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Breast cancer is the most common cancer affecting women and is the second leading
cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel
development from pre-existing vasculature, has been implicated in the growth,
progression, and metastasis of cancer. Tumor angiogenesis has been explored as a
key therapeutic target for decades, as the blockade of this process holds the potential to
reduce the oxygen and nutrient supplies that are required for tumor growth. However,
many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial
Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-
effects, limited survival advantage, and enhanced cancer regrowth rates. To address
these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are
being explored, including those involving Bone Morphogenetic Protein-9 signaling, the
Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase,
and Chemokine Ligand 18. This review article will introduce the concept of tumor
angiogenesis in the context of breast cancer, followed by an overview of current anti-
angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.

Keywords: angiogenesis, breast cancer, vascular endothelial growth factor, bone morphogenetic protein 9,
notch signaling
INTRODUCTION

Breast cancer is the most common invasive cancer affecting women. Despite an array of new
therapies, diagnostic advances, and increased screening, it remains the second leading cause of
cancer related death, emphasizing the critical need for new treatment options (1). The high
mortality rates associated with breast cancer are due to distant metastasis from the primary breast
tumor to the bones, liver, lungs, or brain (1–3). Angiogenesis, the process of new blood vessel
formation from the pre-existing vasculature, is a hallmark of cancer and has been implicated in the
growth, progression, and metastasis of breast cancer (4, 5). Beyond enhancing the supply of oxygen
and nutrients to the tumor, angiogenesis also contributes to its metastatic potential. The fragile,
tortuous, permeable and hypermalleable nature of the newly formed blood vessels allows cancer
cells to enter the vasculature and travel to other tissues in the body (6, 7). These malformed vessels
also contribute to a hypoxic and acidic tumor microenvironment that favours the selection of more
aggressive cancer cells (8).
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Initial therapeutic approaches targeting the tumor vasculature
were primarily aimed at inhibiting angiogenesis, based on the
mindset that preventing capillary network formation would slow
tumor growth and reduce metastasis (9). However, these anti-
angiogenic therapies have been limited by drug resistance and side
effects, including venous thromboembolic complications,
hypertension, and hemorrhaging (10–12). By reducing the blood
supply to tumors, these approaches also limit the ability for
chemotherapies and immune cells to infiltrate these tissues (10–
12). As an alternative, therapeutic approaches based on vascular
normalization have been explored, with the goal of improving
tissue perfusion to provide a functional vasculature for the delivery
of intravenous radiotherapy and chemotherapy (13, 14). These
contrasting approaches illustrate a critical point of debate in breast
cancer research; should tumor vessel formation be inhibited to
prevent oxygen and nutrients from reaching primary tumors, or
should the vessels be normalized to reduce metastatic spread and
improve pathways for therapeutic delivery?

This review will assess the current state of both anti-
angiogenic and vascular normalization strategies for the
treatment of breast cancer. The various mechanisms that
tumors use to develop and maintain their blood supply will be
summarized, followed by a review of the pre-clinical and clinical
outcomes for conventional anti-angiogenic therapies targeting
well-established players in angiogenic signaling, such as Vascular
Endothelial Growth Factor (VEGF), Notch signaling and the
Angiopoietins (Ang). Emerging avenues for modulating tumor
vascularization will also be discussed, including approaches
targeting bone morphogenetic protein-9 (BMP9) signaling,
Sonic Hedgehog Pathway (Shh) inhibitors, Cyclooxygenase-2
(COX-2) inhibitors, p38-mitogen-activated protein kinase
(p38-MAPK) pathway inactivation and Chemokine Ligand 18
(CCL18) inhibition.
MECHANISMS OF TUMOR
VASCULARIZATION

Sprouting Angiogenesis
Sprouting angiogenesis is a primary source of new vascular
growth in tumors (15). This process, which involves the
growth of new capillary blood vessels from the pre-existing
vasculature (Figure 1A), is highly regulated and occurs in
healthy tissues through a fine balance of angiogenic and
angiostatic cues (16). In tumors, changes in physiological
stimuli, such as hypoxia (17), disrupt this balance and shift the
process towards a pathogenic pro-angiogenic state (16).
Sprouting angiogenesis is initiated by a process of growth
factor-mediated endothelial cell activation, proliferation (5),
loss of cell-cell junctions and decreased endothelial monolayer
integrity (18). While this occurs, proteases degrade the
extracellular matrix and basement membrane surrounding
endothelial cells, which allows for their migration (5).
Migrating endothelial cells are polarized into tip and stalk cell
phenotypes, contribute to lumen formation, and eventually the
establishment of immature blood vessels (5). In physiological
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angiogenesis, these immature vessels are then stabilized through
angiostatic signals, resulting in tightened cell-cell junctions, the
recruitment of mural cells and restoration of the basement
membrane (19).

The Tumor Microenvironment
In tumors, pathological angiogenic sprouting is perpetuated by a
local microenvironment, composed of proliferating tumor cells,
blood vessels, specialized immune cells, and inflammatory
cytokines (20, 21). The increased expression of angiogenic
fac tors , inflammat ion , and hypoxia in the tumor
microenvironment is thought to contribute to the reduced
efficacy of current anti-angiogenic therapies (22, 23). As
tumors grow, high levels of oxygen are consumed. This,
alongside reduced nutrients and the accumulation of metabolic
wastes, creates a hypoxic and acidic microenvironment that
persistently activates pro-angiogenic pathways, reduces the
stabilization of vessels and promotes the formation of a leaky,
disorganized vascular network (24, 25). The release of
mitochondrial reactive oxygen species (ROS) by tumor cells
and other cellular components of the microenvironment also
helps to stabilize hypoxia-inducible factor (HIF) subunits when
(26–28), further promoting the expression of VEGF and
upregulating angiogenesis (29, 30).

