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The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly
prevalent cause of hospital-acquired infections in recent years. The majority of clinical
A. baumannii isolates display high-level resistance to antimicrobials, which severely
compromises our capacity to care for patients with A. baumannii disease. Neutrophils
are of major importance in the host defense against microbial infections. However,
the contribution of these cells of innate immunity in host resistance to cutaneous
A. baumannii infection has not been directly investigated. Hence, we hypothesized
that depletion of neutrophils increases severity of bacterial disease in an experimental
A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal
antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis
of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated.
We demonstrated that neutrophil depletion enhances bacterial burden using colony
forming unit determinations. Also, mAb 1A8 reduces global measurements of wound
healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous
tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays
enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection
alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings
provide a better understanding of the impact of these innate immune cells in controlling
A. baumannii skin infections.

Keywords: Acinetobacter baumannii, collagen, cytokines, neutropenia, wound healing

INTRODUCTION

The Gram-negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent
cause of hospital-acquired infections during the last 15 years (Howard et al., 2012). This pathogen
is a frequent cause of pneumonia and has been identified as the etiologic agent of complicated
infections, especially wound infections (Johnson et al., 2007). For instance, the organism causes
2.1% of intensive care units-acquired skin/soft tissue infections (Gaynes et al., 2005) and was
isolated from >30% of combat victims with open tibial fractures in the Middle East (Johnson
et al., 2007). Moreover, the majority of clinical A. baumannii isolates display high-level resistance to
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antimicrobials, which severely compromises our capacity to care
for patients with A. baumannii disease (Mihu and Martinez,
2011; Howard et al., 2012). Despite its clinical importance, little
is known about the cellular and molecular mechanisms of host
defense against cutaneous A. baumannii infection.

Neutrophils play an important role in early control of acute
bacterial infections by killing bacteria through powerful oxidative
and non-oxidative mechanisms and the production of pro-
inflammatory cytokines (Mantovani et al., 2011). Clinical studies
have shown that A. baumannii is one of the most frequently
isolated gram-negative bacteria in neutropenic febrile patients
in nosocomial settings, (Karim et al., 1991; Fukuta et al., 2013;
Yadegarynia et al., 2013; Kim et al., 2014) particularly after
prolonged hospitalization (Wisplinghoff et al., 2004). Previous
studies have also shown that neutrophils (van Faassen et al., 2007;
Qiu et al., 2009) and neutrophil-recruiting chemokines (Zhao
et al., 2011) are present at the site of A. baumannii infection,
and neutrophil granule extract is bactericidal to other species of
Acinetobacter (Loeffelholz and Modrzakowski, 1988). However,
the contribution of neutrophils in host resistance to cutaneous
A. baumannii infection has not been directly investigated.

Most of our current knowledge about neutrophil function
in the setting of A. baumannii infection originates from
mice treated with cyclophosphamide, (Qiu et al., 2009; Lin
et al., 2012; Manepalli et al., 2013; Thompson et al., 2014;
Bruhn et al., 2015) a cytotoxic alkylating agent widely used
for the treatment of neoplastic and severe autoimmune
diseases. Cyclophosphamide suppresses myelopoiesis resulting
in neutrophil depletion in murine models (Zuluaga et al.,
2006). Moreover, cyclophosphamide inhibits a suppressor
response that normally prevents activation of effector
T cells (Yasunami and Bach, 1988). The exacerbation of
inflammatory responses and blockade of suppressive activity
after cyclophosphamide treatment is consistent with the
suggestion that this agent preferentially depletes suppressor or
regulatory T cells (Yasunami and Bach, 1988; Ghiringhelli
et al., 2004). Additionally, cyclophosphamide reduces
the number of peripheral and circulating macrophages,
(Santosuosso et al., 2002) phagocytic cells that are capable
of detecting and eliminating A. baumannii as well as
initiating a host early immune response (Qiu et al., 2012).
Nevertheless, while cyclophosphamide is useful to study
immunosuppression in rodents challenged with A. baumannii,
it is not necessarily an ideal model to study specific neutrophil
function.

