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Steroid treatment has become recognized as an important risk factor for avascular os-
teonecrosis of the femoral head. However, not all patients who receive long-term, high-dose
steroids develop osteonecrosis, indicating that there are individual differences in occur-
rence.
We explored the relationship between polymorphisms and steroid-induced osteonecrosis
of the femoral head (SONFH) incidence with variables. We used a multilevel mixed-effects
logistic regression model, which is an expansion of logistic regression, for each type
of steroid, primary disease, drug dose, applied duration, and single-nucleotide polymor-
phism (SNP). We also conducted a dose-response meta-analysis to analyze the cu-
mulative dosage and SONFH risk in mutation carriers. There were significant correla-
tions between the ABCB1 rs1045642 mutant and SONFH in the prednisone-use and
methylprednisolone/prednisone-use populations. The ABCB1 rs2032582 mutant homozy-
gote had a protective effect in the methylprednisolone/prednisolone renal transplant popu-
lation. For ApoB rs693, mutation increased the incidence of SONFH in prednisone-use and
methylprednisolone/prednisolone-use populations and renal transplant patients. For ApoB
rs1042031, mutation increased the risk of SONFH in the prednisone-use population. The
PAI-1 rs1799768 mutation had a protective effect on the SONFH risk prednisone-use and
renal transplant populations. ABCB1 rs1045642 mutations have a protective effect against
SONFH, and ApoB rs693 and rs1042031 increase the SONFH risk. Cumulative dosage and
treatment duration had little effect on the results. In addition, there was a dose-effect corre-
lation in ABCB1 rs1045642 and rs2032582 mutation carriers.

Introduction
Steroid-induced osteonecrosis of the femoral head (SONFH), which leads to collapse of the femoral head
and articular dysfunction, has an incidence of 9–40% amongst patients receiving steroid treatment [1]. The
exact pathology of SONFH is still unclear and might be related to lipid metabolism disorders, abnormal
microcirculation, insufficient blood supply, inflammation, and bone marrow mesenchymal stem cell os-
teogenesis differentiation dysfunction. The abnormal blood supply leads to the apoptosis of osteocytes and
osteoblasts, followed by bone loss and reduced bone mineral density [2]. Lipid metabolism dysfunction is
also an important pathology, and steroid application may lead to an increase in blood lipid levels and then
to the development of intravascular lipid embolism in the microvasculature [3]. Embolism accumulation
might affect microcirculation and increase the pressure of the intramedullary cavity, eventually leading to
the death of bone cells. Long-term or mass steroid application is the critical pathogenesis of SONFH [4].
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However, not all patients who receive long-term, high-dose steroids will develop SONFH, indicating that there are
individual differences in the occurrence of SONFH.

To date, several meta-analyses have been published and shown that PAI-1 4G/5G (rs1799768) [5], ABCB1 C3435T
(rs1045642) [5–7] and CYP3A activity [8] are associated with SONFH incidence. However, the results of the ABCB1
G2677T/A polymorphism are still disputed [5–7]. Our previous research reported only the single-nucleotide poly-
morphisms (SNPs) that appeared in more than three studies and indicated that ABCB1 rs1045642 has a protective
effect on SONFH in an allelic model and that the ApoB rs693 and rs1042031 mutations promote the pathogenesis of
SONFH. ABCB1 rs2032582, MTHFR rs1801133, and PAI-1 rs1799768 were not correlated with SONFH incidence.
However, heterogeneity still exists in the previous results, and further analysis of the characteristics of the included
studies is needed. Therefore, this research further analyzes the effects of primary disease, type of steroids, cumulative
steroid dosage, and treatment duration on the results.

Methods
We used the meta-analysis of observational studies in epidemiology guidelines in the present study [9].