Beyond the direct actions of VEGF on the sprouting
endothelium, VEGF can also serve to promote an angiogenic
and immunosuppressive microenvironment through the
inhibition of dendritic cell maturation and the promotion of
tumor associated macrophage (TAM) recruitment and
polarization in the presence of Th2 cytokines like IL-4 and IL-
10 (31–33). TAMs are a major contributor to the tumor
microenvironment. Their production of growth factors,
chemokines and proteolytic enzymes actively promote tumor
angiogenesis, while also suppressing the antitumor immune
response (34–36). The recruitment and polarization of TAMs
from bone marrow or tissue-derived macrophages is driven by
local factors, including chemokines like CCL2 and cytokines like
IL-6, as well as VEGF and hypoxia (37–39).

Vessel Co-Option
In addition to relying on sprouting angiogenesis, tumors can also
be sustained through a process of vessel co-option (Figure 1B).
This process involves solid tumors originating close to, and
growing along, previously existing vessels (40). Vessel co-
option is often distinguished from angiogenesis at the
histopathological level, where tumors that achieve blood supply
via co-option have a well-organized vascular network that
resembles normal tissue and differs from the disorganized
network that is produced by pathological sprouting
angiogenesis (41). It is believed that breast cancer metastases to
the brain, liver and lungs are sustained through this process,
which consequently contributes to their resistance to
conventional anti-angiogenic therapies (42–45). Although the
process of vessel co-option has been linked to both innate and
acquired resistance mechanisms to anti-angiogenic therapies
(46), an increase in vessel co-option tends to proceed after
angiogenic inhibition rather than precede it, indicating that it
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is more likely to be an acquired, rather than innate feature of the
tumor (42).

Vascular Mimicry
Vascular mimicry involves the development of a vascular-like
structures within tumors that contain no endothelial cells and are
instead composed of a basement membrane surrounded by
cancer cells (Figure 1C) (47–52). This process has been
attributed to the actions of a subset of cancer stem cells that
possess a high degree of differentiation plasticity and can acquire
a range of endothelial markers, including cluster of
differentiation 31 (CD31), VEGF receptor-2 (VEGFR2), Tie2,
ephrin A2, and VE-Cadherin (53, 54). Importantly, these
markers enable the incorporation of mimicked vascular
structures into endothelial-based vessels at the boundaries
between tumors and normal tissue (55). A blood supply model
for melanoma developed by Zhang and colleagues indicated that
vascular mimicry is the dominant blood supply in early tumor
growth, followed by the development of conventional
endothelial-based vessels to support the later stages of tumor
expansion (56). In addition to supporting growth, vascular
mimicry also serves to increase the proportion of tumor cells
that are located adjacent to blood flow, enhancing their
likelihood of infiltrating the bloodstream and metastasizing to
distant sites in the body (57). As a consequence, the occurrence
of vascular mimicry is linked with distant metastases, poor
overall survival, and local cancer relapse (58).
Frontiers in Oncology | www.frontiersin.org 3
CONVENTIONAL ANTI-ANGIOGENIC
THERAPIES

Several therapies targeting conventional angiogenic mediators,
including the VEGF, Notch and Ang pathways, have been
explored in both a pre-clinical and clinical setting, as
summarized in Table 1.

VEGF Pathway Inhibitors
In humans and other mammals, the VEGF family of growth
factors includes VEGF-A, VEGF-B, VEGF-C, VEGF-D and
Placental Growth Factor (PlGF) (72). While some members of
this family, such as VEGF-C and VEGF-D, act primarily on the
lymphatic endothelium, VEGF-A, referred to hereafter as VEGF,
is the most potent direct-acting protein involved in angiogenesis
(73). As such, the VEGF pathway was among the first and most
broadly interrogated targets for the development of anti-
angiogenic therapeutics (73). The production and release of
VEGF is stimulated by a variety of factors, with the most
notable being tissue hypoxia (74, 75). VEGF initiates vascular
permeability, as well as endothelial cell proliferation and
migration (76), through the activation of multiple tyrosine
kinase receptors, including VEGFR1 and VEGFR2, with the
majority of angiogenic responses being mediated by VEGFR2
activation (77).

Bevacizumab, a monoclonal antibody for VEGF, is the main
anti-angiogenic agent for use in breast cancer (78). It works by
A B C

FIGURE 1 | Mechanisms of tumor angiogenesis. (A) Tumor vascularization typically occurs by sprouting angiogenesis, involving the generation of new vessels via
sprouting from the pre-existing circulation. However, resistance mechanisms to anti-angiogenic therapies can include (B) vascular co-option, where the tumor grows
along existing vessels or (C) vascular mimicry where cancer stem cells create a de novo vasculature.
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preventing the interaction of VEGF with its receptors, as well as
through the neutralization of VEGF release from cancer cells
(78). Bevacizumab is not approved as a monotherapy. However,
it is approved to be given alongside chemotherapy for advanced
or metastatic breast cancer (AMBC) (79, 80). In addition to the
prevention of sprouting angiogenesis, Bevacizumab can also
promote tumor vessel normalization by reducing vascular
permeability and promoting the recruitment of pericytes that
support the endothelium (81). While numerous pre-clinical
studies in small animal models demonstrated a reduction in
tumor size and vascular permeability with Bevacizumab (59–61),
similar results have not been achieved in human trials.

