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Abstract: This study investigated the effects of cathepsin L on proteolysis of beef myofibrillar
proteins in vivo and in vitro. Results indicated that cathepsin L affected the degradation of desmin
and troponin-T during postmortem aging, and the extent of degradation increased from 1 d to 14 d
postmortem. No detectable degradation of titin, nebulin, and α-actinin in the presence of cathepsin L
inhibitor was observed during postmortem aging. In vitro, cathepsin L affected the degradation of
titin, nebulin, and troponin-T, and the extent of degradation increased with increasing incubation
time. Nevertheless, cathepsin L did not cause the degradation of α-actinin and desmin, regardless
of incubation temperature. The different results between in vitro and in vivo experiments might
mainly depend on different treatment temperatures. Overall, these results indicated that cathepsin L
participated in the degradation of myofibrillar proteins and meat tenderization.

Keywords: cathepsin L; proteolysis; tenderness; beef; western blotting

1. Introduction

Tenderness is generally considered to be the most important sensorial attribute for
consumers regarding meat consumption [1,2]. Therefore, improving the tenderness of
meat is an important issue in the meat industry [3]. Meat tenderness is mainly determined
by the proteolysis of key myofibrillar and cytoskeletal proteins, such as titin, nebulin,
α-actinin, desmin, troponin-T, dystrophin, and vinculin during the postmortem aging [4–6].
Endogenous proteolytic enzymes (e.g., calpains, caspases, and lysosomal proteinases) are of
crucial importance for the postmortem proteolysis of the key myofibrillar and cytoskeletal
proteins, and thus, in meat tenderization [7,8]. Cathepsins, which are located in the
lysosomes of muscle cells, and potentially released during postmortem aging, are favored
by postmortem cells, and play an important role in proteolysis and meat tenderization [9].

However, the effect of cathepsins on meat tenderness varies considerably among
studies. Previous studies have shown that cathepsin L (CAT) can degrade myofibrillar
proteins (MPs) in vitro [8,10]. Myosin heavy chain (MHC), α-actinin, actin, troponin-T,
and troponin-I assembled in rabbit myofibrils are degraded by CAT at 37 ◦C according
to the study by Matsukura et al. [11]. Mikami et al. [12] also find that CAT hydrolyzed
most myofibrillar proteins, including titin, nebulin, troponin-T, and tropomyosin in beef,
rabbit, and chicken myofibrils in vitro. Nevertheless, several studies have shown that CAT
has no effect on MPs proteolysis and meat tenderness in vivo. For instance, the results
of Uytterhaegen et al. [9] indicate that CAT plays no significant role in MPs degradation
at 2 ◦C during 8 d postmortem. In addition, Koohmaraie et al. [13] also conclude, from
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sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns, that
CAT has no contribution to the degradation of MPs. The different treatment temperatures
seem to be responsible for the contradictory results of MPs degradation by CAT in vivo and
in vitro. Nevertheless, this hypothesis has yet to be verified. Therefore, to understand the
role of CAT in meat tenderness, it is necessary to explore the effect of CAT on proteolysis
both in vivo and in vitro.

The aim of the present study was to investigate the effect of CAT on the proteolysis of
MPs both in vivo and in vitro.

2. Materials and Methods

Purified CAT from a bovine pancreas was used to examine the effect of CAT on
beef myofibrils at different temperatures in vitro, and selective CAT inhibitor was chosen
to investigate the degradation of CAT on bovine skeletal muscle protein during post-
mortem aging.

2.1. In Vivo Experiments
2.1.1. Sample Preparation

Three 2.5 years old Simmental Crossbred cattle (live weight 428 ± 38 kg) were selected
from a farm at Hebei Fucheng Food Co., Ltd (Yanjiao, China). After 24 h of rest, they were
humanely slaughtered on the basis of the Operating Procedures of Cattle Slaughter in
the National Standards of China. At approximately 30–45 min after exsanguination, the
longissimus thoracis muscles (from 5th lumbar vertebrae to 12th thoracic vertebrae) were
removed from the carcass, and excess fat was trimmed. About 100 g of muscle was collected
as 0 day samples, and immediately frozen in liquid nitrogen, and stored until subsequent
analysis. Approximately 120 g of muscle was cut into small pieces, and divided into three
groups (ca. 40 g/group). Each group of muscle was then subdivided into four fractions
(ca. 10 g/fraction), and soaked in the following treatment buffer, in the ratio of 1:1 (w/v)
(meat/solution): (1) control: 60 mM NaCl and 2 mM NaN3 (C); (2) control + 100 µM
cathepsin L inhibitor (CATI, Sigma-Aldrich, Milwaukee, WI, USA), and then stored for 1, 3,
7, and 14 day at 4 ◦C. Afterwards, samples were collected individually, and snap-frozen in
liquid nitrogen, and then stored at −80 ◦C until required.

