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Abstract
Background: Bacille Calmette-Guérin (BCG) vaccine is given to Canadian Aboriginal neonates in
selected communities. Severe reactions and deaths associated with BCG have been reported
among infants born with immunodeficiency syndromes. The main objective of this study was to
estimate threshold values for severe combined immunodeficiency (SCID) incidence, above which
BCG is associated with greater risk than benefit.

Methods: A Markov model was developed to simulate the natural histories of tuberculosis (TB)
and SCID in children from birth to 14 years. The annual risk of tuberculous infection (ARI) and
SCID incidence were varied in analyses. The model compared a scenario of no vaccination to
intervention with BCG. Appropriate variability and uncertainty analyses were conducted.
Outcomes included TB incidence and quality-adjusted life years (QALYs).

Results: In sensitivity analyses, QALYs were lower among vaccinated infants if the ARI was 0.1%
and the rate of SCID was higher than 4.2 per 100,000. Assuming an ARI of 1%, this threshold
increased to 41 per 100,000. In uncertainty analyses (Monte Carlo simulations) which assumed an
ARI of 0.1%, QALYs were not significantly increased by BCG unless SCID incidence is 0. With this
ARI, QALYs were significantly decreased among vaccinated children if SCID incidence exceeds 23
per 100,000. BCG is associated with a significant increase in QALYs if the ARI is 1%, and SCID
incidence is below 5 per 100,000.

Conclusion: The possibility that Canadian Aboriginal children are at increased risk for SCID has
serious implications for continued BCG use in this population. In this context, enhanced TB
Control – including early detection and treatment of infection – may be a safer, more effective
alternative.

Background
Bacille Calmette-Guerin (BCG) is a live, attenuated vac-
cine derived from Mycobacterium bovis. The vaccine pro-
vides 65–95% protection against miliary and meningeal

tuberculosis (TB) in children vaccinated as neonates [1].
Local and systemic adverse reactions to BCG have been
summarized [2,3]. The most severe of these – and fortu-
nately the rarest – is disseminated BCG infection. This
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complication usually occurs among children with under-
lying congenital or acquired immunodeficiency disorders
[4,5].

BCG use in Canada is confined to high-risk groups, and
routine neonatal vaccination programs exist only in TB-
endemic Aboriginal (First Nations and Inuit) communi-
ties. Since 1982, eight cases of disseminated BCG infec-
tion have been reported in this population [6-9]. Five of
these infants were diagnosed with congenital immunode-
ficiency disorders, including four with severe combined
immunodeficiency (SCID). Two infants were infected
with human immunodeficiency virus (HIV). All of them
died either from BCG infection or other complications
associated with underlying disease. These events have led
to a review of BCG safety issues and policy in Canada.

We developed a state-transition, Markov model to predict
the benefits and risks of BCG in Aboriginal infants under
varying epidemiologic conditions. There were four objec-
tives in this study: 1) to establish utility values for acute TB
states and the state of permanent neurological sequelae
following acute tuberculous meningitis; 2) to estimate the
future burden of illness in cohorts of children in which a

neonatal BCG program is present or absent; 3) to estimate
threshold values for the incidence of SCID at birth, above
which the decision to give BCG is no longer supported by
the model; and 4) to assess the robustness of results to
changes in the values for key variables in the model.

Methods
A Markov model was constructed using DATA 4.0 soft-
ware (TreeAge Software, Inc., Williamstown, MA). Similar
to previous models used to assess BCG [10,11] the model
followed cohorts throughout childhood (birth to 14
years). The cycle length was six months, due to several
assumptions described below. Analyses were done for the-
oretical populations experiencing different risks of tuber-
culous infection, and different risks of SCID in newborns.
The model compared a control scenario (no BCG vaccina-
tion) to intervention with BCG vaccine. The decision
model for the period from birth to age six months is
depicted in Figure 1. Model branches and subtrees were
identical for both BCG program options, and probabili-
ties for movement into different states affected by vaccina-
tion (disseminated BCG infection and TB disease states)
were linked between cohorts using expressions of relative
risk [12].