In patients with AMBC, Bevacizumab did not improve
disease related symptoms or overall survival (65). However, a
subset of patients who received Bevacizumab did exhibit reduced
metastatic disease progression, which resulted in a minor
improvement in progression free survival (PFS) relative to
controls (62–65). However, no improvement in overall survival
has been reported (62–65). Part of Bevacizumab’s lack of efficacy
may be attributable to resistance mechanisms like vessel co-
option and vascular mimicry. In patients with colorectal cancer,
the process of vessel co-option has been linked to poor responses
to anti-angiogenic therapies like Bevacizumab (42). The trans-
differentiated endothelial-like cancer cells that drive vascular
mimicry have also shown limited sensitivity to anti-angiogenic
therapeutics (55, 82), with tumors that are resistant to these
therapies exhibiting higher levels of vascular mimicry (83).

In addition to this lack of efficacy, long term trials with
Bevacizumab concluded that excessive neutralization of VEGF
with high doses or prolonged exposure caused vascular
regression and promoted hypoxia (84, 85), driving the
selection of more invasive cancer cells that can contribute to
Frontiers in Oncology | www.frontiersin.org 4
tumor resistance and increased metastatic potential (84).
Prolonged exposure to Bevacizumab did not just disrupt tumor
vasculature, but also upregulated multiple angiogenic factors,
including PlGF and stromal derived factor-1 (SDF-1), in addition
to causing increased cancer cell migration and enhancing
metastatic potential. Treatment with Bevacizumab also
increased cancer regrowth rates after treatment cessation,
which has been attributed to elevated tumor hypoxia levels and
the upregulation of compensatory angiogenic pathways (86, 87).

Bevacizumab has also been linked to serious toxicities.
Patients with colorectal cancer treated with Bevacizumab had
>33% risk of developing any type of thrombosis (88). A meta-
analysis of patients receiving Bevacizumab also identified a
significantly increased risk of hypertension in this group (89).
Hemorrhaging is also a widely reported side effect of
Bevacizumab therapy, although the mechanisms underlying
this and other side effects are not fully understood (11). The
United States Food and Drug Administration (FDA) initially
approved the use of Bevacizumab as a monotherapy for AMBC.
However, this indication was later revoked due to considerable
side effects, no convincing evidence of clinical benefit, and a lack
of effective biomarkers to determine treatment response (90).
Bevacizumab is still available on the market for prescription.
However, its use in cancer is not approved by the FDA (91).

Notch Signaling Pathway
The Notch signaling pathway plays a vital role in sprouting
angiogenesis through the regulation endothelial cell
proliferation, VEGF receptor expression and the commitment
of sprouting endothelial cells to stalk or tip cell fates (92). As a
consequence, there have been over 70 clinical trials therapeutically
targeting Notch signaling in tumor angiogenesis (68).
TABLE 1 | Summary of Available Therapies with the Ability to Target Tumor Angiogenesis in Breast Cancer.

Therapies Mechanism of Action Associated
Trials

Outcomes

VEGF
Bevacizumab Monoclonal antibody for VEGF. Pre-Clinical • small animal models demonstrated a reduction in tumor size and

vascular permeability (59–61).
Phase-II
Clinical

• linked to serious toxicities, including venous thromboembolic
complications, hypertension, and hemorrhaging (11).

Phase-III
Clinical

• No improvement in overall survival (62–65).
• A subset patients exhibited reduced metastatic disease progression, and

minor improvements in PFS relative to controls (62–65).
Notch
Demcizumab Antibody targeting DLL4. Phase-2

Clinical
• Trial terminated as it failed to meet primary endpoint of overall response

rate (66).
• Associated with cumulative CV toxicity (66).

Nirogacestat Reversible, non-competitive GSI that selectively blocks
Notch signaling.

Phase-1
Clinical

• Small sample sizes and inconclusive findings in AMBC (67).

Phase-3
Clinical

• In recruitment phase (68).

Ang
Trabananib Peptide inhibitor that neutralizes the interactions of Ang1

and Ang2 with the Tie2 receptor.
Phase-2
Clinical

• Underway for Her-2 positive breast cancer (69).

Ang2-VEGF
CrossMab

Double specific anti-body against Ang2 and VEGF. Pre-Clinical • Results in complete tumor regression in various tumor xenograft models,
as well as a reduction in metastasis and angiogenesis (70).

Phase-2 • No improvement in PFS (71).
• Associated with gastrointestinal perforations, hypertension, and

peripheral edema (71).
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Incanonical Notch signaling, Notch transmembrane receptors
interact with Notch ligands, such as Delta-like 4 (DLL4) and
Jagged-1 (JAG1), causing them to cleave and release their
intracellular domain (93). In angiogenesis, DLL4 is induced by
VEGF as a negative feedback regulator that induces the
expression of Hes/Hey genes in stalk cells (94). These
transcriptional regulators subsequently downregulate the
expression of VEGFR2, making the cells less responsive to
VEGF (95) and promoting the formation of a mature vascular
network through the suppression of overexuberant angiogenic
sprouting (96). Conversely, JAG1 alters the balance between
DLL4-Notch and VEGFRs by antagonizing DLL4-mediated
Notch activation. This reduction allows tip and stalk cells to
change positions, resulting in a dense and tortuous vascular
network (97). JAG1 also induces the expression of VEGF-
receptor 3 (VEGFR3) (97), which influences the expression of
both pro- and anti-angiogenic factors via the regulation of
protein kinase B (AKT) signalling (98, 99).

