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Abstract

Background: The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients
with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms
underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they
do not fully inhibit HER2 oncogenic function at physiological doses.

Methodology and Principal Findings: Here we have provided a molecular mechanism of how HER2 oncogenic function
escapes TKIs’ inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster
Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical
analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased
EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate
that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to
persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found
to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2.
Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells,
ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.

Conclusions and Significance: These results demonstrate the role of drug-induced autocrine events leading to the
activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine
kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.
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Introduction

The human Epidermal Growth Factor Receptor (HER, also

known as ErbB) family consists of four receptors EGFR (HER1 or

ErbB-1), HER2 (ErbB-2), HER3 (ErbB-3) and HER4 (ErbB-4)

binding more than 10 polypeptide ligands between them [1]. The

HER receptors play a crucial role in breast cancer and many other

types of cancer [2], generating much interest in understanding

their individual and combinatorial actions. These receptors belong

to subclass I of the superfamily of Receptor Tyrosine Kinases

(RTKs) which are transmembrane receptors with an intrinsic

ability to phosphorylate their tyrosine residues in the cytoplasmic

domains to transduce signals [3]. However, HER2 and HER3 are

not autonomous since HER2 has no known ligand and the kinase

activity of HER3 is defective [2]. These two receptors can form

heterodimeric complexes with each other as well as other HER

receptors to generate potent signals [4].

The response rate to EGFR or HER2 inhibitor monotherapy

remains very poor despite a selection of patients based on EGFR

or HER2 over-expression [5,6]. In addition, the expression of

HER receptors does not seem to predict the response to these

drugs [7,8]. Patients with EGFR mutations respond extremely well

to Iressa [9] but these are only found in a small subset of patients

[10]. Therefore, the underlying mechanisms contributing to the

resistance as well as predicting the success of these drugs in cancer

patients are still poorly understood. The response rate to targeted

HER family therapy depends on more than just the receptor

concentrations or the mutations of the particular HER receptor. It

is likely that multiple interacting HER receptors and ligands are

involved in mediating the response to targeted therapy. For

example EGFR tyrosine kinase inhibitor (TKI) like Iressa

(Gefitinib, ZD 1839) which targets the EGFR receptor also

inhibits the PI3K and PKB pathway via HER3 [11]. Moreover,

Iressa is also effective in HER2 over-expressing breast cancer cells
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[12]. Therefore, treatment that reduces the tyrosine kinase activity

of EGFR receptors may also affect HER2 and HER3 receptors. It

has been argued that therapy based on receptor concentration,

ignoring the activation and phosphorylation state of the receptor

and its interaction with other HER receptors continues to yield a

relatively low response rate [13,14].

Targeting HER2 has been the main focus in breast cancer

[15,16,17] although increasingly, inhibition of EGFR in combi-

nation with HER2 blockage is seen to be important in breast

cancer therapy. Moreover, EGFR expression had also been shown

to play a role in hormone resistant breast cancer patients [18] and

this has led to the use of Iressa with aromatase inhibitors in breast

cancer [19]. More recently Lapatinib which targets the tyrosine

kinase activities of both EGFR and HER2 has been shown to be

beneficial in HER2 positive patients, confirming the important

role of EGFR inhibition in breast cancer [20].

HER2 phosphorylation maybe used as a surrogate marker for the

activation status of other HER receptors, being the preferred

dimerization partner [21]. Therefore, the main aim of the study was

to assess the effects of TKIs on changes in HER2 phosphorylation

status in relation to other HER receptors in breast cancer cell lines.

TKIs had been shown to inhibit HER2-driven signaling and to

suppress the growth of HER2-overexpressing breast tumor cells

[22,23]. However, it was also reported that TKIs do not fully inhibit

HER2 oncogenic function at conventional doses and concentrations

[24]. To resolve the controversy, we used FRET to study activation

changes in HER2 and other HER receptors in relationship to TKIs

treatment in breast cancer cell lines. FRET can detect HER2

phosphorylation variations with greater sensitivity than classical

biochemical methods. Further, analysis of single cells by FRET

provides information inaccessible through conventional biochemis-

try. We demonstrated that the HER2 phosphorylation was not fully

inhibited by TKIs in the surviving cells due to the activation of

alternative HER receptors through their ligands. These mechanisms

may mediate resistance to the TKIs in breast cancer cell lines. The

combined treatment of cells with Herceptin (Trastuzumab) and

Iressa exerted a greater suppression on EGFR and HER2

phosphorylation, and induced an enhanced anti-proliferative effect.

Our data provides evidence that therapy based on the assessment of

engagement of all four EGF receptors should improve outcomes.

Results

We applied FRET to study the effect of TKIs on HER2

phosphorylation since FRET can detect variations between single

cells not accessible through other biochemical methods. Having

previously established the assessment of EGFR phosphorylation

state by Förster Resonance Energy Transfer (FRET) in A431 cells

[14], we applied FRET to assess HER2 phosphorylation in

relation to TKIs in our test cell line A431 cells as well as various

breast cell lines with variable HER2 expression.

HER2 phosphorylation state monitored by FRET
HER2 is not known to have its own ligand although it dimerizes

with other HER receptors via their respective ligands [21]. To

establish an assay for HER2 phosphorylation state, it was necessary

to trigger HER2 phosphorylation via other HER receptors. We

chose A431 cells as a test cell line because of their extensive prior use

for the analysis of EGFR and other HER receptors. EGFR and

HER2 levels in relation to three breast cell lines (MCF-7, MDAMB-

453, SKBR3) are illustrated in Figure S1A.

We conjugated anti-HER2 antibody to a Cy3b chromophore

(HER2-Cy3b) and an anti-phosphoHER2 antibody to Cy5

(pHER2-Cy5) to assess HER2 phosphorylation in fixed cell

samples (see Methods). The hypothesis was that upon HER2

activation there would be phosphorylation of the receptor and

therefore FRET between the two bound antibodies. The

consequent specific quenching of the donor chromophore Cy3b

would result in the decrease of lifetime of HER2-Cy3b and

therefore the decrease of lifetime of HER2-Cy3b is indicative of

HER2 phosphorylation status (see Methods).

