor, this last

point requires that building-block import can be set to zero, which is not realistic in the

presence of passive leakage. However, including passive imports does not change our result

as long as the building-block internal concentrations are larger than the building-block

external concentrations, which is the biologically relevant case. In any case, if a network of

import and interconversion enzymes is optimal, there is at most one path connecting a

building block to an external resource. Moreover, such a path has to exist and has to flow

from the external building-block source for the internal building-block concentration to be
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non-zero. As a result, the network of import and interconversion enzymes forms a forest of

directed trees rooted in the external building-block concentrations.

Optimal networks convert at most one building block
Using arguments inspired by network theory, we have shown that, in optimal networks of import

and conversion enzymes, each building block is made from a single external source, via a

single enzymatic chain. This constraint on the topology of optimal networks drastically

reduces the number of metabolic classes to inspect for optimal strategies. In the following,

we will show that it is possible to further restrict the set of candidate classes. Specifically, we

will show that optimal strategies have a single non-trivial tree of depth one, i.e. the building

blocks that are not directly imported are all made in one step from a single imported building

block. In other words, optimal strategies convert at most one building block.

To prove the above claim, we first show that, for a complete set of import and

interconversion enzymes, trees originating from an imported building block are at most of

depth one (see Appendix 3—figure 3). Consider a strategy s that processes a precursor

building block i via a tree of interconversions of depth at least 2. Necessarily, there is a

building block k made after two successive interconversions. Call j the intermediary building

block between i and k. We thus have

s : ci�!
kji

cj and cj�!
kkj

ck ;

where ci, cj, and ck denote steady-state internal concentrations. Now consider a strategy s0

that is the same as s except that k is directly made from i, i.e. k0kj ¼ 0 and k0ki>0, and possibly

k0ji 6¼ kji:

s0 : ci�!
k0
ji

cj and ci�!
k0
ki
ck :

Choosing k0ji and k0ki such that

kji ci�kkj cj ¼ k0ji ci (A37)

k0ki ci ¼ kkjcj (A38)

leaves the net fluxes into each internal building block unchanged and the altered strategy s0,

which grows as fast as s, uses a budget

E0 ¼ k0jiþk0ki ¼ kji<kjiþkkj ¼ E : (A39)

Thus, one can always form a more economical strategy s0 by replacing a two-step synthesis

process by a one-step synthesis process. Recursive application of the above argument shows

that, if not imported, building blocks should be made from their imported precursor in as few

steps as possible. In particular, we deduce that optimal networks have trees of depth one, i.e.

any converted building block is made in one step from its precursor.
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Appendix 3—figure 3. Optimal metabolic classes convert building blocks in the minimum num-

ber of steps. If cell type s (left) accumulates block k via a 2-step conversion from block i, there is

always a more economical strategy s0 (right) that converts block i directly into block k.

DOI: 10.7554/eLife.22644.013

To complete the proof of our claim, we now show that an optimal strategy uses at most a

single imported building block as a precursor for the synthesis of non-imported blocks (see

Appendix 3—figure 4). Consider a strategy s that uses two imported building blocks:

building block i as a precursor for qi blocks, and building block j as a precursor for qj blocks.

By symmetry, in optimal strategies, the qi blocks made from i are processed identically at

concentration ci, as well as the qj blocks made from j at concentration cj. Thus, the internal

flux-balance equations for the precursors read

ðbþaiÞcexti � bþ
X

k

kki

 !

ci� big¼ 0 ; (A40)

ðbþajÞcextj � bþ
X

l

klj

 !

cj� bjg¼ 0 ; (A41)

while the internal flux-balance equations for the end products read

bcextk þkkici�bck � bkg¼ 0 ; (A42)

bcextl þkljcj�bcl� blg¼ 0 ; (A43)

where kki and klj are the enzymatic activities associated with the conversion of i and j into an

end product, respectively. Algebraic manipulations of the flux-balance equations allow one to

express the enzymatic activities ai, aj, kki, and klj in terms of the internal and external

building-block concentrations and of the rate of biomass production g. For instance, we have:

ai ¼
�

bigþbðci� cexti Þþ
X

k

�

bkgþbðck � cextk Þ
�

�

=cexti (A44)

kki ¼ bkgþbðck � cextk Þ
� �

=ci (A45)

From there, one can show that the budget Ei ¼ ai þ
P

k kki allocated to the i pathways is

Ei ¼
X

k

�

bkgþbðck � cextk Þ
� 1

ci
þ 1

cexti

� �

þ bigþbci

cexti

�b ; (A46)

while the budget Ej ¼ aj þ
P

l klj allocated to the j pathways is
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Ej ¼
X

l

�

blgþbðcl� cextl Þ
� 1

cj
þ 1

cextj

 !

þ bjgþbcj

cextj

�b : (A47)

Now consider a strategy s0 for which the internal concentrations are the same as s, except

that it only uses i as a precursor. Accordingly, we have the new internal flux-balance

equations for imported blocks i and j

ðbþa0iÞcexti � bþ
X

k0kiþ
X

k0li

� �

ci� bir¼ 0 ; (A48)

ðbþa0jÞcextj �b� bjr¼ 0 ; (A49)

an the new internal flux-balance equations for the end products

bcextk þk0kici�bck � bkr¼ 0 ; (A50)

bcextl þk0lici�bcl� blr¼ 0 ; (A51)

where a0i, a
0
j, k
0
ki and k0li denote the enzymatic activity of strategy s0. The budget E0i ¼

a0i þ
P

k k
0
ki þ

P

l k
0
li allocated to the i pathways is

E0i ¼
bigþbci

cexti

�bþ
X

k

�

bkgþbðck � cextk Þ
�

þ
X

l

�

blgþbðcl� cextl Þ
�

 !

1

ci
þ 1

cexti

� �

; (A52)

while the budget E0j ¼ aj allocated to the j pathways is

E0j ¼
bjgþbcj

cextj

�b : (A53)

The overall difference in budget dE ¼ E � E0 ¼ Ei þ Ej � E0i � E0j reads

E�E0 ¼
X

l

�

blgþbðcl� cextl Þ
�

 

1

cj
þ 1

cextj

!

�
 

1

ci
þ 1

cexti

!" #

; (A54)

Therefore, as blgþ bðcl � cextl Þ � 0 by Equations (A43) and (A51), one can always form a

more economical strategy s0 by either setting pi or pj to zero according to the sign of the

expression between brackets in Equation (A54). Thus, when considering two sources of

building blocks, it is always more economical to use a single external building block for

conversion. This argument shows that strategies with optimal growth convert at most one

building block.

Appendix 3—figure 4. Optimal metabolic classes can only have a single tree of direct conver-

sion(s). For p building block, there are p such network topologies. Taking into account building-

blocks permutations leads to 1þ pð2p�1 � 1Þ metabolic types.

DOI: 10.7554/eLife.22644.014
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Appendix 4: The analytically solvable minimum model

Analytically identifying the strategies with optimal growth rate at fixed external

concentrations proves to be an arduous task for a general growth model, or even for the

harmonic-mean model Equation (A1). However, for the ‘minimum’ model it is possible to

fully characterize optimal strategies. Namely, it is possible to specify their exact allocation of

enzymes. Clearly, optimal strategies utilize their entire enzyme budget so that the budget

constraint is actually an equality. In the following, considering strategies for which

X

i

aiþ
X

i;j

kij ¼ E ; (A55)

we establish closed-form expressions for the maximum-growth-rate function at fixed

external concentrations for the minimum model. i.e. for

gðc1; . . . ;cpÞ ¼ gmin
c1

b1
; . . . ;

cp

bp

� �

; (A56)

where g is a kinetic rate constant. In turn, we use these closed-form expressions to visualize

graphically the structure of microbial coexistence in the space of external building-block

concentrations for p � 3.

Pure-importer strategy
Consider a strategy s belonging to the ‘pure-importer’ metabolic type that actively imports

every building block, i.e. does not convert building blocks. Define the auxiliary variable

m ¼ min c1=b1; . . . ; cp=bp
� �

. If strategy s is optimal, its growth rate satisfies g ¼ gm ¼ gci=bi

for all i. Indeed, suppose there exists an i for which ci=bi>m. Consider the set of indices J for

which j is such that cj=bj ¼ m. For j 2 J, the internal flux-balance equations are

ðbþajÞcextj �ðbþgÞbjm¼ 0 ; (A57)

while for indices i=2J, the internal flux-balance equations are

ðbþaiÞcexti �bciþgbim¼ 0 ; (A58)

Thus, for all j 2 J and i=2J, we have

ci

bi
¼ ðbþaiÞcexti � bigm

bbi
>
ðbþajÞcextj

bjðbþgÞ ¼
cj

bj
¼m : (A59)

If there are q indices in J, one can form the strategy s0 from s by taking an amount dE=ðp�
qÞ from every ai, i=2J, and by distributing an amount dE=q to every aj, j 2 J. The new strategy

s0 uses the same budget as strategy s and, for small enough dE>0 , every new import

activity is positive. Moreover, every c0i=bi, i=2J, is a decreasing function of dE and every c0j=bj,

j 2 J is an increasing function of dE. Thus, for small enough dE>0, we have

m0 ¼ min c0
1
=b1; . . . ; c

0
p=bp

� �

>m, which contradicts the optimality of s and shows that m ¼ ci=bi

for all p internal building-block concentrations.

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 38 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


Since m ¼ ci=bi for all i, the internal flux-balance equations of an optimal strategy actively

importing every building block are

ðbþaiÞcexti �ðbþgÞbim¼ 0 : (A60)

Considering Equation (A60) for two indices i and j and equating m yields

bþai

bþg

� �

cexti

bi

� �

¼ bþaj

bþg

� �

cextj

bj

� �

: (A61)

Thus, the import activities aj can all be expressed in term of the single import activity ai via

aj ¼ bþaj

� �bjc
ext
i

bjc
ext
j

�b: (A62)

In turn, we obtain a simple expression for ai from the budget constraint

X

j

aj ¼ ðbþaiÞ 1þ
X

j 6¼i

bjc
ext
i

bic
ext
j

 !