Data source and search strategy
Two authors independently performed a literature search of the PubMed, Embase, Cochrane Library, and Chinese
public databases, including the China National Knowledge Infrastructure, the China Biology Medicine Database,
the China Science Periodical Database (Wanfang Database), and the VIP Journal Integration Platform. The search
included studies published through 29 July 2018. The following terms were used in the search strategy: hormone, glu-
cocorticoid, steroid, corticosteroid, osteonecrosis, femoral, femur, femoris, whirlbone, polymorphism, SNP, genetic,
mutation, genotype, allele, allelic, and variation. The search strategy is shown in Supplementary Table S1. Divergence
in the search results was resolved by discussion.

Inclusion and exclusion criteria
The studies were included in our meta-analysis if they met the following criteria: (1) case-control or cohort studies
comparing a population that suffered SONFH with a population that did not suffer after steroid treatment, (2) stud-
ies assessing the associations between genetic polymorphisms and SONFH, and (3) studies reporting the frequencies
of specific alleles or the effect sizes of individual genotypes between cases and controls. Studies were excluded from
the analysis for the following reasons: (1) noncase-control or noncohort studies, (2) the case group included SONFH
patients with other etiologies or SONFH patients who were not reported separately, (3) the control group included
an ONFH population without steroid application or a healthy population, (4) non-SNP-related studies, (5) studies
about family heredity, and (6) studies that did not report data pertaining to allelic frequencies or effect size. In addi-
tion, conference reports, editor comments, reviews, case reports, and academic dissertations were excluded from the
analysis.

Data extraction and quality assessment
Two authors independently extracted the following data from each eligible study: first author’s name, publication year,
research location, sample size, average subject age, primary disease, steroid type, cumulative steroid dose, treatment
duration, and genes of interest. If the average or median value of the cumulative steroid dosage in each group was not
reported, it was estimated. The cumulative dose was generally calculated by multiplying the daily average dose and the
treatment duration. For studies with a fixed treatment strategy, the cumulative dosage was calculated by multiplying
the dosage of each treatment cycle by the total number of cycles. In the present study, we defined the average body
surface area as 1.6 m2 and the average body weight as 60 kg. For closed-interval categories, the value assigned to
each dosage or duration, such as the average or median, was the midpoint. For open-interval categories, the value
was estimated as the limit value multiplied by 1.2 [10]. Because of the different types of steroids used in the included
studies, it was necessary to convert the doses of different types of steroids to the equivalent dose of prednisone. The
conversion standard is 5 mg prednisone = 5 mg prednisolone = 4 mg methylprednisolone = 0.75 mg dexamethasone
[11]. The Newcastle-Ottawa Scale (NOS), a validated tool for evaluating the quality of observation studies, was used to
evaluate the methodological quality of the included studies; the scale includes the following three subscales: selection,
comparability, and exposure [12].
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Figure 1. Preferred reporting items for systematic review and meta-analysis flow chart illustrating the process by which

the studies included in our analysis were selected

Statistical analysis
Association analysis was performed using five genetic models: allelic (W vs M), dominant (WW+WM vs MM), re-
cessive (WW vs WM+MM), heterozygous (WM vs MM), and homozygous (WW vs MM) models [13]. W is the wild
allele and M is the mutation allele. The odds ratios (ORs) and their 95% CIs were used to assess the strength of the
associations between polymorphisms and SONFH incidence. The I2 statistic was used to estimate the degree of het-
erogeneity amongst the studies. Cochran’s Q statistics were also taken as measures of between-study heterogeneity.
Generally, a significance level of P<0.1 suggests the existence of significant heterogeneity to expand a test’s sensitiv-
ity [13]. If the I2 ≥ 50% (Q test, P<0.1), the random-effect model was used; otherwise, the fixed-effect model was
used. Then, we attempted to use a multilevel mixed-effects logistic regression model, which is an expansion of logistic
regression, for each type of steroid, primary disease, drug dose, applied duration, and SNP. The factors of different
genotypes and other variables were included as fixed effects, and different studies were considered random effects.