To show in-situ that HER2 could be activated upon dimerization

with other members of the HER family, A431 cells were stimulated

with EGF, heregulin b and heregulin b-1 (ligands for HER1,

HER3 and HER4 respectively). The average lifetime of the donor

HER2-Cy3b alone (detecting HER2 protein) was 2.20 ns

(Figure 1A) and EGF stimulation alone in the absence of

acceptor-coupled second antibody did not affect the donor lifetime.

In the presence of the acceptor antibody pHER2-Cy5 (detecting

phosphorylated HER2), the donor lifetime of HER2-Cy3b

decreased to 1.75 ns due to basal HER2 phosphorylation (Methods

- Interpretation of FRET Data). Further significant decreases in the

average lifetime of HER2-Cy3b were measured upon EGF, b and

b-1 heregulin stimulation (Figure 1A). The significant decreases in

average lifetime compared to the basal level (p,0.01) indicate an

increase in HER2 tyrosine phosphorylation and therefore activa-

tion in A431 cells. To verify the measurements were not due to

non-specific FRET, the phosphatase YOP was used after EGF

treatment to dephosphorylate phosphotyrosine residues on HER2.

The average lifetime reversed to the control values (orange

triangles) indicating a loss of FRET. In parallel an increase in

HER2 phosphorylation on Tyr1221 and 1222 in a total cell lysate

was shown by western blot using a phospho-specific antibody

(Figure 1A, right panels). Moreover, heregulin b and b-1 did not

induce EGFR activation in A431 cells (data not shown).

Together these data indicated that in-situ HER2 phosphoryla-

tion by ligands of other HER receptor family members could be

monitored by FRET.

The effect of tyrosine kinase inhibitors of EGFR on HER2
activation states

As HER2 is the preferred dimerization partner for EGFR and

other HER receptors, we proceeded to determine the effect of

TKIs on HER2 phosphorylation state induced through other

HER receptors under various conditions. Since A431 cells over-

express EGFR, we expected AG 1478 to prevent activation of

HER2 by EGF stimulation. However, AG 1478 failed to abolish

EGF-induced HER2 phosphorylation in A431 cells (Figure 1B).

Heregulin b induced HER2 phosphorylation was also not

inhibited by AG1478. AG1478 increased HER2 phosphorylation

in the presence of heregulin b-1, indicated by a decrease of

average donor lifetime compared to heregulin b-1 alone

(p = 0.008) in A431 cells (Figure 1B, left graph). In MCF-7 cells,

AG 1478 also did not abolish EGF induced HER2 phosphory-

lation. Phosphorylation of HER2 was greater by heregulin b and

heregulin b-1 in the presence of AG 1478 (p,0.01 for both

conditions; Figure 1B, right graph). Increased doses of acute AG

1478 treatment up to 300 mM failed to abolish EGF induced

HER2 phosphorylation in A431 cells (Figure S1B), despite its

effect on PKB and ERK1/2 phosphorylation (Figure S1C). The

inability of AG 1478 to abolish HER2 phosphorylation was not

due to EGF stimulation since treatment of AG 1478 alone without

EGF stimulation also failed to abolish HER2 phosphorylation in

A431 cells and two other breast cancer lines, MDAMB-453 and

SKBR3 (Figure S1D, upper panels) despite the effect on PKB and

ERK 1/2 phosphorylation (Figure S1D, lower panels). We

proceeded to investigate whether Iressa, another more potent

EGFR TKI had the same effect on HER2 phosphorylation in

HER2 Activation Escapes TKIs
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various breast cells. Figure 1C shows that acute treatment with

1 mM Iressa did not abolish basal HER2 phosphorylation in

MCF-7 cells but induced a significant increase in its phosphor-

ylation, resulting in a further decrease of lifetime (p = 0.02

compared to basal lifetime). In HER2 over-expressing MDAMB-

453 and SKBR3, some cells show partial HER2 phosphorylation

but overall HER2 phosphorylation was not abolished (Figure 1C).

Although TKIs induce the formation of inactive EGFR/HER2

[22,23], we showed that they failed to abolish basal HER2

phosphorylation. This suggested that the persistence of HER2

activation was not be due to EGFR/HER2 dimerization, but from

either HER3/HER2 or HER4/HER2 dimerization. We also

showed that the EGFR inhibition potentiated HER2 phosphor-

ylation by exogenous heregulin stimulation, suggesting that

HER3/HER2 and HER4/HER2 dimers could occur to sustain

HER2 phosphorylation. However, TKIs including AG 1478 and

Iressa decreased HER3 phosphorylation (Figure 1D). Therefore,

the increased HER2 phosphorylation upon heregulin stimulation

with TKI treatment (Figure 1B) indicated the involvement of

HER4 in sustaining HER2 phosphorylation.

AG 1478 and Iressa induce proteolytic cleavage of HER4
as well as dimerization between HER2 and HER4 in breast
cancer cell lines