In cancer cells, the balance of Notch signaling is
pathogenically shifted so that the angiogenic actions of JAG1
dominate over the angiostatic effects of Notch-DLL4 (97).
Despite this shift , Notch-DLL4 signalling has been
therapeutically targeted using various inhibitory strategies,
such as anti-DLL4 antibodies, DNA vaccinations, and Notch
signaling inhibitors (100–102). Although blocking a pathway
that is known to serve as an angiogenic “off switch” seems
counterintuitive, agents targeting DLL4 have been shown to
reduce tumor growth in vivo by promoting disorganized and
non-productive endothelial sprouting and poor tumor perfusion
(103). An antibody targeting DLL4, Demcizumab, was one of the
first treatments to selectively target the Notch pathway in clinical
trials (104). Demcizumab is a humanized monoclonal antibody
for DLL4 that functions by blocking Notch receptor binding
(104). Unfortunately, the phase 2 clinical trial for Demcizumab
in pancreatic cancer was discontinued, as clinical outcomes were
superior in the placebo arm over the treatment arm (66, 105). In
addition to this failure to meet the primary endpoint of overall
response rate, Demcizumab was also associated with cumulative
cardiovascular (CV) toxicity (66), further hampering the
translational potential of this approach.

Notch signaling in cancer has also been targeted using gamma
secretase inhibitors (GSIs), which block the protease complex
that cleaves Notch transmembrane domains (67). Despite their
initial promise, GSIs have been linked to significant
gastrointestinal toxicity, caused by the inhibition of Notch
signaling in the stem-cell progenitor compartment of intestinal
crypts (106, 107). As GSIs also cleave membrane proteins in
various other signaling pathways, their non-specific inhibition
can result in systemic toxicity (40, 108). Nirogacestat, the first
Notch GSI to begin phase 3 clinical trials, is a reversible, non-
competitive GSI that selectively blocks the Notch signaling
pathway (67). A recent clinical trial assessing the impact of
Nirogacestat on AMBC had small sample sizes and inconclusive
findings (67). The ongoing phase 3 trial is currently in its
recruitment phase (68), but should provide definitive insights
into the ultimate potential of this approach.
Frontiers in Oncology | www.frontiersin.org 5
Alternative strategies, such as the selective upregulation of
DLL4 signaling with a soluble DLL4-Fc have also been explored
to treat tumor angiogenesis (109). Pre-clinical studies based on
this approach have demonstrated increased tumor vessel density
and mural cell recruitment, along with decreasing tumor size
(110), indicating potential merit in future clinical studies.

Ang Pathway Inhibitors
Ang1 and Ang2 regulate angiogenesis and vascular remodeling
through their binding to the endothelial receptor tyrosine kinase,
Tie2 (111). The activation of Tie2 is associated with vascular
stabilization, via increased pericyte coverage and decreased blood
vessel permeability (112, 113). Consequently, Tie2 activation has
been linked to increased vessel diameter, vascular density, and
perfusion within tumors (112, 113). Although both Ang1 and
Ang2 bind Tie2 with similar affinity, only Ang1 promotes
vascular development and maturation via robust receptor
activation. In contrast, Ang2 is viewed as an Ang1 antagonist
(114) that only weakly activates Tie2 (112, 113). In the presence
of VEGF, Ang2 promotes vascular sprouting and destabilizes
blood vessels through reduced endothelial-pericyte interactions
(114). In contrast, when VEGF is absent, Ang2 accelerates blood
vessel regression and promotes endothelial cell death (115).

Ang2 is highly expressed in breast cancer and has been linked to
tumor angiogenesis in AMBC (116), making it an exciting
therapeutic target (113). Therapies targeting Ang signaling in
tumor angiogenesis include Trebananib, a peptide inhibitor that
can neutralize the interactions of Ang1 and Ang2 with the Tie2
receptor (69). Trebananib has been used as a combination therapy
for Her2-negative breast cancer and is currently in phase 2 clinical
trials for ovarian cancer and Her2-positive breast cancer (69). This
combination treatment has shown promising anti-tumor activity,
especially in solid tumors (117). Ang2-VEGF CrossMab is another
therapy targeting angiogenesis through the Ang2 pathway. This is a
double specific antibody against both Ang2 and VEGF that causes
complete tumor regression in various tumor xenograft models, as
well as a reduction in metastasis and angiogenesis (70). Despite pre-
clinical success, clinical trials of Ang2-VEGF CrossMab did not
show improved PFS and were instead associated with increased
anti-angiogenic toxicity, such as gastrointestinal perforations,
hypertension, and peripheral edema (71). Overall, there is a
promising amount of research targeting tumor angiogenesis
through the Ang pathway. However, to date, these therapies have
had limited success, and have only been used in combination with
other chemotherapies, or anti-angiogenic agents.
THE NEED FOR ALTERNATIVE
PATHWAYS FOR BREAST CANCER
THERAPEUTICS

As detailed above, there is a significant need for novel targets and
approaches that improve upon the toxicities, limited survival
advantage and enhanced cancer regrowth rates associated with
current anti-angiogenic therapies (118). In addition to
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conventional angiogenic mediators like VEGF, Notch and Ang(s),
the last decade has seen the rise of multiple alternative signaling
pathways that could be targeted to address pathological angiogenesis
in breast cancer. Approaches targeting the pathways detailed below
have been summarized inTable 2 and offer the potential to improve
upon current therapeutic strategies by addressing resistance
mechanisms and promoting the efficient long-term stabilization of
tumor blood vessels.