�bp¼ E ; (A63)

which leads to a closed form expression for the optimal growth rate

gs$ ¼ gm¼ g

bþg

ðbþaiÞcexti

bi

� �

¼ g

bþg

Eþbp
P

i bi=c
ext
i

� �

: (A64)

For the above expression to be valid, one also needs to verify the positivity of the enzymatic

activities

ai ¼
Eþbp

1þ
P

j 6¼i
bjc

ext
i

bic
ext
j

0

B

@

1

C

A
�b>0 ; (A65)

which is always true at steady state if the budget E is large enough compared with the

passive leakage rate b.

Interconversion strategies
Consider a strategy s that actively imports q<p building blocks. Denote by S the set of indices

of actively imported blocks. There is a unique building block i 2 S that is used to produce

the p� q building blocks that are not imported. Denote by C the set of indices of converted

blocks. Reasoning by contradiction as in Section "Pure-importer strategy", one can show

that optimal strategies are such that g ¼ gm ¼ gcj=bj for all j 6¼ i, where

m ¼ min c1=b1; . . . ; cp=bp
� �

. The key distinction from the case of the pure importer is that we

possibly have ci=bi>m. Such a case emerges for moderate enzyme budget satisfying

E <~ pðbþ gÞ.

Case ci=bi>m:

In this case, the internal flux-balance equations of an optimal strategy actively importing

building blocks j 2 S, while using i as sole precursor to building blocks j 2 C, read
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ðbþaiÞcexti � bþ
X

j2C
kji

 !

ci�gbim¼ 0 ; (A66)

bcextj þkjici�ðbþgÞbjm¼ 0 ; j 2C ; (A67)

ðbþajÞcextj �ðbþgÞbjm¼ 0 ; j=2C ; j 6¼ i : (A68)

Notice that relation Equation (A67) allows one to express m as a function of ci. Substituting

the corresponding expression for m in the condition ci=bi>m yields

kji<ðbþgÞ 1� b

bþg

cextj

ci

� �

; (A69)

which can be satisfied for positive kji when the internal building-block concentration ci

exceeds the external building-block concentration cextj . Then, using Equation (A66), one can

write Equation (A67) as

bcextj þ
kji

bþ
P

j2C kji
ðbþaiÞcexti �gbim
� �

�ðbþgÞbjm¼ 0 : (A70)

Solving for ~kji ¼ kji=ðbþ
P

j2C kjiÞ in the above equation yields:

~kji ¼
ðbþgÞbjm�bcextj

ðbþaiÞcexti �gbim
: (A71)

Then, using Equation (A71) and the relation

X

j2C
kji ¼ b

P

j2C ~kji

1�
P

j2C ~kji
; (A72)

one obtains an expression for the enzymatic activity kji ¼ ðbþ
P

j2C kjiÞ~kji as a function of m:

kjiðmÞ ¼
bðbþgÞbjm�b2cextj

ðbþaiÞcexti þb
P

j2C c
ext
j �

�

gbiþðbþgÞ
P

j2C bj
�

m
: (A73)

If q>1, adopting the reasoning from Section "Pure-importer strategy" to optimize over the

aj, j 2 S; j 6¼ i, at fixed ai and kij, we have:

m¼ 1

bþg

ðbþajÞcextj

bj

� �

(A74)

¼ 1

bþg

Eþbðq� 1Þ�ai�
P

j2C kjiðmÞ
P

j2Snfig bj=c
ext
j

 !

: (A75)

Solving this quadratic equation for m, it can be seen that the larger root gives a negative

value for kji. Hence it is the smaller root that defines the function mðaiÞ, which, in turn, can

be optimized over the import enzymatic activity ai to obtain the optimal growth rate for a

metabolic class with interconversions:
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gs$ ¼ g
u

v
1�

ffiffiffiffiffiffiffiffiffiffiffiffi

1� w

u2

r
� �

; (A76)

where the reduced variables u, v, and w are

u¼
�

Eþbq
�

cexti þb
X

j2C
cextj þ

2b
P

j2C bj
P

j2Snfig bj=c
ext
j þ

P

j2C bjþ g
bþgbi

� �

=cexti

; (A77)

v¼ ðbþgÞ
X

j2Snfig
bjc

ext
i =cextj þ

X

j2C
bjþ

g

bþg
bi

0

@

1

A ; (A78)

w¼
�

Eþbq
�

cexti þb
X

j2C
cextj

" #2

þ4b2cexti

X

j2C
cextj : (A79)

Similarly, for q ¼ 1, writing the enzyme budget constraint E ¼Pj 6¼i kjiðmÞ þ ai leads to an

expression for m in terms of ai. In turn, the optimization of mðaiÞ over the import enzymatic

activity ai yields the same expression as in Equation (A76), with Equation (A77),

Equation (A78), and Equation (A79), where the only imported block is i, i.e. S n fig ¼ �.

One can check that when considered as functions of the external concentrations, the

reduced variable u is homogeneous of degree one, the reduced variable v is homogeneous

of degree zero and w is homogeneous of degree two. Therefore, the optimal growth rate is

homogeneous of degree one, as expected from the homogeneity of the min function. (In the

harmonic-mean model, the rate function g is also homogeneous of degree one).

Case ci=bi ¼ m:

In this case, the internal flux-balance equations of an optimal strategy importing building

blocks j 2 S, while using i as sole precursor to building blocks j 2 C, reads

ðbþaiÞcexti � bþ
X

j2C
kjiþg

 !

bim¼ 0 ; (A80)

bcextj þ
�

kjibi�ðbþgÞbj
�

m¼ 0 ; j 2C ; (A81)

ðbþajÞcextj �ðbþgÞbjm¼ 0 ; j=2C ; j 6¼ i : (A82)

From Equation (A81), we deduce that the conversion activities satisfy

kji ¼
1

bi
ðbþgÞbj�

b

m
cextj

� �

; (A83)

and, using the above result in Equation (A80), we find

ai ¼ ðbþgÞ biþ
X

j2C
bj

 !

m

cexti

�b 1þ
X

j2C

cextj

cexti

 !

: (A84)
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If q>1, adopting the reasoning from Section "Pure-importer strategy to optimize over the aj,

j 2 S; j 6¼ i, at fixed ai and kij, we still have:

m¼ 1

bþg

Eþbðq� 1Þ�ai�
P

j2C kji
P

j2Snfig bj=c
ext
j

 !

: (A85)

Finally, substituting for kji and ai in the above equation, m is determined as the unique

positive solution of a quadratic equation, which yields:

gs$ ¼ g
�vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2� 4uw
p

2u
(A86)

where the reduced variables u, v, and w are

u¼�ðbþ gÞ
X

j2Snfig

bj

cextj

þ
X

j2C

bj

cexti

þ bi

cexti

0

@

1

A (A87)

v¼ Eþb qþ
X

j2C

cextj

cexti

 !

�ðbþgÞ
X

j2C

bj

bi
; (A88)

w¼ b

bi

X

j2C
cextj : (A89)

Similarly, for q ¼ 1, writing the enzyme budget constraint E ¼Pj 6¼i kjiðmÞ þ ai leads to an

expression of m in terms of ai. In turn, the optimization of mðaiÞ over the import enzymatic

activity ai yields the same expression as in Equation (A86), with Equation (A87),

Equation (A88), and Equation (A89), where S n fig ¼ �.

Coexistence at steady state for p � 3 building blocks
As the solution to Gðcext

1
; . . . ; cextp Þ ¼ maxj gs$

j
ðcext

1
; . . . ; cextp Þ ¼ d, the set of steady-state external

concentrations c$
1
; . . . ; c$p defines a multi-patched hypersurface. Each hypersurface patch

corresponds to the set of external building-block concentrations for which a given metabolic

type achieves the optimal rate of biomass production. Coexistence of multiple strategies,

belonging to different metabolic types, occurs for external concentrations at the intersection

of patches. As we consider p building blocks, we expect consortia to be generically made of

p strategies, each belonging to a different metabolic type. Moreover, consortia with q

coexisting strategies occur locally at the intersection of q hypersurfaces in a p-dimensional

space of external concentrations, determining a p� q dimensional set. In particular,

consortia with p coexisting strategies occur for a set of isolated external building-block

concentrations. We refer to such consortia as microbial cartels. In the following, we show the

generic occurrence of cartels and characterize their structure by specifying their composition

and their associated external building-block concentrations.

Exploiting analytical expressions for the optimal growth of various metabolic classes, one

can visually inspect the hypersurface defined by c$
1
; . . . ; c$p for p � 3. Although our

optimization is valid for any stoichiometric coefficients bi, for simplicity, we consider the

symmetric case where building blocks have the same biomass stoichiometry, i.e. for which

bi ¼ 1 for all i.
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For p ¼ 2, there are two particular sets of building-block external concentrations for which

microbial cartels are optimal. By symmetry with respect to building block permutations, it is

enough to characterize one cartel, e.g., the one occurring for c$
1
>c$

2
. In this case, the

microbial cartel is composed of a converting strategy, one that imports block 1 to synthesize

block 2, and a pure-importer strategy (see Appendix 4—figure 1).

c1

c1 c2

α1

κ21

c1

c1 c2

c2

α1 α2

* * *

Appendix 4—figure 1. Microbial cartels for 2 building blocks.

DOI: 10.7554/eLife.22644.015

Considering the case p ¼ 3 reveals a more complex picture as shown in Appendix 4—figure

5a and Appendix 4—figure 5b. For moderate enzyme budgets E <~ pðbþ gÞ, there are 9

cartels of 3 coexisting strategies (see Appendix 4—figure 5a), whereas, for large enzyme

budgets E � pðbþ gÞ, 3 pairs of consortia merge, yielding 3 cartels of 3 coexisting

strategies and 3 cartels of 4 coexisting strategies (see Appendix 4—figure 5b). In any case,

microbial cartels can be categorized based on symmetry considerations. For instance, for

moderate enzyme budget, 6 cartels are associated to strictly ordered external

concentrations, e.g. c$
1
>c$

2
>c$

3
, whereas the other 3 cartels are associated with degenerate

order of the type c$
1
¼ c$

2
>c$

3
, for which there are two most abundant building blocks. The

strictly ordered cartel corresponding to c$
1
>c$

2
>c$

3
is made of the 3 metabolic types shown in

Appendix 4—figure 2,
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Appendix 4—figure 2. Microbial cartel for 3 building blocks with well-ordered concentrations.