2.1.2. Extraction of MPs

MPs were extracted according to the method described by Huang et al. [14], with
some modifications. Samples were processed at 0–4 ◦C to minimize the proteolysis or
protein denaturation. Briefly, about 1.0 g of minced muscle was homogenized in 8 mL of
PRB buffer (100 mM KC1, 2 mM MgCl2, 2 mM EDTA, 1 mM DTT, 1 mM NaN3, 2 mM
Na4P207, and 10 mM Tris-maleate, pH 6.8, 4 ◦C) using a polytron at a speed of 14,000 rpm
for 30 s, with an interval of 15 s between bursts. After being centrifugated at 1000× g
for 10 min, the supernatant was decanted, and the pellet was resuspended in 10 mL of
low salt buffer (100 mM KC1, 2 mM MgCl2, 2 mM EDTA, 1 mM DTT, 1 mM NaN3, and
10 mM Tris-maleate, pH 6.8, 4 ◦C). Then, the centrifugation and resuspension processes
were repeated six times. Finally, the pellet was washed twice with 10 mL Tris-EDTA buffer
(10 mM Tris-HCl and 5 mM EDTA, pH 8.0, 4 ◦C). The protein concentration was determined
using the BCA Protein Assay Kit.

MPs extracted from different samples were immediately diluted to 6 mg/mL, and
then mixed with buffer (30 mM Tris-HCl, 3 mM EDTA, 3% SDS, 20% glycerol, 8% 2-
mercaptoethanol, and 0.04% Bromophenol blue, pH 8.0) at a ratio of 1:1 (v/v). Next, the
samples were heated in a 50 ◦C water bath for 20 min, and then centrifuged at 10,000× g for
20 min at 4 ◦C. Finally, samples were stored at −80 ◦C for SDS-PAGE and western blotting.
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2.2. In Vitro Experiments
2.2.1. Preparation of CAT

CAT was purified from a bovine pancreas according to the procedure reported by
Li et al. [15], with little modification. Fat and connective tissue were removed from a fresh
bovine pancreas at 4 ◦C. The minced bovine pancreas was homogenized with four volumes
of extraction buffer (25 mM sodium acetate buffer, 5 mM L-Cys and 0.3 mM PMSF, pH 5.0)
for 2 min. The samples were then centrifuged at 10,000× g for 20 min to obtain a crude
enzyme solution, whose pH was adjusted to 3.0 using 1 M HCl. Next, the solution was
incubated at 30 ◦C for 10 min, and then centrifuged at 12,000× g for 20 min immediately
after adjusting the pH to 5.8–6.0 using 1 M NaOH. The supernatant was obtained and then
salted out with 80% ammonium sulfate, and centrifuged at 10,000× g for 20 min. Next, the
sediment was collected and dialyzed against the phosphate buffer. The dialysis sample was
concentrated using an Amicon Ultra-15 tube, and then passed through DEAE Sephacel,
Sephacryl S-100, SP-Spharose FF, and Con A-Sepharose affinity chromatography columns.
During purification, the hydrolytic activity of Z-Phe-Arg-MCA fluorescent substrate was
monitored, and the active peaks were collected, concentrated, and stored at −80 ◦C. CAT
activity was determined using the method of Wang et al. [16], with Z-Phe-Arg-MCA as the
substrate. One unit of enzyme activity was defined as the amount of activity that released
1 nmol of AMC per min at pH 5.8 and 37 ◦C.

2.2.2. Incubation of MPs with Purified CAT

MPs extracted from 0 day samples were used to investigate the role of CAT in the
degradation of MPs in vitro. MPs extracted from 0 d samples were set as the 0 h sample,
and were diluted to a final concentration of 2.0 mg/mL. Then, fractions of MPs were
incubated with CAT (25 U/mg of MPs) in incubation buffer (10 mM Tris-HCl and 5 mM
EDTA, pH 5.8) at 4, 20, and 37 ◦C for 10 h, respectively). MPs incubated without CAT
were set as control (C). After 10 h, the incubation was stopped by the addition of an
equal volume of sampling treatment buffer (30 mM Tris-HCl, 3 mM EDTA, 3% SDS,
20% glycerol, 8% 2-mercaptoethanol, and 0.04% bromophenol blue, pH 8.0). Samples were
immediately denatured at 100 ◦C for 5 min, and then stored at −80 ◦C for SDS-PAGE and
western blotting.