Finally, we conducted a dose-response meta-analysis across the cumulative steroid dosage [14]. To derive the
dose-response curve, we modeled the dose using restricted cubic splines with three knots at fixed percentiles of 10,
50, and 90% of the distribution [15]. All tests were two-tailed, and a p-value less than 0.05 was considered statistically
significant except in Cochran’s Q test.

Results
Our research returned 287 English articles and 305 Chinese articles after removing duplicates. After screening the
titles and abstracts, 509 of these articles were excluded. The full texts of 83 articles were assessed, amongst which
studies were excluded for the following reasons: the control group did not receive steroid therapy (26); reviews (8);
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Figure 2. Forest plot of SONFH risk of SNP carriers that are included in more than three studies by traditional meta-analysis

non-SNP-related studies (5); basic studies (3); studies without frequencies or effect size results (2); non-steroid-related
ONFH studies (2); case reports (2); microRNA-related studies (2); duplicated reports (2); and heredity SONFH study
(1). Ultimately, we included 30 studies that assessed a total of 7553 patients in our meta-analysis [16–45] (Figure 1,
Table 1).

All studies were case-control designs, except one study, which was a cohort design [18]. The primary diseases in-
cluded organ transplantation, hematological disease, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
nephrotic syndrome, and ophthalmic disease. In addition, two studies by Wei He [30,31], two studies by Weibao Fang
[27,28], and studies by Masaaki and Kyoko [32,35] included the same patient groups but did not assess the same SNPs.
The NOS scores ranged from six to nine points, and the overall quality of the observational studies was ideal (Table
1). The details of NOS scores for each study are shown in Supplementary Table S2.

Amongst the preliminary results of SNPs that were included in more than three studies, an allelic model showed that
the ABCB1 rs1045642 mutation had a protective effect against SONFH (OR: 0.74; 95% CI: 0.55–1.00; P=0.046). ApoB
rs693 (heterozygous model: OR: 2.46; 95% CI: 1.27–4.77; P=0.008; homozygous model: OR: 7.70; 95% CI: 1.23–48.16;
P=0.029; dominant model: OR: 2.99; 95% CI: 1.71–5.21; P<0.001; recessive model: OR: 7.16; 95% CI: 1.19–43.02;
P=0.031) and rs1042031 (dominant model: OR: 2.90; 95% CI: 1.49–5.66; P=0.002) mutations increased the risk of
SONFH. ABCB1 rs2032582, MTHFR rs1801133, and PAI-1 rs1799768 had no significant relationships with SONFH
(Figure 2). Other SNPs were not included in the analysis because they did not appear in more than three studies. A
further analysis was performed in the present study using a multilevel mixed-effects logistic regression model. The
details of the included studies for each group analysis are listed in Supplementary Table S3.

In the results of the ABCB1 rs1045642 multilevel mixed-effects regression model, the mutant homozygote and
the mutant carrier could significantly protect against SONFH after steroid application (TT vs CC genotype: OR:
0.51; 95% CI: 0.34–0.76; P=0.001; TC/TT vs CC: OR: 0.77; 95% CI: 0.60–0.98; P=0.036). The results showed no
significant changes in the cumulative dosage and treatment duration. According to the analyses of categorical variables
of steroid type, in the prednisone-use population, mutant homozygotes had a significant protective effect compared
with the wild-type population (TT vs CC: OR: 0.54; 95% CI: 0.31–0.94; P=0.029), and the results were similar in the
methylprednisolone/prednisone-use population (TT vs CC: OR: 0.24; 95% CI: 0.08–0.71; P=0.010). The analysis of
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Table 1 Characters of included studies

Author Year Local Sample size
Average
age# Type of steroids Primary disease

Cumulative
dose in Exp
group

Cumulative
dose in
Control
group

Treatment
duration Genes

NOS
score

Zhao et al. [16] 2017 China 193 (78/115) 40 (18–48) Prednisone Various 1400 mg 2400 mg 1Y GRG 9