DOI: 10.7554/eLife.22644.016

whereas the marginal cartel corresponding to c$
1
¼ c$

2
>c$

3
comprises the metabolic

types shown in Appendix 4—figure 3.

c1

c1 c2

c3
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α1 α2

κ31
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κ32
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c1 c2

c2 c3

c3

α1 α2 α3

* * * * * * *

Appendix 4—figure 3. Microbial cartel for 3 building block with degenerate order among build-

ing-block concentrations.

DOI: 10.7554/eLife.22644.017

Observe that the set of 6 strictly ordered cartels is symmetric with respect to building block

permutations, as is the set of 3 marginal cartels. For large enzyme budget, the merging of
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pairs of strictly ordered cartels leads to 3 cartels associated to orders of the type c$
1
>c$

2
¼ c$

3
,

for which the comprised metabolic types are shown in Appendix 4—figure 4.
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Appendix 4—figure 4. Merged microbial cartel for 3 building blocks.

DOI: 10.7554/eLife.22644.018

As shown later, such cartels with are not generic as they only arise for the minimum model

whose growth-rate function gðc1; . . . ; cpÞ ¼ gminðc1; . . . ; cpÞ is not differentiable when ci ¼ cj

for i 6¼ j.

The low-dimensional examples p ¼ 2 or 3 suggest a general structure for the symmetric p-

dimensional case, i.e. bi ¼ 1 for 1 � i � p. If the external concentrations satisfy the order

relation cext
1
>cext

2
>cext

3
> . . .>cextp , there exists a microbial cartel with p metabolic strategies.

Specifically, these strategies belong to the metabolic class that converts building block 1

into the p� 1 other building blocks, the metabolic class that converts building block 1 into

the p� 2 least abundant building blocks and import building block 2, the metabolic class

that converts building block 1 into the p� 3 least abundant building blocks and import

building blocks 2 and 3, . . ., and the pure-importer metabolic class. Moreover, we conjecture

that cartels also emerge for degenerate order relations of the type with

cext
1
¼ . . . ¼ cextq >cextqþ1> . . .>cextp .

c3
ext

c2
extc1

ext

c3
ext

c2
extc1

ext

a. b.

Appendix 4—figure 5. For large enough supply rates, population dynamics drive the external

building-block concentrations towards steady-state values c$
1
; . . . ; c$p that satisfy growth rate

equals death rate, Gðc$
1
; . . . ; c$pÞ ¼ d. Consortia emerge at concentrations for which distinct

metabolic classes are jointly optimal. For p ¼ 3, a pure-converter strategy is optimal on the

red patches, mixed strategies are optimal on the blue and green patches, while a pure-

importer strategy is optimal on the grey patch. There are two types of cartels at the

intersection of 3 patches: 6 distinct cartels with well-ordered external concentrations (yellow

and pink), e.g. cext
1
>cext

2
>cext

3
, and 3 distinct cartels with degenerate external concentration

ordering (cyan), e.g. cext
1
¼ cext

2
>cext

3
. For both panels, we take b ¼ 1, g ¼ 2, d ¼ 0:2,

b1 ¼ b2 ¼ b3 ¼ 1. a. For a moderate enzyme budget E <~ pðbþ gÞ, there are 9 cartels of 3
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coexisting strategies. b. For a large enzyme budget E ¼ 100, 3 pairs of consortia merge,

yielding 3 cartels of 3 coexisting strategies and 3 cartels of 4 coexisting strategies.

DOI: 10.7554/eLife.22644.019
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Appendix 5: Optimal strategies within metabolic classes

Unfortunately, finding the optimal metabolic strategies in closed form proves intractable for

the harmonic-mean model. However, we expect the structure of microbial cartels suggested

by the analysis of the minimum model to hold for more generic growth-rate function. To

justify this point, we need to reformulate the optimization of the growth rate at fixed

external building-block concentrations into a geometric problem in the space of internal

building-block concentrations. From there, we show that: (i) Optimal strategies utilize the

most available building block for conversion and that converted blocks are the least

available. (ii) The order of internal abundances of building blocks is the same as the order of

external abundances, except that converted building blocks are equally abundant internally.

The first property directly implies that only certain metabolic classes can be jointly optimal

for the same external concentrations, limiting the number of possible cartels. The second

property allows one to discard the occurrence of degenerate cartels for which internal

concentrations are equal in the harmonic-mean model.

Geometric formulation of metabolic optimization
In this section, we formulate the optimization of the cellular growth rate at fixed external

building-block concentrations as a geometric problem in the space of internal building-block

concentrations.

On one hand, define Cg, the set of internal building-block concentrations for which the rate

of growth exceeds a given rate g, i.e.

Cg ¼
�

c1; . . . ;cp jgðc1; . . . ;cpÞ � r
	

: (A90)

Then, by the monotonicity of the rate function g, we have that

Cg0 � Cg with g� g0 ; lim
g!¥
Cg ¼ � and lim

g!0

Cg ¼Rp
þ : (A91)

Observe that considering the case where building blocks are symmetric with respect to

permutations implies that the growth-rate function is symmetric in its arguments. On the

other hand, observe that, if a strategy s has internal concentrations c1; . . . ; cp and grows at

rate g, such a strategy necessarily has an enzyme budget

Eg;Mðc1; . . . ;cpÞ ¼
X

j2C

�

gþbðcj� cextj Þ
� 1

ci
þ 1

cexti

� �

þ
X

j=2C

gþbcj

cextj

�b

 !

(A92)

where C denotes the set of building blocks converted from building block i. Notice that the

above expression for the enzyme budget only depends on the topology of the metabolic

networks, and thus is characteristic of the metabolic classM. Then, define Eg;M, the set of

internal building-block concentrations for which the required budget Eg;Mðc1; . . . ; cpÞ satisfies
the budget constraint, i.e

Eg;M ¼
�

c1; . . . ;cp jEg;Mðc1; . . . ;cpÞ � E
	

: (A93)

As the required budget is linearly increasing in g at fixed external concentrations, we also

have that
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Eg;M � Eg0 ;M with g� g0 : (A94)

Moreover, (i) for large enough rate g, there are no positive internal concentrations for which

the budget constraint is satisfied and (ii) at zero growth rate, there always are positive

internal building-block concentrations for which the budget constraint is satisfied, i.e.

lim
g!¥
Eg;M \Rp

þ ¼ � and E0;M \Rp
þ 6¼ � : (A95)

The properties Equation (A91), Equation (A94), and Equation (A95) show that the optimal

growth rate achievable by a metabolic classM can be defined as the maximal value g>0 for

which Cg and Eg have a contact point

sup
s2M

gsðcext1
; . . . ;cextp Þ ¼ sup

�

g jCg \Eg;M 6¼ �
	

: (A96)

Such a contact point defines the internal concentrations for an optimal strategy in metabolic

classM at fixed external building-block concentrations. In particular, the uniqueness of the

contact point implies that there is a unique optimal strategy within a given metabolic class.

By this argument, one can see that there is unique optimal pure-importer strategy. Indeed,

the quasi-concave property of the growth-rate function g means that the sets Cg are convex,

while for a pure-importer strategy, the enzyme budget Eg;M is a linear function of the

internal concentrations and sets Eg;M are (convex) hyperplanes. Then, the uniqueness of the

optimal pure-importer strategy follows from the uniqueness of the contact point between

two convex sets.

In the following, we will use a similar geometrical approach to specify the optimal pure-

converter strategy which proves crucial to discard the occurence of degenerate optimal

strategies for which all internal building-block concentrations are equal. Establishing this

result requires first to relate the topology of optimal metabolic strategies to the relative

external and internal abundances of building blocks. The next section is devoted to establish

that relation.

Building-block concentrations for optimal strategies
In this section, we exploit our geometric formulation of metabolic optimization to infer

properties about the optimal strategies of a metabolic class as defined in Equation (A96).

Conditions on external building blocks
Here, we show that if the external concentrations satisfy the order relation

cext
1
>cext

2
� cext

3
� . . . � cextp , then at most p metabolic classes can coexist: the metabolic class

M1 that converts building block 1 into the p� 1 other building blocks, the metabolic class

M2 that converts building block 1 into the p� 2 least abundant building blocks and imports

building block 2, the metabolic classM3 that converts building block 1 into the p� 3 least

abundant building blocks and imports building blocks 2 and 3, . . ., and the pure-importer

metabolic classMp. Observe that we assume a strict ordering between the concentrations

of the two most abundant building blocks.

First, we show that at fixed external concentrations, it is always more economical to use the

most abundantly available building block in i=2C as a precursor for conversion. To see this,

considerM andM0 the metabolic classes that respectively use i and j as a precursor for

building blocks k 2 C. Then, defining c0
1
; . . . ; c0p as the transposition of c1; . . . ; cp such that c0i ¼

cj and c0j ¼ ci, one can see that relation Equation (A92) implies that
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Eg;M0ðc0
1
; . . . ;c0pÞ�Eg;Mðc1; . . . ;cpÞ ¼

X

k2C

�

gþbðck � cextk Þ
� 1

cextj

� 1

cexti

 !

: (A97)

Thus, if cexti >cextj , for any strategy inM0, i.e. for any internal concentrations c0
1
; . . . ; c0p, we have

Eg;M0ðc0
1
; . . . ;c0pÞ � Eg;Mðc01; . . . ;c0pÞ ; (A98)

showing that there is a more economical strategy inM with internal concentration c1; . . . ; cp
such that gðc1; . . . ; cpÞ ¼ gðc0

1
; . . . ; c0pÞ by symmetry of the growth rate function.

Second, we show that it is always more economical to produce the least abundant building

blocks by conversion. To see this, consider a metabolic classM that converts building block

i into building block j and the metabolic classM0 that only differs fromM by the fact that it

imports building block j. Then, for fixed internal concentrations c1; . . . ; cp, the difference of

the enzyme budgets associated to each metabolic class satisfies:

Eg;Mðc1; . . . ;cpÞ�Eg;M0ðc1; . . . ;cpÞ ¼
�

gþbðcj� cextj Þ
� 1

ci
þ 1

cexti

� 1

cextj

 !