Diagram of decision model in first Markov cycle (birth to age 6 months)Figure 1
Diagram of decision model in first Markov cycle (birth to age 6 months). * Death due to disseminated BCG infection 
** Death due to SCID *** Death due to unrelated causes **** Individual moves to TB disease state (either meningeal, miliary, 
or other forms of TB) in the next cycle of the model (age 6–12 months).
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Diagram of health states in the Markov model beyond age 6 monthsFigure 2
Diagram of health states in the Markov model beyond age 6 months. * Death due to unrelated causes ** Death due 
to acute TB states *** Individual moves to TB disease state in the next Markov cycle.
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Health states in the Markov model beyond the age of six
months (after the first cycle) are shown in Figure 2 . Unin-
fected children remain well until the last stage in the
model, unless primary tuberculous infection or death due
to unrelated causes intervene. Children with primary
infection may progress to disease or move into the latent
infection state. Children with latent infection may experi-
ence exogenous reinfection (exposure to a new strain of
M. tuberculosis). Reinfected individuals who do not
develop disease return once again to the latent infection
state. Proportions of uninfected children who experience
primary infection, and latently infected children who
experience exogenous reinfection, depend on the annual
risk of tuberculous infection (the ARI). This represents the
overall proportion of the total population infected with
M. tuberculosis each year.

Children in all three infection states described above may
develop TB disease. Among those who develop disease,
three states are possible: TB of the central nervous system
(CNS) and meninges (ICD-9 013); miliary tuberculosis
(ICD-9 018), and non-meningeal, non-miliary TB. The
latter state includes all forms of TB disease (including pri-
mary and respiratory disease) with ICD-9 codes other
than 013 or 018. Children with meningeal TB may
develop permanent neurological sequelae. All children
with acute TB who do not die or experience disability
move into the latent infection state.

Several assumptions were made in the model. First, the
theory that BCG protects against primary infection and
endogenous reactivation, but not against exogenous rein-
fection, is applied in the model [13]. The state of SCID
lasted one cycle, through the first six months of life. This
is based on a review that found that the median age at
which infants receive a bone marrow transplant (BMT) is
approximately six months [14]. Since SCID is fatal among
infants who do not receive a successful BMT [15], infants
with this disorder can move into two possible states at age
six months: death; or uninfected. Therefore, it is assumed
that children who receive a successful BMT experience a
normal state of health afterwards [15]. It is also assumed
that exposure of SCID patients to tuberculous infection
(the risk of infection with M. tuberculosis) is nil during the
first stage of the model (Figure 1).

The model makes the conventional assumption that once
infected with M. tuberculosis, an individual remains
infected for life [16]. The primary infection and reinfec-
tion states are assumed to last six months, as children who
develop miliary or meningeal TB generally do so three to
six months following initial exposure to TB bacilli
[17,18]. Similarly, TB disease states are assumed to last
one stage (six months) in the model, due to the availabil-
ity of short-course, six-month regimens for TB treatment.

This is a simplifying assumption: it is recognized that TB
cases are often found several months after the onset of dis-
ease; and that regimens for treatment of extrapulmonary
disease are usually longer than six months [18]. Finally,
all forms of TB other than miliary disease and tuberculous
meningitis have been grouped into a single state (non-
meningeal, non-miliary TB). Evidence for the protective
effects of BCG among infants and children has been fairly
specific to either all forms of TB disease [19] or miliary
and meningeal disease [1].