It has been shown that proteolytic cleavage of HER4 occurs in

cells at a low basal level and can be increased by heregulin, or

other growth factors that bind to HER4 [25]. The ectodomain

cleavage of HER4 is mediated by tumour necrosis factor-a-

converting enzyme (TACE), a transmembrane metalloproteinase

that produces a membrane-anchored fragment (80 kD) which

consists of the entire cytoplasmic and transmembrane domain

[26,27]. The m80 HER4 fragment from ectodomain cleavage was

found to associate with full length HER2 [28]. In addition, the

transmembrane m80 was found to be cleaved by c-secretase and

Figure 1. Inhibition of EGFR with AG 1478 and Iressa does not abolish HER2 phosphorylation. A, Displayed is the average lifetime of
HER2-Cy3b in A431 cells treated under different conditions as indicated. Each point represents one measurement of the average lifetime of HER2-
Cy3b in A431 cells (single cell or group of cells in a single field) with the lines representing the median average lifetime of all the cells under each
condition. To assess HER2 activation in A431 cells by FRET, we incubated the cells with either donor alone (HER2-Cy3b) or donor and acceptor (HER2-
Cy3b+pHER2-Cy5) after 10 minutes stimulation with either 100 ng/ml EGF, 100 ng/ml heregulin b (HRG) or 100 ng/ml heregulin b-1 (HRG1). To
remove phosphotyrosine, the phosphatase YOP was used following stimulation of the cells with EGF. On the right panels, near confluent A431 cells
were stimulated with EGF, heregulin b and heregulin b-1 for 10 minutes. 10 mg of protein was used for western blot analysis. The phosphorylation of
HER2 on Tyr1221/1222 was determined with a phosphospecific antibody. B, A431 cells (left graph) were pre-treated with 3 mM of the tyrosine kinase
inhibitor AG 1478 (AG) for two hours before stimulation with either EGF, heregulin b or heregulin b-1 as indicated. The average lifetime of HER2-Cy3b
for those cells pre-treated with AG 1478 was compared with those without treatment using the Mann-Whitney test. The same experiment was also
performed in MCF-7 cells (right graph). C, MCF-7, MDAMB-453 and SKBR3 cells were pre-treated with 1 mM Iressa for 2.5 days before assessing their
HER2 phosphorylation as above. D, A431 cells, MCF-7, MDMAB-453 and SKBR3 were pre-treated with 1 mM AG 1478 for two hours. The cells were
treated with lysis buffer and proteins separated by SDS-PAGE. The phosphorylation of HER3 on Tyr1289 was determined using an anti-
phosphospecific antibody.
doi:10.1371/journal.pone.0002881.g001
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the soluble fraction (S80) was found to be translocated to the

nucleus [29,30]. The cleaved HER4 fragment remains phosphor-

ylated in the membrane, cytoplasmic and nuclear extracts

following heregulin stimulation [31], suggesting that the cleaved

fragment may be used as a reporter for HER4 activation.

We postulated that maintenance of HER2 activation and the

enhanced HER2 phosphorylation by heregulin stimulation

combined with AG 1478 may be due to activation of HER4 with

the subsequent activation of HER2. We therefore assessed HER4

cleavage and its interaction with HER2 following EGFR

inhibition by AG 1478 or Iressa. Figure 2A illustrates the cleavage

of HER4 and production of m80 upon heregulin stimulation in

SKBR3 and MCF-7 cells. Moreover, acute treatment with the

tyrosine kinase inhibitor AG 1478 or Iressa also induced the

cleavage of HER4 and production of m80 in both SKBR3 and

MCF-7 cells (Figure 2A). Upon tyrosine kinase inhibition the m80

fragment accumulation was augmented compared to the response

to exogenous heregulin. To prove further that the maintenance of

HER2 phosphorylation was due to HER4 activation, we assessed

the dimerization between HER2 and HER4. Indicative of

dimerization in SKBR3 and MCF-7 cells, Figure 2B illustrates

the co-immunoprecipitation of HER2 with intracellular anti-

HER4, induced by heregulin stimulation or EGFR inhibition with

either AG 1478 or Iressa.

Upon acute treatment with AG 1478 and Iressa, downstream

signalling pathways are inhibited due to the prevention of EGFR

homodimers and EGFR/HER2, EGFR/HER3 heterodimer

formation, consistent with other reports [11,23]. Nevertheless,

proteolytic cleavage of HER4 and heterodimerization of HER2/

HER4 occurred and thus sustained HER2 phosphorylation.

AG 1478 and Iressa induce the release of ligands
including heregulin and betacellulin

We showed above that acute treatment of AG 1478 and Iressa

caused proteolytic cleavage of HER4 as well as dimerization of

HER2/HER4, a response characteristic of heregulin stimulation.

This suggested that tyrosine kinase inhibitors, which target EGFR,

may trigger the release of ligands that induce HER4 cleavage.

Indeed we observed that AG 1478 and Iressa induced the

cleavage of the precursor proheregulin-1 producing mature here-

gulin, which migrates between 35 and 50 kDa (Figure 2C, left panel).

The most extensive cleavage of proheregulin-1 was seen with AG

1478 treatment although there was also an increase on Iressa

treatment. The treatment with either drug also increased the

production of betacellulin in MCF-7 cells (Figure 2C, right panel). In

contrast to heregulin release, the maximum increase of betacellulin

was seen with acute Iressa treatment rather than AG 1478

(Figure 2C, right panel). MCF-7 cells are generally considered to

be resistant to physiological doses of Iressa. Using cell viability assays

we confirmed that during acute treatment with 1 mM Iressa, MCF-7

growth was not prevented and furthermore there was an increase in

cell proliferation compared to the control (Figure 2D). After seven

days of treatment, MCF-7 cell growth was only minimally inhibited

by 1 mM of Iressa (Figure 2D). SKBR3 cells are known to be

sensitive to Iressa due to the inhibition of EGFR/HER2 and EGFR/

HER3 [12,32] and we have confirmed their sensitivity to Iressa using

cell viability assays (Figure 2F). We have also shown that there was an

increase in cleavage of pro-heregulin-1 as well as an increase in

betacellulin production induced by two hours of Iressa treatment in

sensitive SKBR3 cells (Figure 2E).

We have shown that the activation and proteolytic cleavage of

HER4 occurred during acute treatment of EGFR tyrosine kinase

inhibitors correlated with the release of ligands including

betacellulin and heregulin in both resistant MCF-7 cells and

sensitive SKBR3 cells.