: (A99)

If importing building block j is optimal, we necessarily have

Eg;Mðc1; . . . ;cpÞ � Eg;M0ðc1; . . . ;cpÞ i:e:
1

ci
þ 1

cexti

� 1

cextj

; (A100)

whereas, if converting j is optimal, we necessarily have

Eg;Mðc1; . . . ;cpÞ � Eg;M0ðc1; . . . ;cpÞ i:e:
1

ci
þ 1

cexti

� 1

cextj

: (A101)

Thus, for a metabolic classM converting i in j 2 C to be optimal, we necessarily have

1

ci
þ 1

cexti

� 1

cextj

; j 2C ; and
1

ci
þ 1

cexti

� 1

cextk

; k=2C : (A102)

In particular, the above inequalities implies cextk >cexti . In other words, at fixed external

concentrations, optimal metabolic classes are such that every imported building block has

higher external concentration than the external concentration of any converted building

block. Therefore, for the metabolic class that converts building block i into building blocks

j 2 C to be optimal, we need that cexti ¼ maxk c
ext
k and maxj2C cextj � mink=2C cextk .

Consider now that the external concentrations satisfy the order relation

cext
1
>cext

2
� cext

3
� . . . � cextp . Then, only metabolic classes that use building block 1 as

precursor for conversion can be optimal as cext
1
¼ maxj c

ext
j . Moreover, if a metabolic strategy

imports a building block besides building block 1, it necessarily imports the second most

abundant building block, i.e. 2, so that maxj>2 c
ext
j � cext

2
. Similarly, if a metabolic strategy

imports q building blocks, it necessarily imports the q most abundant building blocks, so that

maxj>q c
ext
j � mink�q cextk . The above argument implies that degenerate cartels with coexisting

optimal strategies belonging to more than p metabolic classes can only happen for

degenerate order relation on the external building-block concentration, i.e. when there are

i 6¼ j such that cexti ¼ cextj .
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Conditions on internal building blocks
Here, we show that if a metabolic classM is optimal for external concentrations satisfying, say,

cext
1
� cext

2
� cext

3
� . . . � cextp , then the internal concentrations of the optimal strategy inM

satisfy an order relation. Specifically, for the metabolic classMq that comprises strategies

importing the q most abundant building blocks, the optimal strategy is such that

c1 � c2 � . . . � cqþ1 ¼ . . . ¼ cp. In other words, the internal building-block abundances mirror

the external abundances except for the converted building blocks, which all have the same

concentration.

Proving the above point requires similar arguments as for the case of the external building-

block abundances. Indeed, at fixed external concentrations, a strategy in metabolic classMq

growing at rate g and having internal concentrations c1; . . . ; cp requires an enzyme budget

Eg;Mq
ðc1; . . . ;cpÞ ¼

X

j>q

�

gþbðcj� cextj Þ
� 1

c1
þ 1

cext
1

� �

þ
X

j�q

gþbcj

cextj

�b

 !

: (A103)

Then, defining c0
1
; . . . ; c0p as the transposition of c1; . . . ; cp such that c0

1
¼ cj and c0j ¼ c1, with

j � q, one can see that relation Equation (A103) implies that

Eg;Mq
ðc0

1
; . . . ;c0pÞ�Eg;Mq

ðc1; . . . ;cpÞ (A104)

¼
X

k2C

�

gþbðck � cextk Þ
� 1

c0
1

� 1

c1

� �

þb
c0
1
� c1

cext
1

þ
c0j� cj

cextj

 !

; (A105)

¼
X

k2C

�

gþbðck � cextk Þ
� 1

cj
� 1

c1

� �

þbðcj� c1Þ
1

cext
1

� 1

cextj

 !

; (A106)

which has the sign of c1 � cj as c
ext
1
� cextj . Thus, we necessarily have c1 ¼ maxj cj. Moreover,

defining c0
1
; . . . ; c0p as the transposition of c1; . . . ; cp such that c0i ¼ cj and c0j ¼ ci, with 1<i; j � q,

one can see that relation Equation (A103) implies that

Eg;Mq
ðc0

1
; . . . ;c0pÞ�Eg;Mq

ðc1; . . . ;cpÞ ¼ bðc0j� cjÞ
1

ci
þ 1

cexti

� �

; (A107)

¼ bðcj� ciÞ
1

cexti

� 1

cextj

 !

: (A108)

which has the sign of ci � cj if c
ext
i � cextj . Thus, we necessarily have c1 � c2 � c3 � . . . � cq. In

turn, defining c0
1
; . . . ; c0p as the transposition of c1; . . . ; cp such that c0i ¼ cj and c0j ¼ ci, with

2<i � q and j>q, one can see that relation Equation (A103) implies that

Eg;Mq
ðc0

1
; . . . ;c0pÞ�Eg;Mq

ðc1; . . . ;cpÞ (A109)

¼bðc0j� cjÞ
1

c1
þ 1

cext
1

� �

þb
c0i� ci

cexti

; (A110)

¼bðci� cjÞ
1

c1
þ 1

cext
1

� 1

cexti

� �

; (A111)

which has the sign of ci � cj as we have 1=c1 þ 1=cext
1
� 1=cexti by Equation (A102). Thus, we

necessarily have c1 � c2 � c3 � . . . � cq � maxj>q cj.

Finally, at fixed c1; . . . cq, the sets defined by Eg;Mðcqþ1; . . . ; cpÞ<E are (convex) ðp� qÞ-
dimensional planes, implying the unicity of the contact point cqþ1; . . . ; cp with the convex sets

Cg for optimal strategies. Together with the symmetry by permutations of cqþ1; . . . ; cp, this

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 49 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


uniqueness directly implies cqþ1 ¼ cqþ2 ¼ . . . ¼ cp. This concludes our proof that for external

concentrations such that cext
1
>cext

2
� cext

3
� . . . � cextp , the internal concentrations of optimal

strategies satisfy c1 � c2 � . . . � cqþ1 ¼ . . . ¼ cp.

Optimal pure-converter strategy
In this section, we specify the optimal pure-converter strategy in our geometric setting, which

proves crucial to discard the occurrence of degenerate cartels for general growth functions,

which includes the harmonic-mean model.

Consider an optimal pure-converter strategy importing building block 1 with cext
1
¼ maxj c

ext
j .

We have established that, for this strategy to be optimal in metabolic classM1, we

necessarily have c2 ¼ . . . ¼ cp. Denoting c ¼ c2 ¼ . . . ¼ cp, such a strategy growing at rate g

requires an enzyme budget

Eg;M1
ðc1;cÞ ¼ ðp� 1Þ gþbðc� cextÞ

� � 1

c1
þ 1

cext
1

� �

þ gþbc1

cext
1

�b ; (A112)

where we have defined cext ¼
P

j>1 c
ext
j =ðp� 1Þ � cext

1
. As an optimal strategy necessarily

utilizes all its enzyme budget, i.e. Eg;M1
¼ E, we deduce from the above relationship that

c¼ cextþ 1

b

1

p� 1

c1 c
ext
1

c1þ cext
1

� �

Eþb� gþbc1

cext
1

� �

� g

� �

: (A113)

The function c ¼ cgðc1Þ is the boundary of the set Eg;M1
ðc1; cÞ � E. Because cgðc1Þ is concave

in c1 for c � c1 � 0, the contact point ðc; c1Þ with the (convex) set gðc1; c; . . . ; cÞ � g is unique.

Therefore, there is a unique optimal pure-converter strategy.

In principle, the contact point corresponding to that optimal strategy either occurs at an

endpoint c ¼ c1 or for c<c1 as an interior point. However, if g is symmetric differentiable, the

level sets of gðc1; c; . . . ; cÞ in the ðc1; cÞ-plane have a slope �1=ðp� 1Þ on the diagonal c ¼ c1,

whereas one can check that the slope of cgðc1Þ is larger than �1=ðp� 1Þ on the diagonal

c ¼ c1. Actually, one can show that the latter slope tends toward �1=ðp� 1Þ from above for

increasing enzyme budget E. This relation between slopes on the diagonal c ¼ c1, together

with the convexity properties of gðc1; c; . . . ; cÞ and cgðc1Þ, implies that the contact point is

always an interior point: for optimal pure-converter strategies, we always have

c1>c2 ¼ . . . ¼ cp.

The fact that c1>c2 ¼ . . . ¼ cp at optimum does not necessarily holds if gðc1; . . . ; cpÞ is non-
differentiable when ci ¼ cj for i 6¼ j, as in the minimum model. Indeed, for the minimum

model, the slope of the level sets of gðc1; c; . . . ; cÞ to the right of the diagonal c1 ¼ c is zero

and for large enough enzyme budget E, the contact point is an endpoint. Then we have c1 ¼
c2 ¼ . . . ¼ cp at optimum. This case of equal internal concentrations in optimal strategies is

the reason for the occurrence of degenerate cartels with pure-converter strategies for the

minimum model.
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Appendix 6: The selection of cartels for generic growth
functions

In this section, we characterize the emergence of microbial cartels for growth-rate functions

satisfying gðc1; . . . ; cpÞ<lminðc1; . . . ; cpÞ for some l>0 and having the quasi-concave property,

which includes the harmonic-mean model. We distinguish between external building-block

concentrations that satisfy (i) a strict ordering relation, e.g. cext
1
>cext

2
> . . .>cextp , or (ii) a

degenerate ordering relation with equality between the concentrations of the most

abundant building blocks, e.g. cext
1
¼ . . . ¼ cextq >cextqþ1> . . .>cextp , with 1<q<p. We also introduce

the graph structure of microbial cartels in order to define a notion of neigborhood between

cartels.

Microbial cartels for strict ordering
Here, we characterize the structure of microbial cartels arising for external concentrations

satisfying cext
1
>cext

2
� . . . � cextp for everywhere differentiable growth-rate function gðc1; . . . ; cpÞ

(as for the harmonic-mean model). Specifically, we show that cartels exist for external

concentrations c$
1
; . . . ; c$p such that for all metabolic classMi, 1 � i � p, we have

sup
s2Mi

gsðc$1; . . . ;c$pÞ ¼ d ; (A114)

and such that the following order relations holds:

1

c
ð1Þ
1

� 1

c$
2

� 1

c$
1

<
1

c
ð2Þ
1

� 1

c$
3

� 1

c$
1

<
1

c
ð3Þ
1

� . . .<
1

c
ðpÞ
1

: (A115)

In particular, observe that the set of steady-state external concentrations c$
1
>c$

2
> . . .>c$p is

strictly ordered. We prove the above proposition by an iterative procedure which requires to

first establish that there is a unique optimal pure-converter strategy with internal

concentrations satisfying c1>c2 ¼ . . . ¼ cp.