Probabilities for movement between states in the model
are shown in (Table 1). Effectiveness and adverse effects of
BCG were estimated from published meta analyses, clini-
cal trials, case series and other studies. Values were based
on studies involving Canadian Aboriginal populations, if
available [20-24]. The risk of TB disease (all forms) fol-
lowing primary infection was set to 22% (range 14–30%),
based on a recent analysis of data from a Canadian First
Nations population [23]. This range agrees with other
findings in adults [25] and children [26], and approxi-
mates the conventionally accepted 10–30% range of risk
for disease in children [17]. The risk of tuberculous men-
ingitis following primary infection among 0–4 year olds
in the model is 0.88%, within the range of estimates (0.5–
1%) reported in the literature [27-31]. Risks of case fatal-
ity were estimated using a case-level data set of all
reported TB cases (2706) in the Canadian First Nations
population (living on and off reserve) between 1990 and
2000. This data set was provided by the Public Health
Agency of Canada, Health Canada. Only cases in which
TB was considered the cause of death, or TB was not the
primary cause but contributed to the death, were consid-
ered case fatalities. This information was available for
2550 (94%) of the 2706 First Nations TB cases included
in the data set. For meningeal and miliary disease, we cal-
culated proportions of total cases in all age groups who
died, due to the very low tally of children with these forms
of disease. The proportion of non-meningeal, non-miliary
cases who died was estimated using data specific to the 0–
14 age group. Ranges for variability and uncertainty anal-
yses were based on 95% confidence limits for these pro-
portions.

Utility values in the model are also shown in (Table 1).
Values for the three forms of acute tuberculosis were esti-
mated using hospitalization data from a computerized
provincial discharge file provided by Manitoba Health.
The median duration of hospitalization was given a utility
value of zero, and this time period was subtracted from
182.625 (the average number of days in six months) to
obtain a utility value for the six-month acute TB state [40].
Values for variability and uncertainty analyses were
obtained in a similar way, using the upper and lower
interquartiles for duration of hospitalization.
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To estimate a utility value for the state of permanent neu-
rological sequelae following tuberculous meningitis, sub-
jects were recruited to participate in an interview
involving the standard gamble technique. During the
interview, subjects were offered two alternatives, the first
of which was the possibility of perfect health for the
remainder of life with a probability of immediate death,
and the second of which was living the rest of life with
permanent sequelae from tuberculous meningitis. The
probability of death was varied between 0 and 1 until the
individual was indifferent between the alternatives, and
the utility score for the health state in question became
one minus that probability [41,42].

A computer tool developed in Excel 2000 software
(Microsoft, Inc., Redmond, WA) was used during the
interviews. The two alternatives in the standard gamble
were shown to the subject, and the probability of death
was reflected in a pie chart on the computer screen. Before
completing the exercise for the state of permanent seque-
lae following tuberculous meningitis, two examples were
done. The states involved in these examples were blind-
ness in one eye, and then blindness in both eyes. If the
participant accepted a higher risk of death (thus having a
lower utility score) for blindness in one eye than for
blindness in both eyes, it was assumed that the individual
had a poor understanding of the exercise and the inter-
view was terminated.

The description of the health state for permanent sequelae
following tuberculous meningitis consisted of a brief text
describing important elements of the state, followed by
descriptors from the Health Utility Index (HUI) Mark III
[42]. The brief text was based on a review of 180 patients
with tuberculous meningitis in India [34]. It was assumed
that neurological sequelae included "moderate residual
damage" (hemiparesis, involuntary movements, and sub-
stantial mental impairment). Rarer complications such as
blindness, deafness, and hypopituitarism [43,44] were
not included. A TB medical consultant and a neurologist
provided feedback and input in developing the descrip-
tion. During the interview, the health state was described
as "Condition X."