Plesa et al.
[17]

2017 Caucasian 304 (32/272) NA Prednisone
Dexamethasone

ALL 50,400 mg 54,149 mg 120W BCL2L11 9

Karol et al.[18] 2015 Multinational 2955 (400/2555) NA Prednisone
Dexamethasone

ALL 24,275 mg 24,275 mg 1500D GWAS 7

X Wei [19] 2015 China 75 (45/30) 39 +− 10 Prednisone Various 4800 mg 4800 mg 6M ApoA1;ApoB;
ApoE

8

Zhang et al.
[20]

2014 China 200 (94/106) 44.5 (18–82) Prednisolone Various 7300 mg 7300 mg 1Y ABCB1 7

Y Xue [21] 2014 China 322 (105/217) 39 (18–48) Prednisone Various 1388 mg 2400 mg 1Y ABCB1 9

Y Cui [22] 2014 China 424 (223/201) 42.27 +− 15.71 Prednisolone Various 7300 mg 7300 mg 1Y ApoA5 7

P Zeng [23] 2014 China 206 (108/98) 40 +− 10 Prednisone Various 2400 mg 2400 mg 3M ApoB 8

Zhang et al.
[24]

2013 China 200 (94/106) 44.5 (18–82) Prednisolone Various 7300 mg 7300 mg 1Y PAI–1 7

Wang et al.[25] 2013 China 200 (94/106) 44.5 (18–82) Prednisolone Various 7300 mg 7300 mg 1Y PON-1 6

Y Li [26] 2012 China 123 (70/53) 29 (18–73) Prednisone Various 480 mg 480 mg 6M ABCB1 6

W Fang [27] 2011 China 134 (63/71) 35.17 +− 11.73 Prednisone Various 6991 mg 5014 mg 6M ApoB; CYP1A2 8

W Fang [28] 2011 China 134 (63/71) 35.17 +− 11.73 Prednisone Various 6991 mg 5014 mg 6M Factor
V;GR;CBP;
ApoB;CYP1A2

8

J Bond [29] 2011 U.K. 110 (43/67) NA Dexamethasone ALL 68,333 mg 68,333 mg 143W PAI-1 8

W He [30] 2009 China 48 (31/17) 32 (12–59) Prednisone Hemoglobinopathies 480 mg 480 mg 2M CYP3A4/
ABCB1

7

W He [31] 2009 China 48 (31/17) 18–60 Prednisone Various 480 mg 480 mg 6M CYP3A4 7

Kuribayashi et
al. [32]

2008 Japan 157 (34/123) 35 (9–64) Methylprednisolone
Prednisolone

RT 3227 mg 3207 mg 6M ABCB1; ApoB;
CBP

9

D French [33] 2008 U.S.A. 361 (51/310) NA (10–20) Prednisone
Dexamethasone

ALL 15,139 mg 15,139 mg NA ABCB1;PAI–1 et
al. 11 Genes##

7

Wang et al.[34] 2008 China 53 (16/37) 35 (16–78) Methylprednisolone SARS 5672 mg 4187 mg NA TNF-a 8

Tamura et al.
[35]

2007 Japan 157 (34/123) 35 (9–64) Methylprednisolone
Prednisolone

RT 3251 mg 3215 mg 6M GR;CYP3A4;
CBP;NCoA2

9

XY Yang [36] 2007 China 127 (21/106) 34 (11–67) Methylprednisolone
Prednisone

SLE 89,173 mg 89,173 mg 5Y ABCB1 9

Continued over
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Table 1 Characters of included studies (Continued)

Author Year Local Sample size
Average
age# Type of steroids Primary disease

Cumulative
dose in Exp
group

Cumulative
dose in
Control
group

Treatment
duration Genes

NOS
score

Hirata et al.[37] 2007 Japan 112 (20/92) NA Methylprednisolone
Prednisone

RT 3223 mg 3223 mg 6M ApoA 7

Hirata et al.[38] 2007 Japan 158 (34/124) 36.1 (9–64) Methylprednisolone
Prednisolone