First, observe that as import from the external pool is the only source of internal building

block 1 for metabolic classM1, the optimal growth rate

sup
s2M1

gsðcext1
; . . . ;cextp Þ ; (A116)

defines an increasing function of cext
1

that is zero when cext
1
¼ 0. Then, by uniqueness of the

optimal strategy in metabolic classM1 for fixed concentrations cext
2
; . . . ; cextp , there is a

unique c$
1
>0 such that

sup
s2M1

gsðc$1;cext2
; . . . ;cextp Þ ¼ d ; i<q ; (A117)

thereby defining a function c$
1
ðcext

2
; . . . ; cextp Þ. Moreover, the internal concentrations c1; . . . ; cp

of the optimal strategy inM1, correspond to an interior point in the sense that

c1<c2 ¼ . . . ¼ cp.

Suppose there are q� 1 functions c$
1
ðcextq ; . . . ; cextp Þ; . . . ; c$q�1ðcextq ; . . . ; cextp Þ such that for all

cextq ; . . . ; cextp , we have
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sup
s2Mi

gsðc$1; . . . ;c$q�1;cextq ; . . . ;cextp Þ ¼ d ; i<q ; (A118)

and such that we have the following order relation

1

c
ð1Þ
1

� 1

c$
2

� 1

c$
1

<
1

c
ð2Þ
1

� 1

c$
3

� 1

c$
1

<
1

c
ð3Þ
1

� . . .<
1

c
ðq�1Þ
1

; (A119)

c
ðq�1Þ
q�1 ¼ . . .¼ cðq�1Þp ; (A120)

where c
ðq0Þ
i denotes the internal concentration of building block i in the optimal strategy of

metabolic classMq0 . As import from the external pool is the only source of internal building

block q0 for metabolic classMq0 , all strategies inMq0 , q
0 � q, have zero growth rate if

cextq ¼ 0.

For fixed cextqþ1; . . . ; c
ext
p , one can increase cextq until

1

cextq

¼ 1

c
ðq�1Þ
1

þ 1

c$
1

; (A121)

since c
ðq�1Þ
1

and c$
1
are both bounded from below. To see that c

ðq�1Þ
1

and c$
1
are bounded from

below, observe that the growth-rate function for the harmonic-mean model satisfies

gðc1; . . . ;cpÞ � gmin
c1

b1
; . . . ;

cp

bp

� �

: (A122)

Thus, independently of its metabolic strategy, a cell that grows at rate d has internal

concentrations that are bounded below by ci=bi>d for all i. Moreover, for all metabolic

classesMq0 , 1 � q0 � p, the only source of internal building block 1 is via import form the

external pool. In particular, we have ða1 þ bÞcext
1
� bc1>0, which implies that the

concentrations cext
1

for which a cell can grow at rate d are bounded below by

cext
1
>

bc1

a1þb
>

bc1

Eþb
>

b

Eþb

d

b1
: (A123)

This shows that, as function of cextqþ1; . . . ; c
ext
p , both c

ðq�1Þ
1

and c$
1
are bounded from below by

positive constants that are independent of cextq , which justifies that equality Equation (A121)

holds for some cextq >0.

When equality Equation (A121) holds, we know that for any strategy in metabolic class

Mq�1, there is a strategy in metabolic classMq that grows at the same rate, i.e. d. Then, one

can consider c$q, the smallest concentration cextq for which a metabolic strategy inMq grows

with rate d:

c$q ¼ inf
n

cextq >0
�

�

� sup
s2Mq

gsðc$1; . . . ;c$q�1;cextq ; . . . ;cextp Þ ¼ d
o

; (A124)

For such c$q, metabolic classesMq�1 andMq are jointly optimal, which implies by inequalities

Equation (A102) that
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1

c
ðq�1Þ
1

� 1

c$q
� 1

c$
1

� 1

c
ðqÞ
1

: (A125)

Moreover, c$q is thus-defined as a function of cextqþ1; . . . ; c
ext
p , which allows one to define

c$
1
; . . . ; c$q�1 as functions of c

ext
qþ1; . . . ; c

ext
p alone by

c$q0¼
def
c$q0
�

c$qðcextqþ1; . . . ;c
ext
p Þ;cextqþ1; . . . ;c

ext
p

�

; q0<q : (A126)

Finally, we show that the last inequality in Equation (A125) is strict by a geometric

argument. As the contact point between Cg and Eg;Mq�1 is an interior point with

c1> . . .>cq�1 ¼ . . . ¼ cp, the gradient of the growth-rate function gðc1; . . . ; cpÞ is proportional
to the gradient of the required enzyme budget Eg;Mq�1ðc1; . . . ; cpÞ at the contact point.

However, we have

rEg;Mq

�

�

�

c1;...;cp
¼

b

c$
1

� 1

c2
1

X

j¼1;j>q

�

gþbðcj� cextj Þ
�

b

c$
2

..

.

b

c$q

b
1

c$
1

þ 1

c1

� �

..

.

b
1

c$
1

þ 1

c1

� �
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
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3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (A127)

For fixed external concentrations cextqþ1; . . . ; c
ext
p , if cextq is such that equality Equation (A121)

holds, i.e.

cextq ¼
1

c
ðqÞ
1

þ 1

c$
1

 !�1

; (A128)

there is a metabolic strategy in metabolic classMq that grows at rate d with the same

internal concentrations as the optimal strategy inMq (which also grows at rate d). At these

internal concentrations, rEg;Mq
is proportional to rg and we have

�

rEg;Mq�1�rEg;Mq

�

j
¼

�

gþbðcq� cextq Þ
��

c
ðq�1Þ
1

� �2

if j¼ 1 ;

0 if j 6¼ 1 :

8

<

:

(A129)

The fact that
�

rEg;Mq�1 �rEg;Mq

�

1
>0 implies that the contact point between sets Eg;Mq�1 and

Cg cannot be a contact point between sets Eg;Mq
and Cq, and that c$q, as defined by

Equation (A124), is such that

cextq <
1

c
ðqÞ
1

þ 1

c$
1

 !�1

: (A130)
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In other words, the last inequality in Equation (A125) is strict and the contact point Eg;Mq

and Cq between is an interior point in the sense that c1>c2> . . .>cq ¼ . . . ¼ cp.

Iterating on the above argument for q ¼ 2; . . . ; p demonstrates the existence of a sequence

c$
1
> . . .>c$p for which there are p jointly optimal metabolic strategies, each belonging to

metabolic classMi, 1 � i � p, thereby forming a microbial cartel.

Microbial cartels for degenerate ordering
Above, we characterized the cartels that arise for strict order of the external concentrations

cext
1
> . . .>cext

2
> . . .>cextp . Here, we show that other cartels emerge at the frontier between

sectors defined by distinct orders, i.e. when the most abundantly available building blocks

can have the same external concentration.

Consider an order relation of the type cext
1
¼ . . . ¼ cextq >cextqþ1 . . .>c

ext
p with 1 � q<p. The

structure of the ‘degenerate cartels’ arising for the above ordering can be infer from the

cartels associated to strict ordering by using two facts:

i. Optimal metabolic classes necessarily import all building block 1 � i � q. To see this, con-
sider block i and block j among the most abundant building blocks 1 � i; j � q. By inequality
Equation (A101), for a metabolic class converting i into j to be optimal, we necessarily
have

1

ci
þ 1

cexti

� 1

cextj

; (A131)

which contradicts that cexti ¼ cextj . Thus, optimal metabolic classes import all building block

1� i� q.
ii. There is a degeneracy in the choice of the precursor. This point follows from the fact that

optimal strategies use a single most abundant building block as precursor for converted

building blocks. For order of the type cext
1
¼ . . . ¼ cextq >cextqþ1 . . .>c

ext
p , optimal metabolic clas-

ses can use any block 1 � i � q as a precursor.

Using facts (i) and (ii), one can adapt the argument of the above section for strict order

cext
1
> . . .>cext

2
> . . .>cextp to characterize cartels for order of the type

cext
1
¼ . . . ¼ cextq >cextqþ1 . . .>c

ext
p . In fact, one can show that for some external concentrations

c$
1
¼ . . . ¼ c$q>c

$

qþ1 . . .>c
$

p, there are degenerate cartels comprising strategies that use block

q0, 1 � q0 � q as precursor for conversion of the q00 least abundantly available block with

qþ q00 � p. In particular, one can consider degenerate cartels as the merger of q consortia

that share an identical pure-importer strategy, but that each comprise strategies using a

specific block q0, 1 � q0 � q as precursor for converted blocks. Moreover, using the same

notations as for cartels associated to strict ordering, the consortia using block q0, 1 � q0 � q

as precursor includes metabolic classesMq; . . . ;Mp, and we have

1

c
ðqÞ
q0

� 1

c$qþ1
� 1

c$q0
<

1

c
ðqþ1Þ
q0

� 1

c$qþ2
� 1

c$q0
<

1

c
ðqþ2Þ
q0

� . . .<
1

c
ðpÞ
q0

: (A132)

where c
ðq00Þ
q0 denotes the internal concentration of block q0 for the strategy that converts block

q0 into blocks � q00. Note that c
ðq00Þ
q0 does not depends on which block q0 is used as a precursor

since c$
1
¼ . . . ¼ c$q. Thus, relation Equation (A132) characterizes all the order properties of

internal and external concentrations in degenerate microbial cartels. Interestingly,

degenerate cartels comprise more than p distinct cell types for p>3. Actually, if the q most

abundant building blocks have equal concentration, there are 1þ qðp� qÞ coexisting
strategies: there are p� q possible sets of converted building blocks, that can each be
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converted from one of the q most abundant blocks, yielding qðp� qÞ mixed strategies in

addition to the pure-importer strategy.

Graph structure of microbial cartels
To establish the existence of cartels, we have distinguished between non-degenerate cartels,

i.e. for strictly ordered external building-block concentrations, and degenerate cartels, i.e.

for degenerate orders of external building-block concentrations. Here, we introduce the

degree of degeneracy to categorize these cartels and to define a notion of neighborhood

for cartels.