2.3. SDS-PAGE and Western Blotting

Proteins were resolved with SDS-PAGE, and western blotting was conducted as
described by Carlson et al. [17], with some modification. A 5% polyacrylamide slab
separating gel, without a stacking gel, was used to examine the changes in titin and
nebulin integrity. For 5% gels, 70 µg of MPs samples were loaded per lane, and run at
a constant current of 4.5 mA per gel for 15 h using the Bio-Rad Min-Protean II system
(Bio-Rad Laboratories, Hercules, CA, USA). Conversely, 10% and 12.5% polyacrylamide
separating gels with a 5% polyacrylamide stacking gel were used to monitor the changes
in α-actinin, desmin, and troponin-T. MPs samples (40 µg) were loaded per well to detect
α-actinin and desmin, whereas 20 µg were used for troponin-T. All samples were run
at a constant voltage of 80 V for stacking gels, and 100 V for separating gels at room
temperature (25 ◦C). Triplicate gels were run, and the running buffer contained 25 mM
Tris, 192 mM glycine, and 0.1% SDS. After electrophoresis, gels were either stained for
the examination of all protein bands, or transferred by polyvinylidene difluoride (PVDF,
Bio-Rad Laboratories, Hercules, CA, USA) membranes for western blotting. Gels were
stained for 6 h with 0.1% Coomassie Brilliant Blue R-250 (w/v), 40% ethanol (v/v), and
7% glacial acetic acid (v/v). After staining, the same solution without Coomassie Brilliant
Blue R-250 was used to destain the gels. Gels for western blotting were immediately
transferred to PVDF membranes using the Bio-Rad Min-Protean II system at 90 V for 2 h
for α-actinin, 80 V for 1 h for desmin, and 70 V for 1 h for troponin-T, respectively. The
transferring buffer contained 25 mM Tris, 192 mM glycine, and 10% methanol (v/v). The
electro-blotted membranes were then incubated at 4 ◦C for 12 h in TTBS blocking buffer
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(0.05% TWEEN 20 (w/v), 20 mM Tris, 137 mM NaCl, 5 mM KCl, and 5% skim milk (w/v)).
After blocking, the membranes were then incubated with mouseanti-α-acitinin monoclonal
antibody (Abcam, Cambridge, UK) at a dilution of 1:250, mouse anti-desmin monoclonal
antibody diluted 1:400 (Sigma-Aldrich, Milwaukee, WI, USA), and mouse anti-troponin-T
monoclonal antibody at 1:500 (Sigma-Aldrich, Milwaukee, WI, USA), respectively. After
three washes with TTBS buffer for 10 min, the membranes were incubated with goat
anti-mouse IgG horseradish peroxidase, conjugated affinity purified secondary antibody
at a dilution of 1:5000 for α-actinin (Abcam, Cambridge, UK), 1:5000 for desmin (Sigma-
Aldrich, Milwaukee, WI, USA), and 1:10,000 for troponin-T (Sigma-Aldrich, Milwaukee,
WI, USA), respectively. Membranes were rinsed thrice in TTBS buffer for 10 min before
detection. A chemiluminescent detection system (GT-800F EPSON) was used to detect
the immunoreactive protein bands, and the densities of targeted bands were analyzed by
Quantity One software (Bio-Rad Laboratories).

2.4. Statistical Analysis

The experiments were performed in triplicate. The data were analyzed using a Statisti-
cal Analysis System (SAS Institute Inc., Cary, NC, USA). One-way ANOVA with Duncan’s
multiple range test was performed to measure the significant differences between samples
(p < 0.05).

3. Result and Discussion

The tenderization of meat is a complex interaction of biochemical processes, among
which, protein degradation by endogenous enzymes plays a pivotal role [5,6]. The pro-
teolysis of key skeletal and costamere MPs, such as titin, nebulin, α-actinin, desmin, and
troponin-T, has been reported to be related to the tenderness of aged meat [18].