Depletion of neutrophils with antibodies to Ly-6G (Breslow
et al., 2011) and Gr-1 (van Faassen et al., 2007) have shown
that A. baumannii establishes infections in a murine model
of pneumonia. Here, the Ly-6G-specific monoclonal antibody
(mAb), 1A8, has been used to deplete neutrophils in mice and
investigate the role of these cells in host defense (Dovi et al.,
2003). We hypothesized that depletion of neutrophils would
increase severity of A. baumannii disease in an experimental
murine wound model. We showed that neutrophil depletion
increases bacterial load in cutaneous tissue and alters the host
immune response using distinct A. baumannii clinical isolates.
Our findings provide a deeper understanding of the impact of

neutrophils in controlling A. baumannii skin infections which
may lead to the development of more effective therapeutic
strategies.

MATERIALS AND METHODS

Acinetobacter baumannii
A total of 7 A. baumannii clinical isolates (0057, 1422, 1611,
2098, 2231, 3559, and 7405) were included in the study. They
were isolated from blood and wound cultures at the Walter
Reed Medical Center, Washington, DC, USA and Montefiore
Medical Center, Bronx, NY, USA. The antimicrobial susceptibility
profile for each clinical isolate tested in this study was previously
published (Orsinger-Jacobsen et al., 2013). The strains were
stored at –80◦C in brain heart infusion (BHI; Becton Dickinson
(BD) Biosciences, Franklin Lakes, NJ, USA) broth with 40%
glycerol until use. Test organisms were grown in a Tryptic Soy
broth (TSB;MP Biomedicals, LLC, Solon, OH, USA) overnight at
37◦C using a rotary shaker set at 150 rpm. Growth wasmonitored
by measuring the optical density at 600 nm using a microtiter
plate reader (OD600; Bio-Tek, Winooski, VT, USA).

MAb 1A8 Administration
Female Balb/c mice (6–8 weeks; National Cancer Institute,
Frederick, MD, USA) were injected intraperitoneally (i.p.) with
a single dose of 500 μg/mL of mAb 1A8 (Rat anti-mouse
IgG2a; (BD) in a 100 μL of sterile PBS. Control animals
were injected with irrelevant IgG2a antibody (control IgG2a;
Southern Biotech, Birmingham, AL, USA). Three days after
mAb administration, neutrophil depletion was confirmed by
differential leukocyte count in all experimental animals using a
Hema 3 Stat Pack (Fisher HealthCare, Kalamazoo, MI, USA) and
light microscopy.

Flow-Cytometry
For flow cytometry staining, primary cells were isolated from
blood withdrawn from five mice treated with mAb 1A8 or
irrelevant antibody as described above; the cells were washed and
then stained with fluorescence-labeled antibodies. Anti-Ly-6G-
FITC (neutrophils) and its isotype control were purchased from
(BD). Samples were processed on a LSRII flow cytometer (BD)
and were analyzed using FlowJo software.

In Vivo Wound Model and A. baumannii
Infection
At day 3 after treatment, 1A8- and control IgG2a-treated mice
were anesthetized with 100 mg/kg ketamine (Keta-set

R©, Fort
Dodge, IA, USA) and 10 mg/kg xylazine (Anased

R©
, Shenandoah,

IA, USA), the hair on their backs removed, and the skin
disinfected with iodine. Then, single punch biopsies were
performed, resulting in 5-mm diameter full-thickness excision
wounds. Thereafter, a suspension containing 107 A. baumannii
colony-forming units (CFU) in PBS was inoculated directly
onto the wound of 1A8- and control IgG2a-treated mice. 1A8-
and PBS-treated but uninfected mice were used as additional
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controls. Photographs of the wounds were taken on days 3
and 7 to grossly document wound healing, utilizing a ruler
for determining scale. Additionally, the dimensions of each
wound were measured every other day using a dial caliper and
were performed by two different operators in a blinded fashion
for each mouse. Eight animals per group were euthanized at
days 3 and 7 after infection and wound tissues were excised
for processing for histology, CFU determinations and gene
expression.