Prolonged Iressa treatment caused reactivation of HER3
activity in both resistant MCF-7 cells and sensitive SKBR3

Iressa has been shown to inhibit the PI3K/PKB pathway via

HER3 [11]. We observed a rapid decrease of phospho-HER3

(Figure 1D) and phospho-PKB (Ser473) upon acute treatment of

AG1478 (Figure S1C and S1D) through inhibition of EGFR/

HER3 [11,23]. However, acute treatment of Iressa induced the

release of heregulin in both MCF-7 and SKBR3 causing

dimerization of HER2 and HER4 (Figure 2C and 2E). Since

heregulin is the ligand for both HER3 and HER4, we considered

that acute Iressa treatment may have induced dimerization of

HER2/HER3 as well as HER2/HER4, maintaining HER2

activation. Figure 3A shows that seven days of Iressa treatment

was not able to abolish HER2 phosphorylation even in sensitive

SKBR3 (Figure 2F). After seven days of Iressa treatment, the

remaining surviving cells had an enhanced HER2 phosphorylation

monitored by FRET compared to basal conditions (p = 0.03)

(Figure 3A). Moreover, not only was HER2 phosphorylation

maintained in surviving SKBR3 cells (Figure 3A), but phospho-

HER3 was reactivated with prolonged Iressa treatment (Figure 3B).

The reactivation occurred after the initial decrease in HER3

activation (Figure 1D and 3B) via inhibition of EGFR/HER3

[11,23] in both SKBR3 and MCF-7 cells. The reactivation was

not due to the degradation of the drugs since the dose of Iressa was

replenished after a few days. We also observed the recovery of

phospho-PKB (Ser473) and phospho-ERK1/2 within 48 hours

(Figure 3B, lower panels), consistent with activation of alternative

HER pathways including HER2/HER3 and HER2/HER4 via

autocrine release of ligands.

The autocrine ligand release mediates resistance to Iressa
in sensitive SKBR3 cells

To test the hypothesis that activation of alternative HER

receptors through the autocrine release of ligands mediates

resistance to Iressa, we stimulated sensitive SKBR3 cells with

TGF-a, heregulin-b, heregulin b-1 or betacellulin while the cells

were treated with Iressa for 4 days. Figure 3C shows that all the

ligands rendered the sensitive SKBR3 resistant to Iressa. The

greatest effect was seen with Iressa treatment in combination with

either heregulin b or heregulin b-1. The results are consistent with

previous experiments where EGFR inhibition by tyrosine kinase

inhibitors sensitises the cells to exogenous heregulin stimulation in

terms of HER2 activation (Figure 1B) and hence induced

enhanced proliferation. This experiment confirms the role of

ligands in mediating resistance to Iressa.

To test if the resistance of SKBR3 cells was accounted by the

autocrine ligand release, a neutralising antibody was employed. An

anti-betacellulin antibody (which blocks the effects of betacellulin)

in combination with Iressa was found to potentiate the inhibitory

effect of Iressa in cell viability experiments (Figure 3D). The results

indicate a role of autocrine ligand release in mediating resistance

to Iressa.

Combined therapy with Herceptin and Iressa exerts a
greater suppression in EGFR and HER2 activation

We showed above that Iressa failed to abolish HER2

phosphorylation in surviving SKBR3 cells due to activation of

alternative HER3 and HER4 receptors via the autocrine release of

various ligands. Since Herceptin targets the HER2 receptor, we

proceeded to investigate whether combined treatment of Hercep-

HER2 Activation Escapes TKIs
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tin with Iressa would abolish HER2 phosphorylation in SKBR3

cells. It has been shown that the combined treatment with

Herceptin and Iressa in SKBR3 was either additive [22] or

synergistic [33] in exerting anti-proliferative effects as well as

having enhanced anti-tumour activity in BT-474 xenografts

[12,34]. The cell viability experiments confirmed that the

combined treatment was more prominent in its anti-proliferative

effect than either Iressa or Herceptin treatment alone (Figure 4A).

FRET was used to assess the effect of combined treatment on

HER2 phosphorylation in sensitive SKBR3 cells (Figure 4B). The

assessment of HER2 phosphorylation by FRET showed that

HER2 activation increased from basal levels during the first 2.5

days of combined Iressa and Herceptin (Figure 4B). However,

after five days of treatment we observed a decrease of HER2

phosphorylation (Figure 4B) in concordance with a decrease of cell

viability (Figure 4A). After seven days, there were too few surviving

cells (Figure 4A) but the remaining surviving cells remain activated

in HER2 (Figure 4B). These cells may represent resistant cells to

combined treatment.

We hypothesized that the greater effect on cell viability with

combined Iressa and Herceptin treatment must be due to greater

EGFR suppression from adding Herceptin to Iressa treatment.

This is illustrated by FRET experiments in EGFR phosphoryla-

tion (Figure 4C). Figure 4C shows the decrease of average lifetime

of EGFR-Cy3b with pEGFR-Cy5 from 2.45 ns to 2.15 ns,

indicating basal phosphorylation of EGFR in these cells.

Treatment with 1 mM Iressa partially suppressed EGFR phos-

phorylation with an increase of the average lifetime of EGFR-

Cy3b from 2.15 ns to 2.3 ns (p,0.001 compared to basal). The

incomplete suppression of EGFR phosphorylation by Iressa may

be explained by the compensatory increase in autocrine ligand

release induced by Iressa shown previously. However, the

combination of Iressa with Herceptin exerted greater suppression

of EGFR phosphorylation (p,0.001 compared to basal) more

Figure 2. AG 1478 and Iressa induce proteolytic cleavage of HER4 and dimerization between HER2 and HER4 in breast cancer cell
lines via the autocrine ligand release. A, HER4 was immunoprecipitated from SKBR3 and MCF-7 cells after being treated with the conditions
illustrated. Following the immunoprecipitation, the cell lysate was probed by western analysis for total HER4. B, HER4 was immunoprecipitated from
both SKBR3 and MCF-7 cell lysates after treatment under the conditions illustrated. Extracts were probed with anti-HER2 antibody. C, MCF-7 cells
were treated with either 3 mM AG 1478 or with 1 mM Iressa for 2 hours before the cells were lysed. 10 mg of protein was loaded in each lane for SDS-
PAGE and the membrane was probed with an antibody recognizing proheregulin-1 or betacellulin. D MCF-7 cells were grown in 24-well plates after
seeding around approximately 30,000 cells per well and left to grow for at least 24 hours before treatment with either DMSO or 1 mM Iressa for the
different durations. The viable cells were counted in a cell viability analyzer using Trypan Blue to stain dead cells. E, Near confluent SKBR3 cells were
pre-treated with Iressa or DMSO for 2 hours as illustrated before the cells were lysed for western blot experiments. The membrane was probed with
antibodies recognizing proheregulin-1 and betacellulin with anti-b-actin antibody used as loading control. F, SKBR3 cells were grown in 24-well
plates after seeding around approximately 30,000 cells per well. They were treated with either DMSO or 1 mM Iressa for the different durations and
the viable cells were counted in a cell viability analyzer and normalised to the control.
doi:10.1371/journal.pone.0002881.g002
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than Iressa alone (Figure 4C). This result illustrates that the

additive effect of combined therapy in the cell viability

experiments (Figure 4A) was due to greater inhibition of EGFR

phosphorylation with combined therapy.