Ethical approval for the interview process was sought and
obtained from the Ottawa Hospital Research Ethics
Board. Signed written consent for participation in the
study was obtained from subjects before starting the inter-
view. Volunteers for interviews were recruited from three
groups: first-year medical students at the University of
Ottawa (year of entrance 2002); employees at Health
Canada; and staff at the Department of Social Develop-
ment and Health, Mohawk Council of Akwesasne. The lat-
ter group was included, because the only routine BCG
programs in Canada are delivered in First Nations and

Inuit communities. Analyses were done to assess the
effects of factors such as group, sex, level of education, age,
and parental status on utility scores. These data were col-
lected from individuals prior to the interview, and entered
into an Access (Microsoft, Inc., Redmond, WA) database.
The data were later exported to SPSS® 11.0 (SPSS Inc., Chi-
cago, IL) for statistical analyses.

Base case and Markov cohort analyses were completed for
four hypothetical cohorts, experiencing different BCG
programs and risks of tuberculous infection. Two of the
cohorts (unvaccinated controls and those receiving BCG)
were exposed to an ARI of 1%, while the other two cohorts
were exposed to an ARI of 0.1%. The ARI in a given cohort
was converted to the six-month transition probability R
using the following expression [45]: R = 1 - (1 - ARI)0.5.
These analyses were carried out using the base probability
and utility values in the model, with the incidence of
SCID among newborns set to 0. Outcomes measured in
base case analyses were the number of TB cases occurring
(meningeal, miliary, and other), and quality-adjusted life
years (QALYs) in each cohort. Future QALYs were dis-
counted at a rate of three percent [46]. In Markov cohort
analyses, the probability of individuals being in each state
in each year of the model was estimated.

Variability was assessed using sensitivity analyses. To eval-
uate the impact of SCID on the decision to use BCG, the
threshold incidence of SCID above which BCG is not sup-
ported by the model (above which BCG reduces the
number of QALYs) was first calculated assuming an ARI of
0.1%. The robustness of this threshold value was assessed
by varying single parameters across plausible ranges in
one-way sensitivity analyses. Two-way sensitivity analyses
were then carried out on the ARI and SCID incidence at
birth, to estimate threshold values across a range of risks
for tuberculous infection (0.1 – 1%).

Uncertainties in probability and utility values in the
model were assessed using probabilistic Monte Carlo sim-
ulation [47,48]. The utility value for neurological sequelae
was assigned a normal distribution. Variables estimated
from a range of published reports, or a median and inter-
quartile range, were assigned triangular distributions.
Empiric probability variables (e.g. TB case fatality esti-
mates) were assigned β distributions [47]. A range of out-
comes (mean discounted QALYs and 95% confidence
limits) was generated for each of the four cohorts
described in the previous section. First, Monte Carlo sim-
ulations were done for cohorts in which the risk of SCID
is 0. These analyses were then repeated assuming increas-
ing risks of SCID in the population. The risk of SCID was
varied from one to 50 per 100,000 births, the approxi-
mate risks reported in three European populations
[36,49,50] and a North American Aboriginal population
Page 5 of 12
(page number not for citation purposes)



BMC Pediatrics 2006, 6:5 http://www.biomedcentral.com/1471-2431/6/5
[51], respectively. Quality-adjusted life year outcomes in
the two cohorts (vaccinated and unvaccinated) were con-
sidered significantly different if 95% confidence limits for
the two outcomes did not overlap.

Results
A total of 107 individuals were interviewed in the survey
(Table 2). Four interviews were terminated due to lack of
comprehension. Mean values for blindness in one eye and
blindness in both eyes were 0.76 (95% CI 0.71, 0.80), and
0.59 (95% CI 0.54, 0.65), respectively. The overall mean
utility value for neurological sequelae following tubercu-
lous meningitis was 0.43 (95% CI 0.37, 0.49). Mean util-

ity scores did not differ significantly across any of the
groups in (Table 2). They varied from 0.40 to 0.47, all
within the 95% confidence limits of the overall mean. Age
was not a significant predictor of utility scores, according
to linear regression analysis (p = 0.36).