Ethics Statement
All animal studies were conducted according to the experimental
practices and standards approved by the Institutional Animal
Care and Use Committee (IACUC) at Long Island University
(Protocol #: 11-3). The IACUC at Long Island University
approved this study.

CFU Determinations in Tissues
At days 3 and 7 post-infection, mouse cutaneous tissues were
excised and homogenized in sterile PBS. Serial dilutions of
homogenates were performed; a 100 μL suspension of each
sample was then plated on Tryptic Soy Agar (TSA; MP
Biomedicals, LLC) plates and incubated at 37◦C for 24 h.
Quantification of viable bacterial cells was determined by CFU
counts and the results were normalized by tissue weights.

Histological Processing
At days 3 and 7 post-infection, wounded tissues were
excised from euthanized mice; the tissues were fixed in
10% formalin and embedded in paraffin. Four micrometer
vertical sections were cut and then fixed to glass slides and
subjected to Haematoxylin and Eosin (H&E), Gram, MPO,
or collagen type I (Santa Cruz Biotechnology, Dallas, TX,
USA) mAb staining to assess morphology, bacterial burden,
neutrophil infiltration, or collagen deposition, respectively.
The slides were visualized using an Axiovert 40CFL inverted
microscope (Carl Zeiss, Thornwood, NY, USA), and images were
captured with an AxioCam MrC digital camera using the Zen
2011 digital imaging software. Quantification of the collagen
staining was carried out using ImageJ software using threshold
filters to isolate the stain and measurement of colorimetric
intensity.

Real-time PCR for COL1 and COL3 Gene
Expression in Wounded Tissue
COL1 encodes for collagen type I which is present in scar tissue,
the end product when tissue heals by repair. COL3 encodes for
collagen type III, found in extensible connective tissues such as
skin, lung, and the vascular system, frequently in association
with type I collagen. Briefly, seven day post-infection excised
tissues were subjected to homogenization, cells were collected
and washed, and then RNA was isolated using an RNeasy kit
(QIAGEN, Valencia, CA, USA).COL1 andCOL3 expression were
analyzed by quantitative reverse transcription-PCR (qRT-PCR)
as previously described (Han et al., 2012).

Cytokine, Myeloperoxidase, and
Superoxide Determinations
Three mice per group were sacrificed 3 and 7 days post-infection.
Wounded tissues were excised and homogenized in PBS with
protease inhibitors (Complete Mini; Roche, Ridgefield, CT, USA).
Cell debris was removed from homogenates by centrifugation at
6,000 g for 10 min. Samples were stored at –80◦C until tested.

(i) Cytokines
Supernatants were tested for IFN-γ, TNF-α, IL-1β, and IL-6 by
ELISA (BD). The limits of detection were 31.3 pg/mL for IFN-γ
and 15.6 pg/mL for TNF-α, IL-1β, and IL-6.

(ii) Myeloperoxidase
Supernatants were tested for myeloperoxidase (MPO) by ELISA
(Hycult Biotechnology, The Netherlands). MPO is an enzyme
most abundantly produced by neutrophils respiratory burst. The
limits of detection were 1 ng/mL for MPO.

(iii) Superoxide
Superoxide (O2–) produced in murine tissue supernatant was
quantified after exposure to A. baumannii using a superoxide
dismutase assay kit (EMDMillipore, Billerica, MA, USA).

Statistical Analysis
Data were analyzed using Prism (GraphPad, LaJolla, CA, USA).
Differences in neutrophil counts, MPO and superoxide levels,
CFUs, and cytokine data were analyzed by the student’s t-test.
Analyses of wound healing, collagen deposition, and gene
expression data were done using analysis of variance (ANOVA)
and adjusted by use of the Bonferroni correction. P-values of
<0.05 were considered significant.