3.1. Titin and Nebulin

Titin (approximately 3000 kDa) and nebulin (approximately 800 kDa), anchoring one
of their ends to the Z-line, are considered to be important contributors to myofibril integrity
and meat tenderness [19–21]. The effect of CAT on hydrolysis of titin and nebulin in vivo
and in vitro is shown in Figure 1. For the 0 day samples, a major band for intact titin (T1)
was observed. After 1 day postmortem, a major band for T1 degradation was observed,
marked as T2 (approximately 2400 kDa), which was in accordance with the results reported
by Taylor et al. [18]. Nevertheless, there was no observable difference between the various
postmortem aging times. Regarding the T2 bands at 1, 3, 7, and 14 day postmortem, no
obvious difference (p > 0.05) was found between the control and samples treated with
CATI. In contrast to that of titin, the intensity of the nebulin band decreased (p < 0.05)
as postmortem aging time increased. In particular, the intact nebulin band had nearly
disappeared after 7 day postmortem. However, no obvious changes were found between
the control and samples treated with CATI during the postmortem. These results indicated
that CAT had no effect on the degradation of titin and nebulin during postmortem aging.

Figure 1c shows the results of purified MPs incubated with CAT at 4, 20, and 37 ◦C
for 10 h. There were no notable changes (p > 0.05) in the band for both titin and nebulin
between unincubated MPs and control samples. In addition, T1 was degraded to T2 after
being incubated with CAT, and the intensity of the band for T1 was gradually decreased
(p < 0.05) with increasing temperature. At 37 ◦C, T1 was totally degraded by CAT. Similar
to titin, obvious differences (p < 0.05) in nebulin were observed between the control and
samples incubated with CAT. Besides, it could be also found that the extent of nebulin
degradation was increased (p < 0.05) with increasing temperature. The different results
between in vivo and in vitro experiments might be due to the different temperatures. It is
known that enzyme activity increases with increasing temperature, and as such, the lower
temperature might be one factor resulting in the resistance to the degradation of titin and
nebulin in vivo.
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Figure 1. SDS-PAGE patterns of Coomassie-stained 5% continuous polyacrylamide gel, indicating
the degradation of titin and nebulin by cathepsin L in vivo and in vitro. (a) Samples treated with
cathepsin L inhibitor for 0, 1, and 3 day postmortem at 4 ◦C in vivo; (b) samples treated with cathepsin
L inhibitor for 0, 7, and 14 day postmortem at 4 ◦C in vivo; (c) samples incubated with cathepsin L
for 10 h at 4, 20, and 37 ◦C in vitro. Abbreviations are as follows: T1 = intact titin; T2 = degradation
product of intact titin; MHC = myosin heavy chain; C = control; CAT = cathepsin L; CATI = sample
incubated with cathepsin L inhibitor.

3.2. α-Actinin

α-Actinin is crucial for connecting together actin filaments from adjacent sarcomeres,
and forming the Z-disk, and then contributing to proper muscle physiology [22]. Changes
of α-actinin caused by CAT in vitro and in vivo were investigated (Figure 2). As shown
in Figure 2a,b, proteolytic fragments of α-actinin were not detected in all bands when
using anti-α-actinin monoclonal antibody in vivo. This was in accordance with the study of
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Ho et al., who revealed that little α-actinin change was detected using western blot analysis
through 28 d of bovine longissimus muscle postmortem aging [23]. Also, the degradation
fraction of α-actinin was not detected in all samples in vitro (Figure 2c). Taken together,
CAT had no effect on the degradation of α-actinin both in vivo and in vitro.

3.3. Desmin

Desmin comprises mostly attachments of Z- to Z-line, and is likely a key substrate
that determines meat tenderness [19]. The effect of CAT on the degradation of desmin
in vivo is shown in Figure 3a,b. In contrast to α-actinin, compared with the 0 day sample,
the degradation fragment of desmin was observed during postmortem aging. For the
control sample, one new faint band and two new faint bands were observed at 1 day
postmortem and after 3 day postmortem, respectively. This was in agreement with the
study of Hwan, which indicated that desmin was easily degraded at 4 ◦C in bovine
semitendinosus muscle during the aging process [24]. In addition, the intensity of the
new band was increased (p < 0.05) with an increased postmortem time. Similarly, two
new faint bands were observed, whose intensity was increased (p < 0.05) with increased
postmortem time for samples treated with CATI. Moreover, it was obvious that the intensity
of the new band for samples treated with CATI was higher (p < 0.05) than that of the
control. These results indicated that CAT participated in the degradation of desmin during
postmortem aging.