Bone Morphogenetic Protein-9 (BMP9)
Signaling
Since its discovery as a ligand for the orphan receptor, Activin
receptor-like kinase 1 (Alk1), BMP9 has received significant
attention as a mediator of vascular growth, stability, and
integrity (135–137). BMP9 is a member of the transforming
growth factor-b (TGFb) superfamily and signals through
complexes of type-I and type-II receptors (138). Alk1 is the
dominant type-I BMP receptor in the endothelium and can pair
with either BMPR-II or the activin type-II receptors (ActR-IIa
and ActR-IIb) to form a receptor complex for BMP9, BMP10 and
heterodimers of the two ligands, which are present at active
concentrations in the circulation (138, 139) (Figure 2A).
Receptor binding can induce both canonical signaling through
phosphorylation of the SMAD 1, 5 and 9 transcriptional
Frontiers in Oncology | www.frontiersin.org 6
mediators, as well as non-canonical signaling via a variety of
pathways, including Notch, Wnt, and p38 MAPK (140–143).
Although recent studies have shown that the majority of BMP9
in the circulation exists as a heterodimer with a BMP10 subunit
(139), most investigations into the potential of BMP9 to
influence angiogenesis have explored the angiogenic potential
of BMP9 homodimers alone.

BMP9 was originally shown to serve as a vascular stability
factor that suppresses endothelial proliferation in vitro (144, 145)
and angiogenesis in vivo (136). In cancer, multiple studies have
shown that BMP9 can mediate the maturation phase of
angiogenesis and may contribute to blood vessel normalization
through the inhibition of endothelial proliferation and
migration, as well as the recruitment of pericytes (142, 146–
148). Deletion of Gdf2, the gene encoding BMP9, leads to
enhanced tumor growth and increased lung metastases in the
syngeneic orthotopic E0771 mouse model of metastatic breast
cancer (149). This finding was associated with increased tumor
vascular density and reduced mural cell coverage (149). The
administration of recombinant BMP9 has also been shown to
reduce tumor growth and vascularization in mouse models of
glioblastoma (119). This approach may be a promising option for
breast cancer, as it could be given in conjunction with
current chemotherapies.
TABLE 2 | Summary of Therapies Targeting Novel Tumor Angiogenesis Pathways in Breast Cancer.

Therapies Mechanism of Action Associated
Trials

Outcomes

BMP9
Recombinant
BMP9

Signals through receptor complex to induce
downstream signaling.

Pre-Clinical • Reduces tumor growth and vascularization in a mouse model of glioblastoma (119).

PF-03446962 Monoclonal blocking antibody for ALK1 that
prevents the binding of BMP9 to endothelial
cells.

Pre-Clinical • PF-03446962 as a monotherapy for breast cancer demonstrated no significant
anti-tumor effects (120).

• A greater reduction in tumor growth was observed when given in combination with
either Bevacizumab or a VEGFR tyrosine kinase inhibitor (120).

Dalantercept Alk1-Fc ligand trap that sequesters Alk1
ligands to prevent receptor activation.

Phase-1
Clinical

• Inhibits tumor angiogenesis as a monotherapy, or combination therapy (121).

Phase-2
Clinical

• Insufficient single agent activity to justify further investigation (122).
• Discontinued as a combination therapy with Axitinib due to an overall lack of

efficacy (123).
• Side-effects include peripheral edema, nosebleeds and telangiectasias (121, 124,

125).
Shh
Pristimerin Inactivates Shh/Gli1 and related downstream

signaling.
Pre-Clinical • Inhibition of Shh-mediated endothelial proliferation, migration, invasion and

sprouting during the early stages of angiogenesis via VEGF dependent mechanisms
(126–128).

• Blocks the recruitment of pericytes that stabilize newly formed vessels at later
stages (128).

Cox-2
Celecoxib Improves efficacy of anti-angiogenic therapies

through an anti-VEGF pathway.
Pre-Clinical • In vivo models have shown a reduction in tumor growth and metastases (129, 130)

• Associated with an increased risk of CV toxicity, GI complications, and death (131).
Multiple
Clinical Trials

P38-MAPK
Ralimetinib P38-MAPK selective kinase inhibitor. Pre-Clinical • Reduced breast cancer cell invasiveness in vivo (132).

Phase 1 • Ralimetinib in combination with Tamoxifen showed modest improvements in
progression free survival in AMBC and is an acceptable, safe, and tolerable therapy
(133, 134).

Phase 2 • Trial was terminated due to lack of participant enrollment (Identifier NCT02322853).
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While there is substantial evidence supporting this anti-
angiogenic and vascular stabilizing role for BMP9 in cancer,
these effects appear to be highly context dependent (150–155).
Multiple in vivo studies have also reported a pro-angiogenic role
for BMP9 (151, 153) in the tumor microenvironment that is
mediated via a synergistic activity with TGFb (156, 157).
Interestingly, TGFb has been shown to signal via Alk1 in some
endothelial cell models through a complex containing the type-II
TGFb receptor and Alk5, which is known as the conventional
type-I receptor for TGFb (158) (Figure 2B).