RESULTS

MAb 1A8 Decreased Neutrophils in Blood
and Skin Tissue of Treated Balb/c Mice
We examined whether mAb 1A8 administration depleted
neutrophils in blood smears of Balb/c mice using differential
leukocyte staining. Light microscopy images show apparent
reduced numbers of neutrophils in blood of 1A8-treated mice,
compared with IgG2a control mice (Figure 1A). Cell count
analysis showed that 1A8-treated animals had significantly
lower blood circulating neutrophils when compared to
controls (P = 0.0224; Figure 1B). Flow cytometry analysis
confirmed a significant decrease of Ly6-G+ cells in the
blood of 1A8-injected mice (Figure 1C). Similarly, we
determined whether mAb 1A8 injection reduced neutrophil
infiltration in wounded tissue by immunohistochemistry
(IHC; Figures 1D,E) and MPO analyses (Figure 1F).
Both analyses showed that mAb 1A8-treated animals had
significantly decreased neutrophil infiltration into the skin tissue
compared to IgG2a controls (Figure 1E, Day 3 P = 0.0008,
Day 7 P = 0.0001; Figure 1F, Day 3 P = 0.0001, Day 7
P = 0.0001).
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FIGURE 1 | MAb 1A8-treated animals display a low number of blood and skin tissue neutrophils. (A) Light microscopy images of blood smears from control
(isotype-matching IgG2a) or mAb 1A8-treated (1A8) mice pre-infection. Pictures were taken 3 days post-injection. Arrows indicate neutrophils. Scale bar: 20 μm.
(B) Number of neutrophils per field in blood of irrelevant (control IgG2a) or 1A8-treated mice quantified 3 days post-injection. Each black or white circle represents
the numbers of neutrophils per individual field. Bars and error bars denote average of ten counts and standard deviations, respectively. Asterisks denote P-value
significance (∗P < 0.05) calculated using student’s t-test analysis. The experiment was performed thrice with similar results obtained. (C) The expression levels of the
Ly-6G+ cells were analyzed by flow cytometry 3 days post-injection and a representative graph is shown. Primary cells were isolated from blood of animals (n = 5)
injected with irrelevant or mAb 1A8. The experiments were performed twice with similar results obtained. (D) Immunohistochemistry (IHC) of myeloperoxidase (MPO)
released by neutrophils in wounds removed from control IgG2a and 1A8-treated mice. MPO-specific monoclonal antibody (mAb) was used to stain MPO (brown)
released in skin tissue indicative of neutrophil infiltration. Representative MPO-immunostained sections of the skin lesions are shown. Scale bars: 20 μm. (E) Number
of neutrophils per field in wounded skin tissue of control and 1A8 animals. Data are given as the average number of neutrophils in 10 different fields, and error bars
denote standard deviations. (F) MPO concentration in the supernatant of tissue homogenates excised from control and mAb 1A8-treated mice (n = 5 per group).
Bars represent the mean values; error bars denote standard deviations. For (E,F), asterisks denote P-value significance (∗P < 0.001) calculated using student’s t-test
analysis. The experiments were performed twice with similar results obtained.

Acinetobacter baumannii Infected Mice
Show Reduced Wound Healing Rate
In Vivo
The effect of neutrophil depletion on A. baumannii infection
and wound healing was investigated (Figure 2). Uninfected
animals showed faster wound healing rates than A. baumannii
infected groups (Figures 2A,B). At day 3, the eschars in control
IgG2a and 1A8 wounds were ∼13.2 and 11.5 mm2 in surface,
respectively, whereas eschars of control IgG2a + A. baumannii
and 1A8 + A. baumannii wounds were ∼43.7 (compared
to IgG2a P = 0.0001 and 1A8 P = 0.0001) and 38.9 mm2

(compared to IgG2a P = 0.0001 and 1A8 P = 0.0001;
Figure 2B). At day 7, eschars in the control IgG2a and
1A8 groups were ∼5.3 and 2.5 mm2, respectively, whereas
the eschars of control IgG2a and 1A8 A. baumannii-infected
wounds were ∼34.2 (compared to IgG2a P = 0.0001 and 1A8
P = 0.0001) and 45.9 mm2 (compared to IgG2a P = 0.0001, 1A8