The effect of CAT on the degradation of desmin in vitro is shown in Figure 3c. Com-
pared with the 0 day sample, the degradation fragment of desmin was not detected in the
control sample at 4, 20, and 37 ◦C, indicating that temperature did not affect the degrada-
tion of desmin. In addition, compared with the control sample, the degradation fragment
of desmin was also not detected in the CAT-treated samples, regardless of incubation
temperature. These results indicated that CAT did not participate in the degradation of
desmin in vitro.
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Figure 3. Representative western blotting patterns showing the degradation of desmin by cathepsin L in vivo and in vitro. (a) Samples treated with cathepsin L
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incubated with cathepsin L for 10 h at 4, 20, and 37 ◦C in vitro.
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3.4. Troponin-T

Troponin-T is the tropomyosin-binding component of the troponin complex, and
is generally considered to be the most proteolytically sensitive subunit of the troponin
molecule [25]. Degradation of troponin-T is considered to be an indicator of meat aging
and tenderization [26,27], as denoted by the appearance of the main proteolysis fragments
of 28–32 kDa [12,27–29]. Representative western blotting patterns are shown in Figure 4a,b,
and the lanes indicate that the anti-troponin-T monoclonal antibody could clearly and
strongly recognize the troponin-T bands. At 0 day postmortem, the 28, 30, and 32 kDa
bands were detected, which might be mainly due to the part degradation of troponin-T in
the extracting process of samples. Compared with the 0 day sample, a new 26 kDa band
was detected during postmortem aging from 1 day to 14 day. In addition, the intensity
of 26–32 kDa bands was gradually increased (p < 0.05) with increased postmortem time
for both control and CATI-treated samples, accompanied by a decrease in the intensity of
troponin-T band. In addition, there was no obvious change (p > 0.05) between the control
and CATI-treated samples at 1 day and 3 day postmortem. Nevertheless, compared with
the control, the degradation of troponin-T treated with CATI was more obvious after 7 day
postmortem, and the intensity of 26–32 kDa bands was higher than that of the control
samples. These results indicated that CAT participated in the degradation of troponin-T
during postmortem aging.

The effect of CAT on the degradation of troponin-T in vitro is shown in Figure 4c.
At 4 ◦C, there was no observable difference (p > 0.05) between control and CAT-treated
samples. At 20 ◦C, the 28, 30, and 32 kDa bands were detected in the control sample,
whereas a new 26 kDa band was detected in the CAT-treated sample. Furthermore, the
intensity of degraded fraction bands in the CAT-treated sample was higher (p < 0.05) than
that in the control sample. At 37 ◦C, only 26, 28, and 30 kDa bands were detected in
the CAT-treated sample. Similarly, the intensity of bands in the CAT-treated sample was
higher (p < 0.05) than that in the control sample. These results indicated that CAT affected
the degradation of troponin-T in vitro, and the extent of the degradation was affected
by incubation temperature. This was in accordance with the results of previous studies
showing that cathepsin L could hydrolyze troponin-T from rabbit or carp myofibril protein
at 20 and 37 ◦C [11,30]. In summary, CAT participated in the degradation of troponin-T
both in vitro and in vivo.

Based on the results of the degradation of titin, nebulin, α-actinin, desmin, and
tropinin-T in in vitro and in vivo experiments, we could conclude that CAT had an im-
portant role in degrading MPs in vivo and in vitro, and thus, might contribute to meat
tenderization, which was confirmed by the results of the shear force test, as shown in the
Supplementary Materials.
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Figure 4. Representative western blotting patterns showing the degradation of troponin-T by cathepsin L in vivo and in vitro. (a) Samples treated with cathepsin L
inhibitor for 0, 1, 3 day postmortem at 4 ◦C in vivo; (b) samples treated with cathepsin L inhibitor for 0, 7, 14 day postmortem at 4 ◦C in vivo; (c) samples incubated
with cathepsin L for 10 h at 4, 20, and 37 ◦C in vitro.
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4. Conclusions

This study demonstrated that CAT participated in the degradation of MPs both in vivo
and in vitro. CAT caused the degradation of titin and nebulin in vitro, the extent of which
increased with increased incubation temperature, but had no effect on the degradation of
these MPs in vivo. In addition, compared with the control, the presence of CATI caused
further degradation of desmin in vivo, the extent of which was increased with increased
postmortem aging time, whereas no degradation of desmin was observed in the presence
of CAT in vitro, regardless of incubation time. For troponin-T, compared with the control,
CATI did not cause an obvious degradation of troponin-T at 1 and 3 d postmortem, but
exerted more obvious degradation after 7 day postmortem in vivo. In addition, the presence
of CAT caused further degradation of troponin-T in vitro, and the extent of the degradation
was increased with increased incubation temperature. Temperature might be a critical
factor causing the difference between in vivo and in vitro results. Therefore, the results
might provide a reference for understanding the role of CAT in MPs degradation and
meat tenderization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11040613/s1, Figure S1: Warner-Bratzler shear force of beef
treated with cathepsin L in different incubated temperature.
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