PF-03446962 is a monoclonal blocking antibody for Alk1 that
was developed to target the pro-angiogenic effects of TGFb, but
has also been shown to prevent the binding of BMP9 to
endothelial cells (159). Although pre-clinical studies using PF-
03446962 as a monotherapy for breast cancer demonstrated no
significant anti-tumor effects, a greater reduction in tumor
growth was observed when it was given in combination with
either Bevacizumab or a VEGFR tyrosine kinase inhibitor (120).
An additional anti-angiogenic therapy targeting the BMP9-Alk1
axis is Dalantercept, an Alk1-Fc ligand trap that sequesters Alk1
ligands and prevents them from activating the receptor (121).
Unlike PF-03446962, Dalantercept was shown to inhibit tumor
angiogenesis as either a monotherapy or in combination with
other treatments (121). While Dalantercept demonstrated
Frontiers in Oncology | www.frontiersin.org 7
promising efficacy and was well-tolerated in early studies (121),
later clinical trials demonstrated no benefit in endometrial cancer
(122) and it has since been discontinued as a combination
therapy for advanced clear cell renal cell carcinoma due to
an overall lack of efficacy (123, 160). Overall, these findings
call into question the ultimate merits of blocking signaling
via the BMP9-Alk1 axis as a viable clinical approach for
breast cancer.

In addition to the contradictory information surrounding the
pro- and anti-angiogenic effects of BMP9 signaling, the
therapeutic potential of targeting this pathway is further
complicated by the fact that BMP9 does not act on the
endothelium in isolation, but can also influence the growth of
tumor cells, as well as interactions between the two cell types in
the tumor microenvironment (161, 162). A study by Eleftheriou
and colleagues indicated that inhibiting BMP9 decreases tumor
volume, while increasing vascular branching and metastases
(154), suggesting that BMP9 may cause certain cancer cells to
proliferate, while also promoting vascular quiescence. Along this
line, a pro-proliferative effect of BMP9 has been reported in
ovarian, liver, bladder, and pancreatic cancer cell lines, but not in
breast cancer (151, 153–155).

Beyond its role in cancer, the angiogenic actions of BMP9
have also been explored in other pathologies, including
A B C

FIGURE 2 | Endothelial BMP9 and TGFb signaling via the Alk1 signaling axis. (A) Conventional endothelial BMP9 and BMP10 signaling via a receptor complex of Alk1 and
BMPR-II leads to transient activation of downstream SMAD signaling, endothelial quiescence and vascular stability. Previous therapeutic studies have pursued vascular
normalization by supplementing this pathway with recombinant BMP9. (B) Alk1 can also partner with ALK5 and TGFbR2 to form a receptor complex for TGFb to promote
angiogenesis. (C) BMPR-II loss causes signaling via alternative type-II receptors, such as ActR-IIa/b, which can promote angiogenesis via the chronic activation of canonical
SMAD signaling. Therapeutic targeting of pre-angiogenic signaling of TGFb or BMP9 via Alk1 has been pursued by receptor blockade with PF-03446962 or the Alk1-Fc
ligand trap, Dalantercept.
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pulmonary arterial hypertension (PAH), a disease of occlusive
pulmonary vascular remodeling that is linked to excessive
endothelial cell proliferation and loss-of-function mutations in
the gene encoding BMPR-II (163). This work may help to
explain the contradictory actions of BMP9 in cancer by
identifying BMP9 signaling as an “angiogenic switch” that can
either promote or prevent angiogenesis, based on the availability
of BMPR-II as its type-II receptor (164). Under this model, the
loss of BMPR-II in the endothelium drives BMP9 signaling via
alternative type-II receptors, such as ActR-IIa or ActR-IIb,
resulting in prolonged activation of the canonical signaling
pathway and a cancer-like shift of the BMP9 response towards
pathological endothelial proliferation (Figure 2C).

Although a similar shift has not yet been identified in cancer,
the recognition of a central role for type-II receptor utilization in
regulating the balance between the pro- and anti-angiogenic
effects of BMP9 highlights the value of a more nuanced
understanding of BMP9 signaling in disease. Such an approach
could improve on the poor efficacy of ligand traps like
Dalantercept and blocking antibodies like PF-03446962, which
block all BMP9-related signaling, including the beneficial effects
of BMP9 on vascular growth and stability via BMPR-II. Blockade
of the vascular stabilizing effects of BMP9 could also explain why
Dalantercept trials demonstrated poor efficacy in human cancers,
accompanied by side-effects linked to vascular instability, such as
peripheral edema, nosebleeds and telangiectasias (121, 124, 125).
Profiling the relative expression of type-II BMP receptors in the
tumor endothelium could also help to identify breast cancer
tumors that would benefit from recombinant BMP9 therapy,
versus those for which this treatment may enhance
disordered vascularization.