RT 3223 mg 3223 mg 6M ApoB 7

Ekmekci et al.
[39]

2006 Turkey 57 (19/38) 34.2 +− 9.3 NA RT NA NA 20.6M Factor V,
Prothrombin

7

Celik et al.[40] 2006 Turkey 50 (11/39) 41 +− 11.79 Prednisolone RT 8835 mg 6322 mg 18M Factor V,
Prothrombin,
MTHFR

8

Relling et al.
[41]

2004 U.S.A. 64 (25/39) 8.6 (2.7–18.8) Prednisone ALL 17,028 mg 17,867 mg 1.23Y MDR1(ABCB1)
et al. 13
Genes###

8

Asano et al.
[42]

2004 Japan 137 (31/106) 36 (9–63) Methylprednisolone
Prednisolone

RT 3228 mg 3174 mg NA PAI-1; MTHFR 8

Asano et al.
[43]

2003 Japan 80 (26/54) NA NA RT NA NA 2Y CYP3A4;
CYP2D6;
CYP2C19

7

Asano et al.
[44]

2003 Japan 136 (30/106) 35.5 (9–63) Methylprednisolone
Prednisolone

RT 3227 mg 3207 mg 6M ABCB1 8

Ferrari et al.
[45]

2002 Switzerland 228 (26/202) 50 +− 12 Prednisone RT 9600 mg 9600 mg 8Y PAI-1 8

ALL, acute lymphoblastic leukemia; GWAS, genome-wide association study; NA, not available; RT, renal transplant; SARS, severe acute respiratory syndrome.
#Mean +− standardization; mean/median (minimum–maximum).
##TYMS; VDR; BGLAP; ESR1; LRP5; MTHFR; PAI-1; ABCB1(MDR1); PTH; PTHR; ACP5.
###CYP3A4; CYP3A5; TPMT; UGT1A1; TYMS; GSTT1; GSTM1; RFC; MTHFR; GRG(NR3C1); MDR1(ABCB1); VDR; GSTP1.
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Figure 3. Forest plot of ABCB1 rs1045642 mutation on SONFH risk by the multilevel mixed-effects logistic regression model

primary disease showed no significant results. It should be noted that the studies that did not report primary disease
type or that included several types of primary disease were not included in the categorical analysis of primary disease
(Figure 3).

For ABCB1 rs2032582, the negative results did not change after considering cumulative dose and treat-
ment duration. In the categorical analysis, the protective effect of the mutant was only found in the
methylprednisolone/prednisolone-use renal transplant population (OR: 0.27; 95% CI: 0.07–0.97; P=0.046). How-
ever, this result was based on a single study and had a large standard error (SE = 0.66); thus, this result needs to be
confirmed (Figure 4).

For ApoB rs693, mutation increased the incidence of SONFH (CT vs TT: OR: 2.62; 95% CI: 1.34–5.16; P=0.005;
TT vs CC: OR: 9.29; 95% CI: 1.06–81.49; P=0.044; CT/TT vs CC: OR: 3.16; 95% CI: 1.81–5.55; P<0.001) (Figure
5). Due to a large number of zero events, the regression results did not converge after considering the cumula-
tive dose. The results were not changed after considering treatment duration. In addition, in prednisone-use and
methylprednisolone/prednisolone-use populations and renal transplant patients, mutation increased the risk of
SONFH.

For ApoB rs1042031, mutation increased the risk of SONFH (GA vs GG: OR: 2.68; 95% CI: 1.43–5.01; P=0.002)
(Figure 6). The results were not obviously changed after considering cumulative dose and treatment duration. In the
categorical analysis, mutation increased the risk of SONFH in the prednisone-use population (OR: 5.12; 95% CI:
2.22–11.85; P<0.001), but not in the methylprednisolone/prednisolone-use renal transplant population (OR: 0.31;
95% CI: 0.04–2.48; P=0.269).