Cartel-specific concentrations c$
1
; . . . ; c$p are represented by isolated point c$ in the space of

external building concentrations, defined as the intersection of p hypercurves. Indeed, for

cartels associated to strict ordering, the concentrations c$
1
> . . .>c$p satisfy p equations

sup
s2Mq

gsðc$1; . . . ;c$pÞ ¼ d ; for all 1� q� p ; (A133)

whereMq, q<p, is the metabolic class that convert block 1 into blocks q0>q and whereMp is

the pure-importer class. For degenerate cartels associated with q� 1 equalities between the

concentrations of the most abundant building blocks, the concentrations c$
1
¼ . . . ¼

c$q> . . .>c$p satisfy

sup
s2Mq0

gsðc$1; . . . ;c$pÞ ¼ d ; for all q� q0 � p ; (A134)

whereMq0 is the metabolic class that convert one of the most abundant building block into

blocks q00>q0 and whereMp is the pure-importer class. We define the order of a cartel to be

one for cartel associated to strict ordering and to be the number of equally abundant

building blocks for other cartels.

The set of concentrations cext
1
; . . . ; cextp that satisfy p� 1 equations among the p equations

defining a cartel define a one-dimensional path in the space of external building-block

concentrations. Importantly, we can show that each of these paths passes through at most

two cartel-specific concentrations. For instance, consider the cartel of order 1 associated to

c$
1
> . . .>c$p, represented by the point c$, and the path P defined by

sup
s2Mq0 6¼q

gsðc$1; . . . ;c$pÞ ¼ d : (A135)

The point c$, which lies on P, divides the path in two rays depending on whether

sups2Mq
gsðcext1

; . . . ; cextp Þ>d. Actually, among all possible cartels, there is another cartel (and

only one) that is compatible with the p� 1 Equation (A135): the cartel associated with

c$
1
> . . .>c$qþ1>c

$

q> . . .>c$p represented by the point c$0. The point c$0 also divides the path P in

two rays depending on whether sups2M0
q
gsðcext1

; . . . ; cextp Þ>d, whereM0
q is the metabolic class

that converts 1 into blocks q; qþ 2; . . . ; p. By optimality of both cartels, we necessarily have

sups2M0
q
gsðc$Þ<d and sups2Mq

gsðc$0Þ<d. Thus, the conditions sups2Mq
gsðcext1

; . . . ; cextp Þ<d and

sups2M0
q
gsðcext1

; . . . ; cextp Þ<d define the segment of path P that links the points c$ and c$0

representing both cartels. In fact, this segment is the set of concentrations for which the p�
1 metabolic classes shared by both cartels are jointly optimal.

The above reasoning can be generalize to cartel of any order, yielding the following results:
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Cartels of order 1: There are paths connecting the cartel of order 1 associated with

c$
1
> . . .>c$q0>c

$

q0þ1> . . .>c$p , to p� 2 cartels of order 1 associated with c$
1
> . . .>c$q0þ1>c

$

q0> . . .>c$p
for 1<q0<p. There is a path connecting the cartel of order 1 associated with c$

1
>c$

2
> . . .>c$p, to

the cartel of order 2 associated with c$
1
¼ c$

2
> . . .>c$p.

Cartels of order 2: There are paths connecting the cartel of order 2 associated with c$
1
¼

c$
2
> . . .>c$p to the cartels of order 1 associated with c$

1
>c$

2
> . . .>c$p and with c$

2
>c$

1
> . . .>c$p.

There are paths connecting the cartel of order 2 associated with c$
1
¼

c$
2
> . . .>c$q0>c

$

q0þ1> . . .>c$p to the p� 3 cartels of order 2 associated with c$
1
¼

c$
2
> . . .>c$q0þ1>c

$

q0> . . .>c$p for 2<q
0<p. There is a path connecting the cartel of order 2

associated with c$
1
¼ c$

2
> . . .>c$p to the cartel of order 3 associated with c$

1
¼ c$

2
¼ c$

3
> . . .>c$p:

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Cartels of order q: There are paths connecting the cartel of order q associated with c$
1
¼

. . . ¼ c$q> . . .>c$p to the q cartels of order q� 1 associated with q� 2 equalities among

c$
1
; . . . ; c$q. There are paths connecting the cartel of order q associated with c$

1
¼ . . . ¼

c$q> . . .>c$q0>c
$

q0þ1> . . .>c$p to the p� q� 1 cartels of order q associated with c$
1
¼ . . . ¼

c$q> . . .>c$q0þ1>c
$

q0> . . .>c$p for q<q
0<p. There is a path connecting the cartel of order q

associated with c$
1
¼ . . . ¼ c$q> . . .>c$p to the cartel of order qþ 1 associated with

c$
1
¼ . . . ¼ c$qþ1> . . .>c$p:

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Cartels of order p� 1: There are paths connecting the cartel of order p� 1 associated with

c$
1
¼ . . . ¼ c$p�1>c

$

p to the p� 1 cartels of order p� 2 associated with p� 2 equalities among

c$
1
; . . . ; c$p�1.

In particular, cartels of order 1 and p� 1 are connected to p� 1 cartels, while other cartels

are connected to p cartels. Observe that a cartel of order q only joins cartels of similar order,

and if possible, cartels of order q� 1 or qþ 1. Moreover, on can verify that when a path joins

two cartels of order q, 1 � q<p, these cartels share 1þ qðp� q� 1Þ strategies, whereas when
a path joins a cartel of order q to a cartel of order q� 1, 1<q<p, these cartels share 1þ ðq�
1Þðp� qÞ strategies. We define the graph structure of microbial cartels by considering the

points representing cartel-specific concentrations as nodes and by considering paths joining

cartel-specific concentrations as edges. This graph allows us to define a notion of

neighborhood for cartels: two cartels are neighbors if the are connected by an edge.
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Appendix 7: Benefit of microbial consortia

In this section, we establish that, although microbial cartels exist at isolated points in the

space of external building-block concentrations, cartels emerge for generic supply

conditions. Then, we characterize the geometry of cartel-specific supply sectors in the space

of supply rate, establishing that cartels emerge for generic building-block supply. Finally, we

show that steady-state microbial consortia maximize biomass yield at fixed supply, thereby

showing that microbial cartels of competing strategies achieve a collective optimum.

Supply sectors as polyhedral cones
Here, we introduce the notion of supply sectors, i.e. the set of supply rates values for which

competitive microbial dynamics yield the same steady-state external concentrations. We

then discuss the geometric properties of these supply sectors explaining why the emergence

of cartels is generic.

Consider an arbitrary set of steady-state external concentrations c$
1
; . . . ; c$p satisfying

Gðc$
1
; . . . ; c$pÞ ¼ d. For such concentrations, at least one cell type survives and the maximum

number of surviving cell types is attained for cartel-specific values, which are isolated points

in the space of external concentrations. Surviving cell types s 2 S
$ jointly achieve the

optimal growth rate for external building-block concentrations c$
1
; . . . ; c$p. The per-cell fluxes

experienced by these cell types f$

i;s take fixed values that can be obtained via

Equation (A11). Then, the resulting flux-balance equations for extracellular building blocks,

si
�

fnsg
�

¼ �c$i þ
v

V �Nv

X

s2S$

nsf
$

i;s ; (A136)

yield the supply rates as functions of the populations ns>0, s 2 S
$. Accordingly, for supply

rates

si
�

fnsgs2S$

�

; with ns>0 for all s 2 S$ ; (A137)

the optimal strategies s$ 2 S
$ are the only steady-state strategies that cannot be invaded by

metabolic variants. In particular, specific sets of supply rate, called supply sectors, are

associated to the stable dominance of an optimal cell type or of a consortia of optimal cell

types.

Mathematically, Equation (A136) defines the supply sector associated with the dominance

of a consortium S
$ as a polyhedral convex cone in the p-dimensional space of supply rates.

Such a cone is entirely determined by its vertex �c$ (with coordinates �c$i ) and its generating

set of vectors ff$

sgs2S$ (with coordinates f$

i;s). Observe that for all vectors f$

s, the

conservation of building blocks at steady state implies that f$

s � 1 ¼ pð1� f Þd>0. We will say

that the emergence of a consortia is generic if its associated supply sector has finite measure

in the space of supply rates. A supply sector has finite measure when it is a polyhedral cone

with full measure, i.e. its set of generating vectors contains a family of p independent

vectors.

The defining property of cartels is that they are associated with supply cones that have full

dimension in the space of supply rates. To see this, consider a cartel of order one, e.g.

associated with the order c$
1
> . . .>c$p. We know that such a cartel contains p distinct

metabolic classesMq, 1 � q � p, where q denotes the number of imported building blocks.

Moreover, using Equation (A9), the steady-state per-cell fluxes for optimal strategies inMq,

1 � q � p can be specified as
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f$

i;q ¼
ð1� f ÞdþPk>q k

ðqÞ
k1 c
ðqÞ
1

if i¼ 1 ;

ð1� f Þd if 1<i� q ;

ð1� f Þd�k
ðqÞ
i1 c
ðqÞ
1

if i>j ;

8

>

<

>

:

(A138)

where c
ðqÞ
1

and k
ðqÞ
k1 denotes the internal concentration of block 1 and the enzyme activity

associated with conversion of block 1 into block k, respectively, in metabolic classMq. Thus,

the set of generating vectors can be written

f$ðqÞ ¼ ð1� f Þd1þ
X

k>q

k
ðqÞ
k1 c
ðqÞ
1
hk ; (A139)

i.e. as a linear combination of 1, the vector with unit components, and of the vectors hk

defined for k>1 by

hi;k ¼
1 if i¼ 1 ;

�1 if i¼ k ;

0 otherwise :

8

>

<

>

:

(A140)

Equation (A139) shows that the coefficient matrix of the vectors fp;f1 � fp;f2 �
fp; . . .fp�1 � fp decomposed in the basis 1;h

2
; . . . ;hp is triangular with positive diagonal

elements. In particular, the vector space generated by fp;f1 � fp;f2 � fp; . . .fp�1 � fp, or

equivalently by f1; . . . ;fp, has full dimension. Thus, cartels of order one yield sets of

independent vectors fq with full dimension in the space of supply rate, and therefore has a

supply sector with finite measure. This shows that cartels of order one, which contain

uniquely defined strategies, can arise for generic supply conditions. By similar arguments

from linear algebra, one can show that the vector space generated by the vectors f$ has full

dimension for cartels of any order.

At steady-state concentrations c$
1
; . . . ; c$p for which no cartel arises, consortia can still emerge.