Shh Signaling
Recently, the Shh pathway has emerged as a main regulator of
tumor angiogenesis and a promising therapeutic target (165).
There are three different pathways involved in Hedgehog
signaling, Shh, Indian-Hedgehog, and Desert-Hedgehog (166).
The Shh pathway signals through active and inactive pathways
(Figure 3A). Inactive signaling occurs due to the ligand
independent interaction of Shh and the transmembrane
protein Patched (Ptch1), whereas active signaling occurs
through factors downstream of smoothened (Smo), a G
protein-coupled receptor protein that is required to activate
glioma associated oncogenic (Gli) proteins (167, 168)
(Figure 3A). The active Shh signaling pathway is induced
when Shh binds and inactivates Ptch1 (169). This binding
stimulates the release of Smo, which activates the transcription
factor Gli homolog 1 (Gli1) and allows for the regulation of genes
involved in cell growth, differentiation, drug resistance, and
angiogenesis (167, 169).

Shh signaling can promote vascularization through its actions
on both the VEGF/VEGFR2, and Ang/Tie2 signaling pathways
to promote endothelial proliferation, migration, invasion, and
new vessel maturation (170, 171). As the main transcription
factor of the Shh pathway, Gli1 upregulates the release of
multiple pro-angiogenic molecules, including VEGF and the
VEGFR1 and VEGFR2 co-receptors cysteine-rich angiogenic
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inducer 61 (CYR61) and neuropilin 2 (NRP2) (172–175). Shh
signaling can also facilitate tumor vascularization by
upregulating the expression of VEGFR2 on the surface of
cancer cells (165). Clinically, dysregulation of Shh signaling
plays a key role in breast cancer progression and metastasis
and is a measure of poor prognosis (176–178). Overexpression of
Gli1 is also correlated with increased vascular density in breast
cancer (165). There are numerous potential therapeutic targets in
the Shh pathway that could influence tumor angiogenesis.

Pristimerin is an anti-inflammatory quinonemethide
triterpenoid compound that is being explored as a potential
anti-angiogenic candidate targeting Shh signaling (126).
Pristimerin exerts its anti-angiogenic effects by inactivating
Shh/Gli1 and related downstream signaling, resulting in the
inhibition of Shh-mediated endothelial proliferation, migration,
invasion and sprouting during the early stages of angiogenesis
via VEGF dependent mechanisms (126–128). Pristimerin can
also act at later stages to block the recruitment of pericytes that
stabilize newly formed vessels (126–128). In addition to the
effects of Pristimerin on angiogenesis, it can induce cancer
stem cell toxicity in breast cancer (179), indicating a potential
to impact the vascular mimicry-mediated resistance that limits
other anti-angiogenic approaches. Overall, it appears that
Pristimerin is efficacious as an anti-angiogenic therapy in
cancer. However, these findings have not yet been translated
into clinical success and the precise mechanisms driving these
effects remain unclear (180, 181).

COX-2 Inhibition
COX is the rate-limiting enzyme for the synthesis of
prostaglandins, with COX-2 being the dominant isoform
driving prostaglandin production during inflammation (182).
It has been previously confirmed that the expression of COX-2 in
the endothelium can be induced by hypoxia-stimulated release of
VEGF through a mechanism that is dependent on the activation
of the p38-MAPK and c-Jun N-terminal kinase (JNK) pathways
(183). P38-MAPK signaling can also upregulate COX-2
expression within tumors via the Sp1/Sp3 transcription factors
(184). The prostaglandins produced by COX-2 stimulate the
production of angiogenic mediators, like VEGF, in cancer and
endothelial cells (Figure 3B), driving a positive feedback loop
between the two cell types (185). The expression of COX-2 is
90% elevated in colorectal cancer, 70% in lung cancer, and 37%
in breast cancer and has been correlated with a poor prognostic
outcome (186).

A study by Xu et al., has predicted that COX-2 inhibitors
targeting tumor inflammation and angiogenesis could enhance
the activity of conventional anti-angiogenic therapeutics against
pre-established metastases and improve the prognosis for
patients with COX-2 overexpressing tumors (185). Celecoxib is
a COX-2 inhibitor that has been used to treat angiogenesis in
breast cancer (129, 130). Although Celecoxib may improve the
efficacy of anti-angiogenic therapies through a distinct anti-
VEGF pathway, this approach is also limited by dose-
dependent side effects that have reduced enthusiasm for this
approach (129, 130). In clinical trials, patients treated with COX-
2 inhibitors have an increased risk of CV toxicity, GI
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complications, and death (131, 187, 188). Whilst initial results
are promising, additional controlled clinical trials are needed to
confirm how COX-2 inhibitors perform when combined with
VEGF inhibitors for the treatment of AMBC (128, 185). Due to
the abundance of clinically available COX-2 inhibitors and years
of experience with these drugs in various patient populations, a
demonstration of clinical efficacy from these trials could allow
for the rapid incorporation of COX-2 inhibitors into
conventional therapeutic regimens.

P38-MAPK Pathway
P38-MAPK is a signal transduction mediator that is involved in
inflammation, the cell cycle, cell death, cellular development,
differentiation, senescence and tumor development (189). A
meta-analysis by Limoge et al. indicated that p38 target genes
and p38-MAPK signaling are elevated in breast cancer, and have
been linked to increased tumorigenesis, invasiveness, metastasis,
disease recurrence, and poor outcomes (190). P38-MAPK also
contributes to the formation of blood vessels in tumors by
enhancing the production, and deposition of pro-angiogenic
factors that alter the tumor microenvironment (Figure 3C),
including pro-angiogenic cytokines and fibronectin, a
Frontiers in Oncology | www.frontiersin.org 9
component of the extracellular matrix that serves as an anchor
for VEGF (190).