In summary, a combined treatment of cells with Herceptin and

Iressa exerts a greater suppression in EGFR and HER2 activation

and induced an enhanced anti-proliferative effect.

Discussion

The current literature has been inconsistent in its conclusion on the

effects of TKIs on HER2 functions. Although there have been reports

suggesting that TKIs inhibits HER2-driven signaling [22,23], TKIs

in fact do not fully inhibit HER2 oncogenic function at physiological

doses [24]. Using FRET in single cell analysis we showed persistent

HER2 phosphorylation in surviving TKIs treated cells. This does not

contradict the current literature; rather the FRET analysis provides a

novel sensitive insight beyond the present knowledge of the effects of

TKIs on HER2 activation and other HER receptors. FRET may be

sensitive enough to detect residue HER2 phosphorylation in single

cells even when HER2 activation is below the detection limit of

biochemical analysis for the whole cell lysate. The apparent difference

from the current literature is also more an issue of different

experimental conditions of EGFR inhibitor treatments. For example,

in Moasser et al (2001), the experiments on HER2 phosphorylation

were a function of Iressa dosage in SKBR3 cells [22]. HER2

phosphorylation was only minimally suppressed by 1 mM Iressa (we

observed partial HER2 phosphorylation in some of the cells,

Figure 1C) and only greatly reduced when the dose was increased

to 10 mM [22]. We performed similar experiments but noted that

10 mM was toxic to cells. Therefore, the partial decrease in HER2

phosphorylation in Iressa treated SKBR3 cells is due to the effects of

Iressa on EGFR/HER2 [22,23] but we showed that the HER2

phosphorylation is not abolished in the surviving cells due to

activation of HER2 via HER2/HER3 and HER2/HER4, mediated

through autocrine ligand release.

EGFR TKI monotherapy results in a relatively poor response

rate and the response is not usually sustained for the responders

[5]. HER receptors are highly dynamic and the hierarchy of their

activation changes with the availability of HER receptors and with

drug treatment [21,35]. For example, MCF-7 cells are not driven

by HER2 over-expression and have a low level of EGFR. Yet

Figure 3. HER2 activation is maintained in surviving SKBR3 cells with reactivation of HER3 and downstream signalling pathways via
the autocrine ligand release. A, SKBR3 cells were assessed for HER2 phosphorylation by FRET (see Methods) after the cells were treated with 1 mM
Iressa for different durations. B, In the upper panel, SKBR3 and MCF-7 cells were lysed after treatment with either DMSO or 1 mM Iressa for the
durations shown and the phosphorylation state of HER3 on Tyr1289 was determined using phosphospecific antibody. In the lower panels, SKBR3 cells
were lysed after treatment with either DMSO, 3 mM AG 1478 or 1 mM Iressa for the durations illustrated. Phospho-PKB, phospho-MAPK and the total
levels of PKB and Erk1/Erk2 were assessed using appropriate the antibodies. C, Cell viability experiments with SKBR3 cells were performed after
treatment with DMSO or 1 mM Iressa with or without growth factors for 4 days. In the first condition DMSO was used as a vehicle control. In other
conditions 1 mM Iressa was utilised alone or together with 100 ng/ml TGF, 100 ng/ml heregulin b, 100 ng/ml heregulin b-1 or 20 ng/ml betacellulin.
The viable cells were counted in a cell viability analyzer after 4 days using Trypan Blue to stain dead cells. D, SKBR3 cells were treated with 20 mg/ml
of anti-betacellulin, Iressa alone or Iressa in combination with 20 mg/ml of anti-betacellulin for 4 days before the cells were counted in a cell viability
analyzer. DMSO was used as a vehicle control.
doi:10.1371/journal.pone.0002881.g003

HER2 Activation Escapes TKIs

PLoS ONE | www.plosone.org 6 August 2008 | Volume 3 | Issue 8 | e2881



when these cells are treated with an oestrogen deprivation anti-

hormonal treatment such as tamoxifen, it has been shown that

EGFR/HER2 heterodimer levels become elevated and autocrine

loops are activated [35]. Iressa has been used to overcome

hormone resistance in oestrogen deprived MCF-7 cells [35]. Thus,

the response to these drugs may depend more on the activation

Figure 4. Combined therapy of Iressa and Herceptin was additive compared to either therapy alone due to greater inhibition of
EGFR and HER2 phosphorylation. A, SKBR3 cells were grown in 24-well plates for at least 24 hours before treatment with 1 mM Iressa, 40 mg/ml
Herceptin or 1 mM Iressa with 40 mg/ml Herceptin for 7 days. The viable cells were counted in a cell viability analyzer and normalised to the control.
B, SKBR3 cells were treated with 40 mg/ml Herceptin and 1 mM Iressa for different durations and HER2 activation was monitored by FRET. A Mann-
Whitney test was used to compare the medians of their lifetimes with the basal state (no drug treatment). C, SKBR3 cells were pre-treated with either
1 mM Iressa or combined treatment of 40 mg/ml Herceptin and 1 mM Iressa for 2.5 days before assessment of EGFR phosphorylation by FRET. The
medians of the average lifetimes for the cells treated with drugs were compared with those without drug treatment using a Mann-Whitney test.
doi:10.1371/journal.pone.0002881.g004
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status of HER receptors as well as their dimerisation partners,

rather than the receptor concentration alone.