For MTHFR rs1801133, there was no significant correlation between mutation and SONFH risk (CT vs CC: OR:
0.63; 95% CI: 0.34–1.17; P=0.143; TT vs CC: OR: 1.19; 95% CI: 0.48–2.97; P=0.705; CT/TT vs CC: OR: 0.94; 95% CI:
0.61–1.45; P=0.776). The results did not change after considering the continuous and categorical variables (Figure
7).

For PAI-1 rs1799768, 5G mutation had a protective effect against SONFH (4G5G vs 5G5G: OR: 0.48; 95% CI:
0.29–0.80; P=0.005; 5G5G vs 4G4G: OR: 0.42; 95% CI: 0.22–0.80; P=0.009; 4G5G/5G5G vs 4G4G: OR: 0.46; 95%
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CI: 0.29–0.72; P=0.001) (Figure 8). These results differed from previous results because in previous research a
random-effect model was used due to large heterogeneity, and a mixed-effect model was adopted in this research.
The results did not change after considering cumulative dose and treatment duration. In the categorical analysis, the
protective effect existed in the prednisone-use and renal transplant population. However, there was no significant
correlation in the methylprednisolone/prednisolone-use population (4G5G vs 5G5G: OR: 0.44; 95% CI: 0.18–1.06;
P=0.067; 5G5G vs 4G4G: OR: 0.64; 95% CI: 0.18–2.26; P=0.491; 4G5G/5G5G vs 4G4G: OR: 0.48; 95% CI: 0.21–1.08;
P=0.078).

Furthermore, we sought to analyze the cumulative dosage and SONFH risk in mutation carriers by a dose-response
meta-analysis. SONFN/ONFH incidence in mutation carriers cannot be obtained when steroids are not used. There-
fore, the minimum dose must be used as a reference, and whether increasing the dose affects SONFH incidence must
be assessed. Two dose assessment methods were used: an absolute dose and multiple doses. For ABCB1 rs1045642,
there was a correlation between the cumulative dose and the occurrence of SONFH in the mutation carriers. As
the dose increased, the risk of SONFH decreased (absolute dose: P=0.008; multiple dose: P=0.0064) (Figure 9A,B).
This negative correction also persists in homozygous mutation (TT genotype, absolute dose: P=0.0368; multiple
dose: P=0.0435) and heterozygous mutation patients (CT genotype, absolute dose: P<0.001; multiple dose: P<0.001)
(Supplementary Figure S1A–D). In wild-type populations, there was no correlation between the dose and the risk of
SONFH (absolute dose: P=0.098; multiple dose: P=0.098). Although there was no significant correlation between the
ABCB1 rs2032582 mutation and the risk of SONFH, the cumulative dose in the mutant population was correlated with
the occurrence of SONFH. As the dose increased, the risk of SONFH decreased (absolute dose: P=0.0231; multiple
dose: P=0.0258) (Figure 9C,D). This negative correction mainly persists in heterozygous mutation patients (GA/GT
genotype, absolute dose: P=0.0286; multiple dose: P=0.0293), but not in other mutation patients (AA/AT/TT geno-
type, absolute dose: P=0.7103; multiple dose: P=0.7716) (Supplementary Figure S1E–H). In wild-type populations,
there was no correlation between the dose and the risk of SONFH (absolute dose: P=0.2821; multiple dose: P=0.285).
These findings may suggest that mutation carriers still have a risk of SONFH when using steroids, similar to the
wild-type population. If SONFH does not occur after small-dose steroid application, increasing the steroid dose in
mutation carriers will not increase but rather decrease the risk of SONFH.