Markov cohort analyses for a population in which the ARI
is 1%, in the absence of BCG vaccine and SCID, are shown
in Figure 3. With this ARI, the model predicts that BCG
will prevent 961 total TB cases and six deaths in a cohort
of 100,000 children, over 15 years (Table 3). In the same
cohort, 38 cases of meningeal TB and nine cases of miliary
TB are prevented by BCG. The vaccine prevents neurolog-

Table 1: Input data for Markov model.  

Parameter Value (range) Source(s)

Annual risk of tuberculous infection (0.001–0.01) Assumed
Annual rate of decline in the risk of infection 0.14 (0.0–0.14) 23
Relative risk of primary infection if vaccinateda 0.39 (0.20–0.43) 20–22, 32
Relative risk of meningeal or miliary TB if vaccinateda 0.14 (0.05–0.35) 1,19
Risk of TB following primary infectiona 0.22 (0.14–0.30) 23, 25, 26
Risk of TB due to reactivationa 0.0009 (0.0008–0.001) 23, 25
Risk of TB following exogenous reinfectiona 0.058 (0.028–0.092) 23, 25
Proportion of TB cases with meningeal TB (0–4 years) 0.040 (0.033–0.047) 33
Proportion of TB cases with meningeal TB (5–14 years) 0.015 (0.006–0.020)
Risk of neurological sequel from meningeal TBa 0.29 (0.13–0.39) 24, 34, 35
Proportion of TB cases with miliary TB (0–4 years) 0.0086 (0.0050–0.012) 33
Proportion of TB cases with miliary TB (5–14 years) 0.0055 (0.0015–0.01)
Risk of disseminated BCG infection among vaccinated infants born with SCIDb 0.36 (0.19–0.56) 36
Risk of fatality from meningeal TBb 0.091 (0.030–0.15) Health Canada data
Risk of fatality from miliary TBb 0.29 (0.23–0.36)
Risk of fatality from other forms of TBb 0.0013 (0.0013–0.007)
Risk of fatality, unvaccinated infants with SCIDa 0.25 (0.19–0.33) 37–39
Risk of fatality, disseminated BCG infectiona 0.87 (0.8–0.97) 2, 5
Utility value for acute meningeal TBa 0.93 (0.81–0.95) Manitoba hospital data
Utility value for miliary TBa 0.92 (0.69–0.97)
Utility value for other forms of TBa 0.98 (0.97–0.98)
Utility value for neurological sequel following acute meningeal TBc 0.43 (0.37–0.49) Survey

Distributions in Monte-Carlo simulations: a triangular; b β; c normal  

Table 2: Mean utility scores for neurological sequelae following acute meningeal TB, by group, sex, level of education, parental status, 
and age group

Group Sample size Mean (95% CI)

Overall 103 0.43 (0.37, 0.49)
Medical students 37 (36%) 0.46 (0.37, 0.55)
FNIHB employees 34 (33%) 0.42 (0.31, 0.53)
Akwasasne 32 (31%) 0.41 (0.29, 0.53)
Male 30 (29%) 0.42 (0.32, 0.53)
Female 73 (71%) 0.43 (0.36, 0.51)
No university 50 (49%) 0.46 (0.37, 0.55)
University 53 (51%) 0.40 (0.33, 0.48)
No children 50 (49%) 0.44 (0.36, 0.53)
One or more children 53 (51%) 0.42 (0.33, 0.50)
0–34 years old 50 (49%) 0.47 (0.38, 0.55)
35 years or older 53 (51%) 0.40 (0.31, 0.48)
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ical sequelae in 11 children. Figure 4 depicts the accumu-
lation of children with permanent neurological sequelae
following acute tuberculous meningitis. If the ARI is 1%
and no BCG is given, a total of 13 cases is predicted in a
cohort of 100,000 children over 15 years. The tally is less
than one per 100,000 in BCG vaccinated and unvacci-
nated cohorts, if the ARI is 0.1%.