P = 0.0001, IgG2a + A. baumannii P = 0.0101), respectively
(Figure 2B). At day 11, the wounds of control IgG2a and 1A8
groups reached complete closure, whereas eschars of control
IgG2a + A. baumannii and 1A8 + A. baumannii wounds were
∼16.1 (compared to IgG2a, P = 0.0001 and 1A8, P = 0.0001)
and 27.3 mm2 (compared to IgG2a P = 0.0001, 1A8 P = 0.0001,
IgG2a + A. baumannii P = 0.0013), respectively. At day 15,
the lesions of 1A8 + A. baumannii wounds were ∼10.5 mm2.
On average, complete wound healing did not occur in the
infected groups until day 15 (control IgG2a) and 19 (1A8;
Figure 2B).

1A8-Treated Animals Displayed
Increased Collagen Production in
Cutaneous Tissue
The role of neutrophils on wound healing was further explored
by examining whether neutropenia modify collagen deposition
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FIGURE 2 | Neutropenic mice with Acinetobacter baumannii (Ab) wound infection have reduced wound healing rate. (A) Wounds of Balb/c mice
isotype-matching mAb-treated (control IgG2a), mAb 1A8-treated (1A8), control IgG2a-treated A. baumannii-infected (control IgG2a + A. baumannii), and mAb
1A8-treated A. baumannii-infected (1A8 + A. baumannii), 3 and 7 days post-wounding and infection. Scale bar: 5 mm. (B) Wounded surface analysis of Balb/c mice
skin lesions. For control and 1A8 groups, time points are the averages of the results for five measurements, and error bars denote standard deviations. For control
IgG2a + A. baumannii and 1A8 + A. baumannii groups, time points are the averages of results for seven clinical isolates (n = 7) and error bars denote standard
deviations. Symbols (∗, #, φ relative to control IgG2a + A. baumannii, 1A8, and control IgG2a, respectively) denote P-value significance (P < 0.01) calculated by
analysis of variance (ANOVA). This experiment was performed twice with similar results obtained.

in wounded tissue. Gene expression of collagen types I and III
was significantly increased in 1A8-treated animals as compared
to control IgG2a (collagen I, P= 0.0013; collagen III, P= 0.0379),
and in 1A8-treated and A. baumannii-infected animals as
compared to control IgG2a and A. baumannii-infected (collagen
I, P = 0.0001; collagen III, P = 0.0011) groups (Figure 3A).
Moreover, IHC of collagen type I revealed denser collagen
deposition and thicker collagen bundles within the epidermis and
dermis of 1A8-treated wounds as compared to control IgG2a
wounds, both in infected and non-infected models (Figure 3B).
Furthermore, this was well-correlated with quantitative analysis
of staining intensity (Figure 3C). Besides uninfected models,
the 1A8-treated samples showed a consistent trend (1A8) and a
significant increase (1A8 + A. baumannii) in collagen staining
intensity, signifying augmented collagen deposition (Figure 3C).

MAb 1A8-Injected Mice Displayed a
Higher Bacterial Burden in Cutaneous
Lesions
The role of neutrophils in killing A. baumannii in cutaneous
lesions of mice was investigated. Three and seven days after
infection, wounds were removed from control IgG2a or 1A8-
treated and A. baumannii infected animals and plated on TSA.
MAb 1A8-treated wounds evinced significantly higher microbial
burden than did the control IgG2a wounds on days 3 (IgG2a
108.054 CFU; 1A8 108.583 CFU; P = 0.0363) and 7 (IgG2a 107.560
CFU; 1A8 108.253 CFU; P = 0.0298; Figure 4A). Histological
examinations revealed that uninfected wounds quickly regained
normal epidermal and dermal structure; both in control IgG2a
and 1A8 treated mice (data not shown). However, inoculation
of A. baumannii resulted in full-thickness wounds with an
intense inflammatory infiltrate, persisting through both day
3 and day 7 after wounding in control IgG2a-treated mice
(Figure 4B; upper panel 20X; lower panel 40X). Likewise, full-
thickness wounds with prominent serum crust were observed
in the A. baumannii-infected 1A8-treated wounds, but with

significantly reduced inflammatory infiltrate. Gram stain reveals
increased concentration of Gram-negative species within the
A. baumannii-infected 1A8 treated wounds as compared to the
A. baumannii-infected IgG2a wounds (Figure 4B; insets; lower
panel).