For ApoB rs693, although SONFH was correlated with the dose in the mutation carriers (absolute dose: P=0.0064;
multiple dose: P=0.0064), a correlation was also found in the wild-type population (absolute dose: P=0.0177; mul-
tiple dose: P=0.0013). For ApoB rs1042031, there was no correlation between the cumulative dose and SONFH risk
in the mutation carriers (absolute dose: P=0.662; multiple dose: P=0.7078) or in the wild-type population (absolute
dose: P=0.3106; multiple dose: P=0.0719). ApoB rs693 and rs1042031 have too few homozygous mutation patients
to analyze separately. We did not perform a dose-response analysis for MTHFR rs1801133 and PAI-1 rs1799768 due
to the small number of included studies.

Discussion
ABCB1 rs1045642 mutations have a protective effect against SONFH, and mutations in ApoB rs693 and rs1042031
increase the SONFH risk. The present study further analyzed the effects of each specific characteristic, such as the
primary disease of the included patients, the types of steroids, the cumulative dosage, and the treatment duration,
on outcomes. However, with the increase in variable factors, the results will be more dependent on the results of
single studies, which will reduce the stability of the results. However, the analyses performed here can provide addi-
tional clues and research directions for further basic and clinical research studies. In previous research, we analyzed
the associations between SNPs and SONFH by traditional meta-analysis, and more than three SNPs were included.
Ultimately, ABCB1 rs1045642, rs2032582, ApoB rs693, rs1042031, MTHFR rs1801133, and PAI-1 rs1799768 were
included.

In previous meta-analyses, one study analyzed the association between ABCB1 gene polymorphism and SONFH
and the 3435T (rs1045642) and 2677T/A (rs2032582) alleles of ABCB1 were identified, which may reduce the risk
of GC-induced ONFH [6]. However, our study included more reports and found that rs2032582 had no correlation
with SONFH. Our result is the same as that from another meta-analysis that analyzed the correlation between gene
polymorphism and SONFH occurrence with the GRADE method to assess the level of evidence. The results showed
that ABCB1 rs1045642 could reduce the occurrence of SONFH but had a very low level of evidence. ApoB rs693
and rs1042031 mutations increased the risk of SONFH and had a moderate level of evidence [46]. The results of our
study are essentially the same as those of the above two studies, except for rs2032582. However, our work further
analyzed the associations between SNP and SONFH based on steroid type, primary disease, drug dose, and applied
duration using a mixed-effects logistic regression model. We also conducted a dose-response meta-analysis to analyze

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Forest plot of ABCB1 rs2032582 mutation on SONFH risk by the multilevel mixed-effects logistic regression model

Figure 5. Forest plot of ApoB rs693 mutation on SONFH risk by the multilevel mixed-effects logistic regression model
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Figure 6. Forest plot of ApoB rs1042031 mutation on SONFH risk by the multilevel mixed-effects logistic regression model

Figure 7. Forest plot of MTHFR rs1801133 mutation on SONFH risk by the multilevel mixed-effects logistic regression model

the cumulative dosage and SONFH risk in mutation carriers. Our work expanded the research results and found that
cumulative steroid dosage and treatment duration had little effect on the results. There was a dose-effect correlation
in ABCB1 rs1045642 and rs2032582 mutation carriers. Another study analyzed the associations between ONFH and
genetic polymorphisms of vascular endothelial growth factor rs2010963, endothelial nitric oxide synthase rs2070744,
and ABCB1 rs1045642. However, the included studies contained SONFH- and ONFH-related studies. The results

10 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. Forest plot of PAI-1 rs1799768 mutation on SONFH risk by the multilevel mixed-effects logistic regression model

Figure 9. Dose-response analyses of cumulative steroid dose and SONFH risk in mutation carriers

(A) Analysis of absolute dose in ABCB1 rs1045642 mutation carriers; (B) analysis of multiple dose in ABCB1 rs1045642 mutation

carriers; (C) analysis of absolute dose in ABCB1 rs2032582 mutation carriers; (D) analysis of multiple dose in ABCB1 rs2032582

mutation carriers.
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showed that the mutations of rs2010963 and rs1045642 increased the risk of ONFH, and the mutation of rs2070744
increased the risk of ONFH in an allelic model. There were errors in the present study, as the authors proposed that
the mutation of ABCB1 rs1045642 increased the risk of ONFH, but the data showed that it reduced the risk [47]. Our
study analyzed SONFH risk, but not ONFH, which is different from the above study.