If the ARI is 0.1%, the threshold value for SCID incidence
– above which BCG is not supported by the model – is 4.2
per 100,000 births, in sensitivity analyses (Figure 5). This
threshold was not altered to more than 8.0 per 100,000,
or to less than 2.7 per 100,000, by varying the parameters
across their specified ranges in sensitivity analyses. The
threshold was most sensitive to the risk of disseminated
BCG infection among vaccinated infants born with SCID.
Results of the two-way sensitivity analysis on ARI and
SCID incidence are shown in Figure 5. If the ARI is
increased to 1%, the threshold value for SCID is 41 per
100,000 births.

The results of uncertainty analyses (Monte Carlo simula-
tions) are presented in an 1 . Figure 6 shows threshold val-
ues for SCID incidence and the risk of tuberculous
infection which affect the decision to give BCG. There are
many epidemiologic scenarios in which BCG does not sig-
nificantly increase or decrease QALYs in cohorts of chil-
dren, when uncertainties in model parameters are
accounted for. If the ARI is 0.1%, estimated QALYs are not
significantly increased by BCG unless there is no SCID
occurring in the population. If the risk of SCID is 23 per
100,000 births or higher, BCG is associated with a signif-
icant reduction in QALYs. With an ARI of 1%, BCG was
associated with a significant increase in QALYs if the inci-
dence of SCID was lower than 5 per 100,000.

Discussion
To our knowledge, this is the first model to date which
considers the impact of SCID incidence on the decision to
give BCG. Another similar decision model considered the
risk of fatal BCG disease, but this risk was fixed at 1 per
10,000,000 vaccinated [10]. The risk among Canadian
Aboriginal people is much higher. In a retrospective

review of BCG-associated adverse events from Sweden,
the implications of immunodeficiency disorders on BCG
policy were discussed [52]. Interestingly, these authors
recommended that BCG vaccination be confined to high-
risk groups and given at age six months, in order to reduce
severe disease and deaths among infants with immunode-
ficiency disorders. In Canada, we face a similar dilemma a
decade later.

Results show clear benefits from BCG vaccination when
the risk of tuberculous infection is 1% per year. These
findings are consistent with other analyses [10,53] and
recommendations for the use of BCG in North American
populations [54,55]. These benefits become less clear
when the ARI is 0.1%. Rates of severe TB disease and
deaths are quite low, regardless of the BCG vaccination
policy. The threshold for risk of SCID above which BCG is
associated with a decrease in QALYs in sensitivity analyses
(4.2 per 100,000 births) is only slightly higher than the
SCID incidence reported in three European populations
[36,49,50]. Results of the study are therefore consistent
with recommendations of the International Union
against Tuberculosis and Lung Disease and the World
Health Organization, which state that BCG discontinua-
tion can be considered in populations with an ARI lower
than 0.1% [56,57].

These results have serious implications for populations in
which the risk of congenital immunodeficiencies is ele-
vated. SCID is no longer associated with 100% fatality, as
it was prior to the availability of bone marrow transplan-
tation [15]. The most important factor in improving the
prognosis of an infant with SCID is to diagnose and treat
the disease with bone marrow transplantation before
overwhelming infections occur [58]. BCG is usually given
within days of birth, and no high-throughput screening
test for SCID is currently available [59]. The rate of dis-
seminated BCG infection observed among vaccinated
First Nations newborns during the 1996–2000 period (20
per 100,000, 95% C.I. 6.2, 68) is more than 40 times
higher than rates observed in European populations [60].
Assuming a case fatality rate of 80% [2,5], it can be pre-
dicted that 16 per 100,000 infants would die of dissemi-

Table 3: Estimated TB case tallies and deaths in a birth cohort of 100,000, by ARI and BCG program decision (birth to age 14 years)

Outcome 1% ARI 0.1% ARI

No BCG BCG No BCG BCG

Tuberculosis (all forms) 1571 610 160 60
Meningeal TB 44.7 6.4 4.5 0.6
Miliary TB 11.3 1.6 1.1 0.2
Neurological sequelae 13.0 2.0 1.0 0.2
TB-related deaths 7.3 1.1 0.7 0.1
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nated BCG infection in a population with this level of risk.
Our model estimates that TB-related deaths do not exceed
8 (in a cohort of 100,000 children over 15 years), even if
the ARI is 1% and no BCG program is in place.