Although it has been speculated that alternative HER receptor

activation mediates resistance to targeted therapies, this is the first

time that a molecular mechanism is provided to explain drug

resistance in breast cancer cell lines. Quinazoline tyrosine kinase

inhibitors of EGFR have been shown to induce inactive EGFR

homodimers and EGFR/HER2 heterodimers in EGFR over-

expressing cancer cells [36] as well as decreasing EGFR/HER3

mediated PI3K/Akt pathway [11]. However, here we showed that

the inhibition of EGFR activation by AG 1478 and Iressa caused

the release of various ligands including heregulin and betacellulin.

The release of these ligands resulted in dimerisation of HER 2 and

HER4, and proteolytic cleavage of HER4. Moreover, the

heregulin release also reactivated HER3 via HER2/HER3 dimers

along with downstream signalling pathways. These processes offer

an explanation for resistance to Iressa. The model of resistance to

Iressa is shown in Figure 5. The combined therapy of Herceptin

and Iressa is additive in suppression of EGFR and HER2

activation as well as exerting its anti-proliferative effect, consistent

with the report that combination of targeted therapies against both

EGFR and HER2 is more effective that single agents in breast

cancer [33].

The differential effect of AG 1478 and Iressa in inducing

heregulin and betacellulin release is likely due to their different

affinities and efficacies in the two cell lines. Therefore, AG 1478

and Iressa may produce a different ligand response in MCF-7 cells

since Iressa has a higher affinity than AG 1478. Betacellulin is the

ligand for EGFR/HER4 and heregulin is the ligand for HER3/

HER4 and their release in response to drugs may be different. AG

1478 is less potent that Iressa in EGFR inhibition and thus

produced a minimal betacellulin release.

In a paper by Zhou et al (2006) the authors found that among

various genes examined in 44 different non-small cell lung cancer

cell lines, only the expression of heregulin significantly correlated

with insensitivity to Iressa [37]. Although HER3 expression was

only very weakly correlated with Iressa sensitivity, the authors

concluded that it is the heregulin-induced HER3 activation rather

than the level causing insensitivity to Iressa [37]. We have shown

that HER3 phosphorylation was suppressed by Iressa upon acute

treatment in three breast cancer cell lines as well as A431 cells

through suppression of EGFR/HER3 dimerization. However, the

release of ligands (including heregulin and betacellulin) induced by

Iressa treatment resulted in dimerization between HER4 and

HER2 as well as HER3 and HER2. The effects of these

dimerizations were the reactivation of phospho-HER3 and

phospho-PKB (Ser473).

Sergina et al (2007) also observed the reactivation of phospho-

HER3 with prolonged Iressa treatment [38]. The reactivation of

HER3 may occur within several hours of Iressa treatment after the

initial suppression of HER3 activation. The group explained that

the reactivation of HER3 with prolonged Iressa treatment was due

to a compensatory shift in the HER3 phosphorylation-dephos-

phorylation equilibrium as a result of increased HER3 expression

and reduced phosphatase activity and concluded that ‘‘because

HER3 signalling is buffered against an incomplete inhibition of

HER2 kinase, much more potent TKIs or combination strategies

are required to silence oncogenic HER2 signalling effectively’’

[38]. Our results confirmed the inability of TKIs to abolish HER2

phosphorylation in surviving cells due to activation of the

alternative HER receptors (including that of HER2/HER3 and

HER2/HER4) as a result of ligand release. Therefore, our results

have contributed to the gaps in understanding the mechanisms of

resistance to these targeted therapies.

Although exogenous heregulin enhanced aggregation [39] and

increased invasiveness in breast cell lines [40], it has been reported

to have an anti-proliferative effect [41] and thus may challenge the

role of HER4 in mediating resistance to Iressa. Aguilar et al (1999)

reported that some of the disparity on various effects of heregulin

is due to variations in the cell lines, ligand dosage and the

methodologies used between different investigators [42]. The

group found no evidence that heregulin had any growth-inhibitory

effects in human epithelial cells having used several different in vitro

and in vivo assays in different cell lines. We have also shown that

exogenous heregulin induced proliferation rather than exerting an

anti-proliferative effect upon Iressa treatment, confirming the role

of heregulin in mediating resistance to tyrosine kinase inhibitors of

EGFR. Moreover, we confirmed the role of HER4 in mediating

resistance to Iressa since anti-betacellulin antibody potentiated the

anti-proliferative effect in combination with Iressa treatment.

Our results indicate how apparent targeted therapies for breast

cancer patients have complex effects, offering treatment opportu-

nities to overcome resistance in patients. It is anticipated that

future therapy for breast cancer may involve targeting various

HER receptors, their ligands [37] as well as metalloproteinases

that mediate the cleavage of the ligands [43].

Materials and Methods

Materials and cell lines
A431, MCF-7, SKBR3 and MDAMB-453 cells were obtained

from cell services at Cancer Research UK, Lincoln’s Inn Fields

(CR-UK). The cells were routinely cultured as monolayers in

Dulbecco’s modified eagle’s medium (DMEM) supplemented with

7.5% (v/v) foetal bovine serum (FBS) at 37uC in a CO2 humidified

atmosphere. Anti-HER2 antibody (recognize the intracellular

residues surrounding Tyr1222), anti-phospho-HER2 antibody

(Tyr1221/1222), anti-phospho-HER2 antibody (Tyr1248), anti-

phospho-HER3 (Tyr1289), anti-HER4 antibody (recognize the

intracellular residues near the carboxyl-terminus of human HER4)

and anti-phosphotyrosine pTyr-100 were obtained from Cell

Signalling Technology. F4-IgG1 mouse monoclonal antibody,

(against residues 985–996 of the EGFR cytoplasmic domain) and

FB2-IgG3 (monoclonal against phosphotyrosine) antibodies were

obtained from the Monoclonal Antibody lab, Lincoln’s Inn Fields.