In the present study, there were significant correlations between the ABCB1 rs1045642 mutant and SONFH in the
prednisone-use and methylprednisolone/prednisone-use populations. The ABCB1 rs2032582 mutant homozygote
had a protective effect in the methylprednisolone/prednisolone renal transplant population. For ApoB rs693, muta-
tion increased the incidence of SONFH in the prednisone-use and methylprednisolone/prednisolone-use populations
and renal transplant patients. For ApoB rs1042031, mutation increased the risk of SONFH in the prednisone-use pop-
ulation. The PAI-1 rs1799768 mutation had a protective effect in the SONFH risk prednisone-use and renal transplant
population.

There were different outcomes for the different types of steroid-use populations, possibly because the results were
based on even fewer studies. These differences may also indicate that different types of steroids have subtle differences
in affecting the risk of SONFH. It is generally believed that prednisone must be transformed to an active form through
the liver, while prednisolone does not require this change, which may be the reason for the different results of the two
drugs in ABCB1-related mutation states. In addition, more evidence is needed to determine whether the different
results for the types of steroids in ApoB and PAI-1 gene polymorphisms were due to different effects on adipocytes.

Currently, a registered study is analyzing the pharmacokinetics of different steroids in children, but the results
have not yet been reported (NCT02252237). An earlier study also reported that the cumulative dosage of methyl-
prednisolone, but not prednisone, is correlated with avascular necrosis incidence [48]. Therefore, defined steroid
types should be evaluated in further genetic polymorphism- and SONFH-related studies.

Although there are reports about the effect of primary disease on SONFH risk, most have focussed on the influ-
ence of steroids used in disease treatment. It was also reported that in renal transplant patients, cyclosporine versus
tacrolimus as well as gender factors may be independent risk factors for avascular necrosis [49]. A meta-analysis of
the avascular necrosis risk in SLE patients also showed, that in addition to hormonotherapy, arthritic, cushingoid,
hypertension, cytotoxic drugs, etc., also affect the occurrence of SONFH [50]. Therefore, the primary disease and the
treatment strategy are also possible risk factors for SONFH incidence.

It is generally believed that the occurrence of SONFH is due to long-term and/or high-dosage steroid application.
A dose-response meta-analysis showed that the incidence of osteonecrosis is correlated with both the cumulative
dose and treatment duration [51]. However, there is still no related research on specific mutant carriers. First, the
present study found that the ABCB1 rs1045642 mutation has a protective effect on SONFH, and the risk will be
further reduced with increasing cumulative steroid dosage. It can also be concluded that some mutant carriers will
have SONFH when the cumulative dosage is low; however, if SONFH does not occur, the risk of SONFH will not
increase when the cumulative dose of steroids is increased. Therefore, for mutant carriers, the critical time period
for prevention and diagnosis of SONFH is during the early stage of steroid application, not the late stage. A negative
correlation was also found in ABCB1 rs2032582 mutation carriers, even though the mutations were not significantly
associated with SONFH in general.

Limitation
The present study still has several limitations. First, our study was performed at the study level instead of the individual
level. Second, in stratified analyses, with the increase in variable factors, the results become more dependent on the
results of single studies, which will reduce the stability of the results. Third, in dose-response analyses, SONFN/ONFH
incidence in mutation carriers without steroid application cannot be calculated; therefore, the minimum dose must
be used as a reference. Fourth, our study only analyzed SNPs that were examined in more than three studies, but with
emerging research and evidence, more SNPs may be studied in the future. Therefore, the present study was limited
by the research available at the time.
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