The sensitivity analyses depicted in Figure 5 may provide
useful estimates for the risk neutral decision maker. For
those concerned with uncertainties in model parameters,
we also conducted probabilistic Monte Carlo simulations.
As shown in the Appendix, the magnitude of difference in
QALYs between vaccination strategies appears quite
small. It would certainty appear much larger for a life-sav-
ing intervention in a cohort of cancer patients. However,
in the case of BCG we are dealing with an intervention in
an entire birth cohort, which may cause or prevent a rela-
tively rare outcome. In this sense, the model accurately
reflects what policy-makers must consider when debating
the future use of this vaccine, that is, the handful of dis-
ease cases or deaths each year affected by its use. In Figure
6, it is apparent that the model does not support either
vaccine option for a wide range of ARI and SCID incidence
values. However, it may be of interest to decision-makers
that BCG is associated with a significant reduction in
QALYs for a range of SCID rates and ARI values which may

indeed reflect true epidemiologic parameters in Canadian
Aboriginal populations.

Several limitations in this study deserve comment. Sec-
ondary effects of BCG vaccination due to reduced trans-
mission were not included in the model. Although long-
term protection against disease has recently been shown
in persons vaccinated during the 1930s [32], there is no
evidence that BCG has reduced the risk of TB infection in
any population [61]. In the absence of such evidence, esti-
mating the theoretical herd immunity effects of BCG is of
little utility [62]. For these reasons, the Markov modeling
approach was considered suitable for this study, and
transmission was not included in the model.

Although it has been recommended elsewhere that a life-
time horizon be considered in such studies, [46] our
model followed a theoretical cohort from birth to age 14
years. This approach was chosen for consistency with ear-
lier modeling studies on BCG, [10,11] and because cur-
rent evidence suggests BCG protection lasts perhaps 10–
15 years [19,63]. Although the prevention of childhood
TB and disseminated BCG infection have long-term bene-
fits in terms of life-years gained, BCG has no known
impact on any TB-related risk in adulthood, and as such
has no impact on outcomes beyond the age of 15 years, or
as described above, the risk of morbidity and mortality in
the population. Most importantly, the lifetime horizon
approach would not have affected the most important
outcome in the model, namely those threshold values for
SCID incidence which alter the decision to use BCG for a
given risk of tuberculous infection in the population.

The risks of BCG infection in children born with congen-
ital immunodeficiencies other than SCID, or among HIV-
infected infants, were not considered in the model. Dis-
seminated BCG infection has occurred in an infant with
interferon-gamma receptor deficiency, for example [64].
For the purposes of building a model, data on this condi-
tion is scarce in comparison to SCID. Health Canada now
requires that the HIV status of mothers be known prior to
administering BCG to any First Nations newborn.
Although errors are possible, quantifying their occurrence
in our model would have been tremendously difficult and
of little benefit. Adverse events associated with BCG other
than disseminated infection, such as adenitis and osteo-
myelitis, were also excluded from the model.

Perhaps the most important limitation in this and other
modeling studies is that conclusions must be based on
assumptions made in formulating the model. It is in this
context that we can discuss the main strengths of the
study. Where possible we have drawn from the experience
of Canadian Aboriginal peoples, in an effort to make
results as generalizable as possible to the population cur-

Example of Markov cohort analysis produced by the model, assuming the ARI is 1%, SCID incidence is 0, and no BCG is givenFigure 3
Example of Markov cohort analysis produced by the model, 
assuming the ARI is 1%, SCID incidence is 0, and no BCG is 
given.
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rently receiving BCG in this country. Primary data collec-
tion was undertaken to establish a meaningful utility
value for the state of neurological sequelae due to tuber-
culous meningitis. Finally, appropriate sensitivity analy-
ses and probabilistic Monte Carlo simulations were
conducted to account for uncertainties in model parame-
ter estimates and generate plausible ranges for key out-
comes.