MAb 1A8 Treatment Reduces Neutrophil
Infiltration to Wounded Tissues
We investigated the effect of mAb 1A8 administration in
neutrophil migration to the wounded area during A. baumannii
infection (Figure 5). Neutrophil infiltration was evaluated
by neutrophil counts and measuring the production of
MPO in the cutaneous lesions. On day 3, staining was
mostly confined to scattered areas of the dermal tissue
with more neutrophil infiltration in control mAb IgG2a-
treated A. baumannii-infected wounds compared to mAb 1A8-
treated A. baumannii-infected wounds (Figure 5A). On day
7, IgG2a-treated A. baumannii-infected wounds showcased
localized neutrophil recruitment to the dermal and hypodermal
areas of the wounded tissue (Figure 5A). In contrast, mAb
1A8-treated and A. baumannii-infected wounds displayed a
reduced distributed neutrophil infiltration. Neutrophil counts
revealed that wounds of mAb 1A8-injected group displayed
significantly lower numbers of neutrophils than did the
control IgG2a-treated A. baumannii-infected group (Day 3
P = 0.0398, Day 7 P = 0.0305; Figure 5B). Additionally,
our quantitative analysis confirmed the presence of lower
levels of MPO in wounds of 1A8-treated-A. baumannii
infected mice when compared to wounds of control IgG2a-
treated A. baumannii infected mice (Day 3 P = 0.0003,
Day 7 P = 0.0012; Figure 5C). Finally, we measured the
levels of O2– produced in wounded skin tissue. On day
3, the wounds of mAb 1A8-injected and A. baumannii-
infected group showed significantly reduced O2– levels when
compared to control IgG2a-infected groups (P = 0.0027;
Figure 5D).
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FIGURE 3 | Neutropenia promotes collagen deposition in cutaneous lesions of rodents. (A) Gene expression analysis of collagen type I (COL1A) and III
(COL3A) in murine dermal tissue. For control and 1A8 uninfected animals, bars are the averages of the results for five wounds, and error bars denote standard
deviations. For control IgG2a- and 1A8-infected with A. baumannii groups, bars are the averages of results for seven clinical isolates (each symbol represent a strain;
n = 7) and error bars denote standard deviations. ∗ and # indicate higher fold changes than control and A. baumannii groups, respectively. (B) IHC of collagen type I
produced in wounds of isotype-matching mAb-treated (control IgG2a), mAb 1A8-treated (1A8), control IgG2a-treated A. baumannii-infected (control
IgG2a + A. baumannii), and mAb 1A8-treated A. baumannii-infected (1A8 + A. baumannii) Balb/c mice, 7 days post-infection. Representative 20X (upper panel) and
40X (lower panel; magnified black boxes in upper panel) collagen type I-immunostained sections of the skin lesions are shown. The dark staining indicates collagen.
Scale bar: 20 μm. (C) Quantitative measurement of collagen type I intensity in eight representative fields (each symbol) of the same size for control IgG2a, 1A8,
control IgG2a + A. baumannii, and 1A8 + A. baumannii wounds. Data are given as the average of the results, and error bars denote standard deviations. ∗, #, φ

indicates higher levels than control IgG2a, 1A8, A. baumannii groups, respectively. For (A,C), P-value significance (P < 0.05) was calculated by ANOVA. Each
experiment was performed twice and similar results were obtained.