Antibodies recognizing PKB, phospho-PKB (Ser473), p44/42

MAP Kinase (Erk1/Erk2) and phospho-Erk1/Erk2 (Thr202/Tyr

204) were from Cell Signalling Technology. The monoclonal anti-

b-actin and monoclonal anti-betacellulin were obtained from

Sigma-Aldrich, USA. The rabbit anti-heregulin-1 precursor was

obtained from Upstate, USA and recognizes amino acids 615–640

of the heregulin-1 precursor. The secondary goat anti-mouse IgG

was purchased from Amersham Biosciences UK limited. AG 1478

a selective inhibitor of the EGFR tyrosine kinase (IC50 = 3 nM)

was from Calbiochem UK. The mono-conjugated fluorophores

CyTM3B and Cy5 were from Amersham Biosciences. Protein

tyrosine phosphatase (YOP) from Yersinia enterocolitica (Recombi-

nant, E.coli) was purchased from Calbiochem. Herceptin was

courtesy of Genentech, and Iressa was given and granted

permission to use in our experiments by Astrazeneca.

Western blotting
The cells were grown to 80–100% confluency in a 6-well cell plate

after seeding 30,000 cells. The cells were treated with different

conditions as described. The cells were lysed in lysis buffer on ice for

30 minutes (Tris HCl, 20 mM; NaCl, 150 mM; NaF 100 mM;

Na4P207 10 mM; EDTA 10 mM with 1% Triton and protease

inhibitor cocktail-Roche) and centrifuged at 4uC to remove of the
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insoluble cell pellets. Polyacrylamide gel electrophoresis was carried

out employing 10 mg of protein in each lane. Western blots were

performed using the primary antibodies mentioned above, at a

1:1000 dilution. Antibodies were incubated overnight at 4uC. They

were detected using a horseradish peroxidase-linked secondary

antibody (a dilution of 1:2000 goat anti-rabbit IgG) and visualized

with an enhanced chemiluminescent (ECL) system (Amersham).

Immunoprecipitation
MCF-7 and SKBR3 cells were grown to near confluency before

lysis buffer as described above. The cell lysate was centrifuged for

5 minutes at maximum speed before transferring the supernatant

to a new reaction vial. The supernatant was preabsorbed with

prewashed Protein G Agarose beads (Roche) for 2 hours at 4uC
after. The mixture of cell lysate and beads was centrifuged for

5 minutes at maximum speed before transferring the supernatant

to a new reaction vial. Anti-HER4 was added (1:100) to the

supernatant and incubated overnight at 4uC. The next day, the

immune-complex was collected by the addition of new beads and

further incubation for 2 hours at 4uC. The beads were washed

thoroughly with lysis buffer before boiling with 46SDS. 40 ml was

loaded per lane in SDS gel for western blot analysis.

Cell Viability Experiments
Cells were grown in 24-well plates after seeding approximately

30,000 cells per well. The cells were grown for at least 24 hours

before treatment with either 40 mg/ml Herceptin or 1 mM Iressa.

For Iressa experiments, a DMSO control (1:1000) was also

performed. On the day of experiment, the cells were trypsinized

and diluted with PBS. The viable cells were counted in a Cell

Viability Analyzer (Vi-cellTM XR, Beckman Coulter) using

Trypan blue to stain the dead cells.

Figure 5. Mechanisms of resistance for tyrosine kinase inhibitors AG 1478 and Iressa. AG 1478 and Iressa treatment induce inactive EGFR
homodimers and inactive EGFR/HER2 heterodimers. The treatment also decreases phopho-HER3 levels through inhibition of EGFR/HER3 with a
decrease in PKB (Akt) activity. However, the treatment induces the autocrine release of various ligands including heregulin and betacellulin causing
activation and cleavage of HER4, which in turn causes dimerization between HER2 and HER4. Following the initial decrease through inhibition of
EGFR/HER3, phospho-HER3 as well as phospho-ERK1/2 and phospho-PKB (Ser473) activation augments again within 2 days of treatment due to the
release of ligands causing dimerization between HER2/HER3 in addition to HER2/HER4.
doi:10.1371/journal.pone.0002881.g005
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Förster Resonance Energy Transfer (FRET) measured by
Fluorescence Lifetime Imaging Microscopy (FLIM)

FRET involves the transfer of energy from an excited donor

molecule to a nearby (,7 nm) spectrally overlapping acceptor.

FRET can be quantified by measuring fluorescence lifetime of the

donor, which is reduced as energy is non-radiatively transferred

via a dipole-dipole interaction. Spatial aspects of fluorescence

lifetime may be assessed by using FLIM [44]. In this study we have

monitored donor lifetime variations in the frequency (phase)

domain where the excitation light is sinusoidally modulated at

80.218 MHz to excite the sample. The emitted light oscillates at

the same modulation frequency but with a phase shift and a

decrease in amplitude (demodulation). Determining these two

parameters permits measurement of phase (tp) and modulation

depth (tm) of the fluorescence. The lifetime, ,t., is the average of

phase shift and relative modulation depth (tm+tp)/2 of the emitted

fluorescence signal [44,45].

Conjugation of donor and acceptor fluorophore to
antibodies

F4 (anti-EGFR) and anti-HER2 were conjugated to Cy3b (donor

fluorophore); FB2 (anti-phosphotyrosine as anti-pEGFR) and anti-

phosphoHER2 were conjugated to Cy5 (acceptor fluorophore).

100 ml of N, N-Dimethylformamide (DMF) was added to 1 mg

Cy3b to make a 10 mg/ml stock solution (15 mM). The 10 mg/ml

stock of Cy3b was diluted in DMF 10 fold to 1 mg/ml (1.5 mM).