Such consortia also define polyhedral cones, but these cones are generated by subsets of

metabolic classes belonging to cartels. One can show that these cones have zero measure:

every family of p flux vectors associated with steady-state external concentrations for which

no cartels arise is linearly dependent. The fact that a supply cone does not have full

dimension implies that the associated consortium only arises for specific supply rates,

belonging to a set of zero measure in the space of supply rate. In particular, although the

metabolic classes of consortia that are not cartels may be the same for different supply

rates, the steady-state external concentrations and the optimal strategies (the specific

enzyme distributions) generally differ for different supply rates.

Facets of supply sectors
As the supply sector associated with cartel S$ is a p-dimensional polyhedral cones, its facets are

ðp� 1Þ-dimensional faces defined by subsets of the generating vectors ffsgs2S$ . The

generating subset of a particular facet can be identified by analysis of the p equations that

define cartel-specific external equations: for a cartel of order q, these are q� 1 equalities

between concentrations and p� qþ 1 growth rate equalities (see Section Graph structure of

microbial cartels). In fact, one can show that a supply sector has as many facets as there are

paths P defined in the space of external concentrations by only p� 1 of the p equations

specifying the corresponding cartel. Indeed, for any point c on a path P, there is a

consortium, denoted SðcÞ, which comprises a subset of the metabolic classes of S$ and

whose supply sectors is a ðp� 1Þ-dimensional cone generated by ff$

sgs2SðcÞ. Then, when c
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tends to c$ on P, the ðp� 1Þ dimensional cone associated with SðcÞ tends to a facet of the p-

dimensional cone associated with cartel S$. This property actually defines the facet of a

supply sector. As a result, we can specify the facets of a supply sector by enumerating the

composition of consortia associated with the various paths emanating from the

corresponding cartel.

To be more specific, consider a cartel S$ of order q associated with

c1 ¼ . . . ¼ cq>cqþ1> . . .>cp. One can define the paths emanating from the point c$ associated

with S
$:

. There is one path, denoted P0, corresponding to satisfying c1 ¼ . . . ¼ cq and all the

Equation (A134) except for the pure-importer metabolic class. Then, starting from the point
c$ associated with S

$, a decrease in cp along path Pq0 causes the pure importer strategy to

vanish at steady state. The path P0 extends until it reaches the boundary of the positive
quadrant for c$

1
¼ . . . ¼ c$q>c

$

qþ1 ¼ c$p ¼ 0.

. There are q paths, denoted Pq0 , 1 � q0 � q, corresponding to satisfying all the

Equation (A134) and only q� 1 equalities among c1 ¼ . . . ¼ cq, i.e. there is q0 such that 1 �
q0 � q and cq0 6¼ cq00 for all q

00 6¼ q0, 1 � q00 � q. Then, starting from the point c$, a decrease in

cq0along path Pq0 causes the p� q metabolic classes of S$ that utilize block q0 as a precursor

to vanish. These paths connect S$ to cartels of order q� 1.
. There are p� q� 1 paths, denoted Pq0 , q<q

0<p, corresponding to satisfying c1 ¼ . . . ¼ cq and

all the Equation (A134) except for the growth rate equation sups2Mq0
gs ¼ d. Then, starting

from the point c$, a decrease in cq0 along path Pq0 causes the q strategies that import block q0

but convert block q0 þ 1 to vanish. The paths connect S$ to cartels of order q.
. There is one path, denoted Pp, corresponding to satisfying c1 ¼ . . . ¼ cq and all the

Equation (A134) except for the growth rate equation sups2Mq
gs ¼ d. Then, starting from the

point c$, an increase in cqþ1 along path Pp causes the q strategies that only imports blocks

1; . . . q to vanish. This path connects S$ to cartels of order qþ 1.

Thus we have enumerated the facets of the supply sectors associated with various cartels. In

particular, cartels of order 1 and p� 1 have p facets, whereas cartels of order q, 1<q<p� 1

have pþ 1 facets.

Space tiling by supply sectors
In the previous section, we have shown that every microbial consortium admits a supply sector

that is a polyhedral convex cone. Cones that are associated with a cartels are the only ones

with full dimension, thereby defining a supply sector with finite measure in the space of

supply rate. Here, we characterize how cartel-specific supply sectors ‘tile’ the space of

supply rates. Namely, we show that the vertices �c$ and the flux vectors ff$

sgs2S$ associated

to cartels S$ specify a set of non-overlapping polyhedral convex cones that extends

indefinitely for increasing supply rates. Moreover, neighboring cones of different orders

have parallel facets, while neighboring cones of the same order have diverging facets.

To establish the above properties, we first show that if two distinct cartels S$ and S
$0 are

such that there is i 6¼ j with c$i >c
$

j and c$i
0<c$j

0, then one can always find an hyperplane

separating supply sectors of S$ and S
$0. Introducing the vector hðijÞ defined by

h
ðijÞ
k ¼

1 if k¼ i ;

�1 if k¼ j ;

0 otherwise ;

8

>

<

>

:

(A141)

one can check that fs � hðijÞ � 0 for all strategies s in S
$, whereas fs � hðijÞ � 0 for all

strategies s in S
$0. Indeed, one can show the set of following inequalities. If a strategy s or

s0 imports both block i and block j without using either of them as precursors, we have

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 59 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


fs � hðijÞ ¼ fs0 � hðijÞ ¼ dð1� f Þ � dð1� f Þ ¼ 0. If a strategy s uses i as a precursor (c$i >c
$

j ), we

have

fs �hðijÞ � ci
X

k

kki�kji

 !

¼ ci
X

k 6¼j
kki>0 ; (A142)

whereas by symmetry, if a strategy s0 uses block j as a precursor (c$i
0<c$j

0), we have

fs0 � hðijÞ<0. If a strategy s imports block i, uses precursor k 6¼ i, and converts block j, (c$i >c
$

j ),

we have

fs �hðijÞ ¼�kjkck>0 ; (A143)

whereas by symmetry, if a strategy s0 imports block j, uses precursor k 6¼ j, and converts

block i, (c$i
0<c$j

0), we have fs0 � hðijÞ<0. If a strategy s or s0 converts both blocks i and j, we

have

fs �hðijÞ ¼bc$i �bci;s�ðbc$i �bcj;sÞ ¼ bðc$i � c$j Þ>0 ; (A144)

fs0 �hðijÞ ¼bc$i 0�bci;s�ðbc$i 0�bcj;sÞ ¼ bðc$i 0� c$j
0Þ<0 : (A145)

It is easy to see that ðc$ � c$0Þ � hðijÞ ¼ ðc$i � c$j Þ � ðc$i 0 � c$j
0Þ>0, showing that the hyperplane

passing through ðc$ � c$0Þ=2 with normal vector hðijÞ separates the supply sectors of S$ and

S
$0. Finally, notice that neighboring cartels of the same order are cartels for which the

ordering of external building-block concentrations differs by a transposition, i.e. c$i $ c$j . The

supply sectors of these cartels have opposite facets that are separated by an hyperplane

normal to hðijÞ. Moreover, these facets diverges from that hyperplane with an angle

prescribed by Equation (A144) and Equation (A145). On can confirm that when the passive

leak is negligible with respect to the enzyme budget b� E, bðc$i � c$j Þ tends to zero and the

facets become parallel.

Then, to prove that supply sectors are non-overlapping, we only need to show that distinct

cartels S$ and S
$0 with same degenerate orders, e.g. c$

1
¼ . . . ¼ c$q>c

$

qþ1> . . .>c$p and c$
1
¼

. . . ¼ c$q0>c
$

q0þ1> . . .>c$p with q<q0 have non-overlapping supply sectors. Introducing the vector

hðiÞ defined by

h
ðiÞ
k ¼

1� p if k¼ i ;

1 otherwise ;

�

(A146)

one can check by similar arguments as above that fs � hðq
0Þ � 0 for all strategies s in S

$,

whereas fs � hðq
0Þ � 0 for all strategies s in S

$0. Actually, one can check an additional

property by exploiting the graph structure of cartels. If S$ and S
$0 are connected by an

edge, i.e. if q0 ¼ qþ 1, there is a path P joining S
$ and S

$0. In particular, a facet of S$ can be

continuously mapped onto a facet of S$0 by considering the ðd � 1Þ-dimensional supply

cones associated to consortia on P. One can check that the generating vectors of these

ðd � 1Þ-dimensional supply cones are actually all orthogonal to hðq
0Þ. In particular, the supply

sector of S$ and S
$0 have parallel facets and can be separated.

Optimal biomass yield?
In this section, we propose that microbial cartels achieve a collective optimum by yielding

maximum biomass, i.e. the maximum total number of cells N at fixed building-block supply
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rates. At steady state, the total number of cells N is related to the building-block supply

rates via the overall conservation of building blocks

X

i

si��
X

i

cexti ¼
N!


�N!
� pð1� f Þd ; (A147)

which implies

N ¼


!
1þ pdð1� f Þ

P

i si��
P

i c
ext
i

� ��1
: (A148)

According to the above relation, at fixed supply rates si, maximizing biomass yield amounts

to minimizing the overall building-block concentrations
P

i c
ext
i , which implies the

minimization of building-block loss via diffusion out of the volume 
. To justify that cartels

achieve the maximum biomass yield, one has to show that for identical supply rates, cartels

lead to lower overall building-block steady-state concentrations than consortia that are not

cartels. This fact can be verified for p ¼ 2 or 3 building blocks and can be justified graphically

for p ¼ 2. In Appendix 7—figure 1, we first show that increase in building-block supply is

entirely dedicated to biomass growth in microbial cartels. In Appendix 7—figure 2, we then

show that cartels are optimal in the sense that no single strategy can yield higher biomass

than a cartel. More generally, although we do not have a proof of this point, we believe that

cartels yield optimal biomass at fixed supply rates for an arbitrary number of building blocks

p. In the following, we provide conditions under which the biomass optimality of cartels

holds. First, we show that consortia consist of metabolic types that are subsets of cartels and

that the corresponding steady-state concentrations satisfy the same weak ordering as that of

the supply rates. Second, we show that the biomass yield of such consortia is smaller than

that of cartels given the validity of two reasonable conjectures.

b.

c1

ext

c2

exta.

s1

s2

d.

c1

ext

c2

extc.

s1

s2

Appendix 7—figure 1. Cartels direct their resources toward biomass growth. a and b: For

Taillefumier et al. eLife 2017;6:e22644. DOI: 10.7554/eLife.22644 61 of 65

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.22644


steady-state concentrations cext
1
<cext

2
, only a converter strategy can survive (white dot in a).