The p38-MAPK pathway may also contribute to angiogenesis
through its effects on TAMs and neutrophils, central immune
components of the tumor microenvironment. TAMs contribute
to vascular sprouting by bridging tip cells, as well as by secreting
a variety of angiogenic growth factors such as TGFb, VEGF,
endothelial growth factor, and a variety of chemokines (34, 191–
193). The p38-MAPK pathway is also known to regulate TGFa,
TGFb, and interleukins, which are all established drivers of TAM
function and play a role in the colonization of cancer cells and
angiogenesis (194). In addition, p38 may also modulate VEGF-
mediated endothelial migration, further contributing to
angiogenesis (195).

Genetic inactivation of p38 has been shown to reduce tumor
angiogenesis (132, 190), offering promise that anti-p38 drugs
could be a new therapeutic option for treating AMBC, as well as
breast cancer in general. The pharmacological inhibition of p38
significantly reduces tumor growth, angiogenesis, and lung
metastasis (196). P38 inhibition can also help to improve the
efficacy of current anti-angiogenic therapies, as TAMs have
been shown to contribute to the resistance of VEGF-targeted
A B

CD

FIGURE 3 | Alternative signaling pathways for targeting tumor angiogenesis. (A) Pristimerin inhibits the pro-angiogenic actions of Sonic hedgehog (Shh) signaling by
targeting downstream effects via the transcription factor Gli1. (B) The COX-2 inhibitor Celecoxib prevents the synthesis of downstream prostanoids, which can promote
tumor angiogenesis, endothelial proliferation and migration through the production of angiogenic factors like VEGF. (C) Ralimetinib blocks p38-MAPK signaling, which
promotes the deposition of angiogenic factors within the tumor microenvironment and can also promote angiogenesis through actions on tumor associated macrophages
(TAM) and COX-2 expression. (D) Production of CCL18 by TAMs promotes angiogenesis through VEGF-dependent and independent mechanisms. CCL18 neutralizing
antibodies have been explored as a novel treatment for tumor angiogenesis.
December 2021 | Volume 11 | Article 772305

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Harry and Ormiston Novel Pathways Targeting Tumor Angiogenesis
anti-angiogenics (197). Ralimetinib, a p38-MAPK selective
kinase inhibitor, has been shown to reduce breast cancer cell
invasiveness in vivo (132). A phase 1 clinical trial assessing
Ralimetinib in combination with Tamoxifen demonstrated that
it could provide modest improvements in progression free
survival in AMBC and is an acceptable, safe, and tolerable
therapy (133, 134). A phase 2 clinical trial of Ralimetinib was
initiated to address the efficacy and safety of p38-MAPK
inhibition in AMBC; however, the trial was terminated due to
lack of participant enrollment (identifier NCT02322853).
Despite the early promising findings, a major concern
associated with this therapeutic approach is the fact that p38
is a well-recognized tumor suppressor (198), suggesting the
need to balance any beneficial effects on tumor angiogenesis
against potentially damaging actions on the tumor itself. The
time of administration is also an important factor in this
therapeutic approach, as p38 inhibition is impacted by
circadian rhythms (199).

CCL18 in Tumor Angiogenesis
Several chemokines are currently being investigated for their
association with angiogenesis However, CCL18 appears to be the
most promising. CCL18 is the most abundant and specific
chemokine released from TAMs, and serves the function of
recruiting B-cells, T-cells, and natural killer (NK) cells (200). It
is also essential for the promotion of tumor angiogenesis and
endothelial cell survival (201) and is linked to poor prognosis in
breast cancer (200). CCL18 can either work synergistically with
VEGF, or through VEGF-independent mechanisms (Figure 3D),
to promote migratory and angiogenic effects both in vitro and in
vivo (202). Beyond its pro-angiogenic activity, CCL18 can also
promote endothelial to mesenchymal transition (EndMT) in the
tumor microvasculature, which can lead to loss of cell-to-cell
junctions, and enhanced invasion and migration (202).

Therapeutically, targeting CCL18 represents a promising
treatment for patients with resistance to anti-VEGF therapies.
Neutralizing antibodies towards CCL18 do not only block its
effects on tumor angiogenesis though VEGF-independent
mechanisms, but may also improve the response to other anti-
angiogenic therapies via TAM-driven processes (202). CCL18
should be further assessed for biological activities using
Frontiers in Oncology | www.frontiersin.org 10
mechanistic studies and the pre-clinical and clinical evaluation
of novel inhibitors (203).

In conclusion, drug resistance, severe side-effects, limited
survival advantage, and enhanced cancer regrowth rates
associated with current anti-angiogenic therapies highlight the
critical need for novel targets and therapies targeting this aspect
of tumor growth and metastasis. Beyond the novel therapies
discussed in this review, non-coding RNAs, including long non-
coding and circular RNAs are being investigated as potential
master regulators of tumor angiogenesis. These therapies are
advantageous as they have multiple targets and broad affects are
difficult to achieve through approaches targeting individual
pathways or ligands. Increased understanding of the factors
that stimulate tumor angiogenesis and the interactions between
these novel pathways and more established mediators may also
allow for a refinement of therapeutic approaches, without the
need for new drugs. Together these advances offer the promise of
new treatment options that will improve the prognosis for
AMBC patients.
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