50 ml of this was added drop by drop into 450 ml antibody / 50 ml

Bicine (1 M, pH 8) and conjugated as above. The final concentra-

tion of conjugated antibody with Cy3b was approximately 100 mg

(150 mM). The solution was stirred in the dark for 1–2 hours. To

conjugate FB2 (anti-phosphotyrosine as anti-pEGFR), anti-pHER2

with Cy5, 20 ml of DMF was added to a Cy5 vial. FB2 dye in DMF

was then added drop by drop to 450 ml antibody / 50 ml Bicine

(1 M, pH 8) while stirring. The solution was stirred in the dark for 1–

2 hours. The conjugated antibodies were separated from free dyes

by column chromatography. The dye/protein (D/P) ratios were

maintained constant per experiment. The D/P ratios were measured

by UV/visible spectroscopy at 280 nm to determine antibodies’

concentrations. The concentration of F4-Cy3b and anti-HER2-

Cy3b were detected at 552 nm and FB2-Cy5 and anti-pHER2-Cy5

at 650 nm. The D/P ratios were calculated using the protocol

provided by Amersham Biosciences for CyTM3B mono-reactive dye:

D=P~ Absorption Amaxð Þ| Antibody Extinction Coefficientð Þ½ �=

A 280{correction factor|Amaxð Þ| Cy Dye Extinction Coefficientð Þ½ �

FRET Experiments
Cells were grown in 24-well plates on cover slips after seeding

15,000 cells per well. For Herceptin and Iressa experiments, the

cells were left to grow for at least 24 hours before treatment with

drugs. For growth factor experiments, cells were treated with

50 ng/ml of EGF, 100 ng/ml of heregulin b and heregulin-b1 for

10 minutes following serum starvation of 16 hours. Following

stimulation, the cells were fixed with 4% paraformaldehyde (PFA)

at room temp for 10 minutes. 500 ml of 0.2% (v/v) Triton X-100

was added per well for 5 minutes to make the cell membrane

permeable followed by 1 mg/ml fresh sodium borohydrate / PBS

for 10 minutes to quench background fluorescence. Between each

of these steps, the cells were washed three times with PBS. The

cells were blocked with 1% w/v BSA / PBS for 1 hour. For

experiments involving the protein tyrosine phosphatase from

Yersinia enterocolitica (YOP), 50 units of phosphatase in 50 ml

reaction buffer (50 mM Tris-HCL, pH 7.2, 150 mM NaCl, 5 mM

DTT, 2.5 Mm Na2EDTA, and 100 mg/ml BSA) was used for

each coverslip after fixing with PFA.

After blocking the cells were incubated with conjugated donor

antibodies (anti-EGFR-Cy3b or anti-HER2-Cy3b) for 2 hours. For

cells that required detection with the acceptor fluorophore, a further

incubation with either FB2-Cy5 or anti-pHER2-Cy5 for 2 hours took

place to assess EGFR and HER2 phosphorylation states respectively.

The cover slips mounted on the slides with Mowiol mounting

medium containing 2.5% (w/v) 1,4-diazabicyclo (2.2.2) octane as an

anti-fade. The slides were left at 37uC, in an incubator for 1 hour and

at room temperature overnight prior to image acquisition.

For FRET experiments, all images were taken using a Zeiss

Plan-APOCHROMAT 6100/1.4 NA phase 3-oil objective with

images recorded at a modulation frequency of 80.218 MHz. The

donor (anti-EGFR-Cy3b or anti-HER2-Cy3b) was excited using

514-nm line of an argon/krypton laser, and the resultant

fluorescence was separated using a combination of dichroic beam

splitter (Q565 LP; CHROMA technology Corp.) and narrow

band emitter filter (BP 610 /75; Lys and Optik).

FRET Data Interpretation and Statistical analysis
The Average lifetime of the donor fluorophore (anti-EGFR-

Cy3b and anti-HER2-Cy3b) from each condition was shown as

scatter diagrams. The basal condition was defined as the basal

phosphorylation of the HER receptor, indicated by the decrease of

lifetime of the donor in the presence of the acceptor without

growth factor stimulation or drug treatment. The basal phosphor-

ylation was due to autocrine signalling pathways of the cancer cells

as a result of ligand stimulation, e.g. basal EGFR phosphorylation

due to autocrine receptor activation in A431 cells [46]. The

enhanced decrease in the average lifetime indicated further

phosphorylation of the receptor due to dimerization with its

partners. In each experiment (minimum of 3 experiments), the

lifetimes of a minimum 5 cells or groups of cells were obtained and

medians of these measurements were displayed in the scatter

diagram. A Mann-Whitney test was used to compare the medians

of the average lifetime between the basal condition and those

stimulated with ligands or treated with drugs.

Supporting Information

Figure S1 Inhibition of EGFR with TKI AG 1478 does not

abolish HER2 phosphorylation. A, A431, MCF-7, MDAMB-453

and SKBR3 cells were grown to near confluency before lysis for

western blot analysis. The membrane was probed with either anti-

HER2 or anti-EGFR antibody. B, A431 cells pre-treated with

increasing doses of AG 1478 for two hours before being stimulated

with 100 ng/ml EGF for 10 minutes. The cells were assessed for

HER2 phosphorylation by FRET. C, A431 cells were pre-treated

by increasing doses of AG 1478 as illustrated before 100 ng/ml

EGF stimulation and western blot analysis. The phosphorylation

of PKB on Ser473 and Erk1/Erk2 (p44/42 MAP Kinase) on

Thr202/Tyr204 was determined using phosphospecific antibod-

ies. The total endogenous levels of Erk1/Erk2 were assessed by

western blot using anti-ERK antibodies. D, Upper panels, A431

cells and two other breast cancer cell lines MDAMB-453 and

SKBR3 cells were assessed for HER2 phosphorylation after pre-

treatment of the cells with 3 mM AG 1478 for two hours. Lower

panels, A431, MDAMB-453 and SKBR3 cells were lysed for

western blot analysis after treatment with either 3 mM AG 1478 or

vehicle for two hours. The phosphorylation of HER2, phos-

phoPKB Ser473 and Erk1/Erk2 was determined using phosphos-

pecific antibodies

Found at: doi:10.1371/journal.pone.0002881.s001 (4.75 MB EPS)
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