The corresponding set of supply rates s1 and s2 lie on a line (labelled by a white dot in b).

Increasing the supply rate s1 causes concentration cext
1

to increase at the expense of cext
2
, until

a pure-importer strategy can survive at c$
1
and c$

2
(pink dot in a). Any further increase of s1 no

longer affects c$
1
and c$

2
and is solely dedicated to biomass growth. c and d: For steady-state

concentrations cext
1
’ cext

2
, only a pure-importer strategy can survive (white dot in c). The

corresponding set of supply rates s1 and s2 lie on a line (labelled by a white dot in d).

Increasing the supply rate s2 causes concentration cext
2

to increase at the expense of cext
1
, until

a converter strategy can survive at c$
1
and c$

2
(pink dot in c). Any further increase of s2 no

longer affects c$
1
and c$

2
and is solely dedicated to biomass growth.

DOI: 10.7554/eLife.22644.020

b.a.

s1

s2

c1

ext

c2

ext

Appendix 7—figure 2. At fixed supply rates, microbial cartels achieve optimal biomass yield. a

and b: Steady-state concentrations cext
1

and cext
2

that satisfy cext
1
þ cext

2
>c$

1
þ c$

2
(above the

dashed black line in a imply smaller biomass yields than achieved by the microbial cartel that

exists for c$
1
and c$

2
(pink dot in a). The supply sector associated with the cartel defines a

cone (pink region in b). For given supply rates in the cartel supply sector (white dot in b), the

black lines represent the supply sectors of the pure-importer strategy and of the pure-

converter strategy that are optimal when present alone (as opposed to being in a cartel).

The intersection of these non-cartel supply sectors (black lines in b) with the steady-state

curves (red and grey curves in b) define concentrations cext
1

and cext
2

for which cext
1
þ cext

2
>c$

1
þ

c$
2
(white dots in a). This result is generic for any supply rates in the cartel supply sector; thus

a pure-importer or a pure-converter strategy alone leads to steady-state concentrations with

smaller biomass yield than the cartel. We did not take into account the other converter

strategy, belonging to the other cartel, since this cartel can only be optimal for cext
1
>cext

2
,

which never happens for s2>s1.

DOI: 10.7554/eLife.22644.021

Consortia that are not cartels consist of optimal strategies within a metabolic class but do

not necessarily contain the maximum number of metabolic classes. Consider such a

consortium of optimal metabolic types for steady-state concentrations that satisfy the

ordering cext
1
� . . . � cextp , which is always possible via relabeling of building blocks. In Section

"Microbial cartels for strict ordering" and Section "Microbial cartels for degenerate

ordering", we have shown that optimal metabolic types that convert building blocks are

such that the most abundant building block is converted into the least abundant building

blocks. If the ordering is strict, i.e. cext
1
> . . .>cextp , there are only p possible optimal metabolic

typesMq, 1 � q � p, where typeMq imports block 1; . . . ; q and converts block 1 into blocks

qþ 1; . . . ; p. In particular, the metabolic types comprising a steady-state consortium are

necessarily a subset of the metabolic types forming a cartel.

Moreover, for each metabolic typeMq, the per-cell influx fq;i of block i is
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fq;i ¼
ð1� f Þdþ

P

j>q k
ðqÞ
j1 c
ðqÞ
1

if i¼ 1 ;

ð1� f Þd if 1<i� q ;

ð1� f Þd�k
ðqÞ
j1 c
ðqÞ
1
¼ b

�

cextj � c
ðqÞ
j

�

if i>q :

8

>

>

<

>

>

:

(A149)

Thus, the fluxes fq;i satisfy fq;1>fq;2 ¼ . . . ¼ fq;q>fq;qþ1> . . .>fq;p since the internal

concentrations c
ðqÞ
j are constant for j>q. In turn, the corresponding supply rates si necessarily

satisfy the same strict ordering via external flux-balance Equation (A11): for i<j, we have

si ¼ �cexti þ
X

s

nsfs;i<�c
ext
j þ

X

s

nsfs;j ¼ sj ; (A150)

where s takes value in f1; . . . ; pg. If the ordering of external building-block concentrations is

not strict, two types of equalities can occur: (i) There can be equalities between the most

abundant building-block concentrations, e.g. cext
1
¼ . . . ¼ cextq , for which one can show that

the supply rates necessarily satisfy min1�i�q sexti >sj for j>q.(ii) There can be equalities between

concentrations of building blocks that are not the most abundant, e.g. cexti ¼ cextiþ1, for which

one can show that the supply rates necessarily satisfy si ¼ siþ1. Observe that (i) corresponds

to the possible occurrence of degenerate cartels, whereas (ii) implies the absence of

strategies that convert block 1 into iþ 1 while importing i. In any case, independent of the

nature of the ordering, the metabolic types of steady-state consortia are always a subset of

the metabolic types forming a cartel. Moreover, consortia of optimal metabolic types weakly

preserve the ordering of building-block supplies in the sense that if s1 � . . . � sp, we

necessarily have cext
1
� . . . � cextp . The order is only weakly preserved because degenerate

consortia can exist for cext
1
¼ . . . ¼ cextq while the supply rates are strictly ordered, e.g.

s1> . . .>sp.

We now formulate two conjectures implying that at fixed building-block supply cartels have

a higher biomass yield than consortia that are not cartels.

i. Our first conjecture, which is the strongest, concerns the structure of the supply space. To
be more specific, consider supply rates si that lie within the supply sector of a cartel. Con-
sortia that are not cartels are necessarily made of a subset of the metabolic classes defining
that cartel. Our conjecture is to posit that, for supply rates within a cartel-specific supply

sector, a consortium can only exist for steady-state concentrations cext
1
; . . . ; cextp that are such

that

GMðcext1
; . . . ;cextp Þ ¼ sup

s2M
gsðcext1

; . . . ;cextp Þ>d ; (A151)

for metabolic classesM that belong to the cartel but are not in the consortium. This property
means that if the supply rates si are such that a cartel emerges, consortia that are not cartels
can be invaded by each missing metabolic class. In particular, this property implies that the
emergence of a cartel does not depend on the history of which metabolic types are intro-
duced first. One can confirm this property concretely for harmonic-mean model when p¼ 3.

ii. Our second conjecture is about the convexity of the level sets of GM, the optimal growth
rate for each metabolic typeM. One can show that for any particular strategy s, the level
sets of the growth function gs inherit the convexity of the level set of the universal rate func-
tion g governing biomass production. We further assume that this convexity property is
inherited by the optimal growth function GM, once optimized within a given metabolic

class. For p ¼ 2 or 3, one can confirm that the sets of external concentrations cext
1
; . . . ; cextp

such that GMðcext1
; . . . ; cextp Þ � d are indeed convex for the min model. From a biological

standpoint, our conjecture means that within a metabolic class, although the distribution of
enzymes can be tuned to external building-block availabilities, microbes still experience
diminishing marginal utility. In other words, increasing building block availability yields
decreasing benefit within a metabolic class and beating diminishing marginal utility requires
a switch of metabolic classes.
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If true, the two conjectures above imply that cartels achieve optimal biomass. To see this,

consider for instance a cartel associated to a strict ordering of external concentrations, i.e.

c$
1
> . . .>c$p. The steady-state concentrations c$

1
> . . .>c$p are the solution of the equations

Gqðcext1
; . . . ;cextp Þ ¼ d ; (A152)

where Gq denotes the optimal growth function for metabolic classMq, 1 � q � p. Our first

conjecture implies that a consortium that is not a cartel exists at steady-state concentrations

for which Gqðcext1
; . . . ; cextp Þ ¼ d if metabolic classMq is present and for which another

metabolic class, sayMq0 , can invade the consortia, i.e. Gq0ðcext1
; . . . ; cextp Þ>d. Thus these

steady-state concentrations belong to the nonlinear cone defined by Gqðcext1
; . . . ; cextp Þ � d,

1 � q � p. Showing that cartels achieve optimal biomass is then equivalent to showing that

this nonlinear cone lies within the half-space H defined by

X

i

cexti �
X

i

c$i : (A153)

Our second conjecture about convexity implies that the nonlinear cone is contained in the

linear cone originating from c$
1
; . . . ; c$p and approximating the nonlinear cone defined by

Gqðcext1
; . . . ; cextp Þ � d, 1 � q � p. Let us denote the supporting vectors generating this cone by

Vq, 1 � q � p, where Vq is a tangent to the path defined by Gq0 6¼qðcext1
; . . . ; cextp Þ ¼ d, 1 � q � p

at c$
1
; . . . ; c$p, oriented in the direction of increasing Gq. One possible choice for the Vq is via

the relation

V1

..

.

Vp

2

6

6

4

3

7

7

5

¼

rG1jc$
1
;...;c$p

..

.

rGpjc$
1
;...;c$p

2

6

6

6

4

3

7

7

7

5

�1

; (A154)

which ensures that Vq is tangent to each hypersurface Gq0 6¼q ¼ d and correctly oriented.

We now show that the linear cone generated by Vq lies within the half-space H by showing

that there are positive numbers hq such that

Vq �1¼
X

i

Vq;i ¼ hq � 0 ; (A155)

which can be written in matrix form as

VT
1

..

.

VT
p

2

6

6

4

3

7

7

5

1¼

h1

..

.

hp

2

6

6

4

3

7

7

5

: (A156)

The key point is to realize that for both the minimum and harmonic-mean growth function,

the optimal growth functions Gq are homogeneous of degree one. Because of this property,

at cartel specific external concentrations c$
1
; . . . ; c$p, we have

rGqjTc$
1
;...;c$p
� c$ ¼Gqðc$1; . . . ;c$pÞ ¼ d ; (A157)

which can be written in matrix form as
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rG1jTc$
1
;...;c$p

..

.

rGpjTc$
1
;...;c$p

2

6

6

6

4

3

7

7

7

5

c$
1

..

.

c$p

2

6

6

4

3

7

7

5

¼ d1 ; (A158)

and directly shows that taking hq ¼ c$q=d satisfies relation Equation (A156).
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