When BCG was first administered to First Nations infants
in the Fort Qu'Appelle Indian Health Unit in Saskatch-
ewan, an incredible 1% of these infants were dying from
TB during the first year of life [65]. Death rates were
reduced by 80% in vaccinated infants before antitubercu-
lar chemotherapy was available [20]. A beneficial effect
was also documented among vaccinated infants in Que-
bec [66], and among American Indians [32]. The epidemi-
ology has changed since these periods. Analyses indicate
that the ARI is likely less than 0.1% among First Nations
people in British Columbia [23]. A review of safety, effi-
cacy, and epidemiologic data led to the discontinuation of
BCG in that population as of June, 2003. Continued use
of BCG in Alberta First Nations communities has also
recently been questioned [67]. Only one TB-related death
was reported among First Nations children between 1990
and 2000. This was a case of congenital TB, which could
not have been prevented by BCG in the infant [60]. A fur-
ther review of treatment outcome data available from
Health Canada for the 1997–2002 period revealed no TB-
related deaths among First Nations children aged 0–14

years (Public Health Agency of Canada, Health Canada,
unpublished data, 2004). Case rates and even deaths may
have been higher in the absence of BCG, but the occur-
rence of eight deaths associated with the vaccine [6-9] pro-
vides ample rationale for a discussion on its risks and
continued use.

Safer and more effective vaccines for TB prevention may
soon be available [68]. One alternative intervention
already exists in the form of early detection and treatment
of tuberculous infection. The provision of isoniazid is
highly effective in reducing the risk of disease [69] and
protection may last for up to 30 years [70]. Treatment of
infection is generally well tolerated by children [71], and
compliance is usually much higher than in adults [72,73].
Considering the safety issues outlined in this report, the
best course of action may be the removal of BCG vaccine
combined with improvements in TB programming [74].
Such improvements must include early case finding in
adults to prevent transmission, and early detection and
treatment of infection in children through contact tracing
and screening in high-risk communities.

Conclusion
BCG is an effective vaccine for protecting young children
against severe forms of TB. However, in the Canadian con-
text, the occurrence of several deaths associated with the

Two-way sensitivity analysis on the assumed ARI (%) and the incidence of SCID among newborns in the populationFigure 5
Two-way sensitivity analysis on the assumed ARI (%) 
and the incidence of SCID among newborns in the 
population. The parameters ARI and SCID incidence were 
varied across specified ranges to assess sensitivity of the 
model to these changes. BCG: QALYs significantly higher 
among vaccinated; No BCG: QALYs significantly higher 
among unvaccinated

Predicted cumulative number of children living with perma-nent neurologic sequelae following tuberculous meningitis, by BCG program option and ARI (%)Figure 4
Predicted cumulative number of children living with perma-
nent neurologic sequelae following tuberculous meningitis, by 
BCG program option and ARI (%).
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vaccine warrants a review of the relative risks and benefits
of its continued use. According to our model, the decision
to give BCG vaccine in a population is heavily dependent
upon the risk of SCID among newborns. Naturally, these
findings assume a setting in which access to health care
and bone marrow transplantation services is a reality.
There is no doubt that Aboriginal infants and children
experience a disproportionate burden of TB when com-
pared to other populations in Canada. However, investing
in preventive interventions other than BCG may be more
appropriate given the findings of this and other studies.
Future research should focus on the development of a new
TB vaccine, and on optimizing the delivery of currently
available interventions. Efforts to accurately determine
the incidence of SCID and the ARI in areas where BCG is
still in use would also be valuable, to assist in reviewing
BCG programs at the regional level.
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