MAb 1A8 Administration Modifies
Cytokine Levels in Cutaneous Lesions
We measured the cytokine response in the tissue homogenates
of wounded mice incubated with A. baumannii after exposure
to mAb 1A8 (Figure 6). Homogenates of wounded mice treated
with either control IgG2a or 1A8 and infected with A. baumannii
showed no differences in TNF-α production (Figure 6A).
Wounded tissue of 1A8-treated-A. baumannii-infected animals
contained significantly lower quantities of IFN-γ relative to the
control IgG2a-treated-A. baumannii-infected groups 3 days post-
wounding (P = 0.0078; Figure 6B). On day 3 post-wounding,
IL-1β production was significantly increased in the 1A8-treated-
A. baumannii-infected group when compared to the control
group (P = 0.0204; Figure 6C). On day 7, the levels of IL-1β
were decreased in both groups as compared to day 3. Similarly,

there was a significant early increase in IL-6 production in 1A8-
treated group compared to control IgG2a group (P = 0.0002;
Figure 6D).

DISCUSSION

Acinetobacter baumannii is an opportunistic pathogen that
causes hospital-related infections, especially pneumonia and
sepsis, increasing morbidity and mortality (Karageorgopoulos
et al., 2008). A. baumannii gained notoriety as a major causative
agent of skin and soft tissue infections in soldiers injured in
combat, surgical wounds, and ulcers (Sebeny et al., 2008). This
bacterium has developed efficient mechanisms of drug resistance
against the most commonly prescribed antimicrobials, making
A. baumannii infections difficult to treat worldwide. Although
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FIGURE 4 | Neutropenic mice show high bacterial burden in superficial skin lesions. (A) Wound bacterial burden (CFU; colony forming units) in control
IgG2a and mAb 1A8-treated mice infected with 107 A. baumannii CFU. Three and seven days post-infection, infected skin tissue was removed from mice and
bacterial burden determined. Bars are the averages of the results for seven clinical isolates (each symbol represent a strain; n = 7), and error bars denote standard
deviations. Asterisks denote P-value significance (∗P < 0.05) calculated by student’s t-test analysis. This experiment was performed twice with similar results
obtained. (B) Histological analysis of Balb/c mice infected with A. baumannii 0057, days 3 and 7. Representative 20X (upper panel) and 40X (lower panel; magnified
black boxes in upper panel) H&E-stained sections of the skin lesions are shown with the insets representing Gram staining for A. baumannii cells (shown in pink-red
spots; lower panel). Scale bars: 20 μm.

progress has been made in understanding the causes and role
of innate immunity in A. baumannii-related pneumonia, little
is known about the cellular and molecular mechanisms of host
defense in the setting of cutaneous infections. Since multi-drug
resistant A. baumannii can colonize the skin, the frequency
of cutaneous infections have increased in recent years, and
neutrophils are an essential part of the initial immune response
against bacterial infections and tissue damage, we used mAb 1A8
to deplete these cells of innate immunity in mice and explored
their function on A. baumannii cutaneous infection.

Due to the variability in virulence between A. baumannii
isolates described in earlier studies (Eveillard et al., 2010; Jacobs
et al., 2014; Bruhn et al., 2015), we examined multiple strains
regarding pathogenesis and wound healing in the cutaneous
model. Although A. baumannii strain 1422, which has been
described as a strong biofilm former (Orsinger-Jacobsen et al.,
2013), was the only strain that showed hyper virulence correlating
high CFU numbers and increased wound size (data not shown),
on average, bacterial high density alone did not influence
A. baumannii cutaneous damage in control IgG2a or 1A8-
treated animals. These findings are in agreement with results

presented by other investigators demonstrating that differences in
virulence betweenA. baumannii strains are not only associated to
bacterial proliferation (Eveillard et al., 2010). Moreover, the fact
that neutrophil depletion allows the microbe to easily colonize
wounded tissue highlights the importance of these cells of the
innate immunity in controlling infections. Recently, Bruhn et al.
(2015) reported that A. baumannii virulence showed by distinct
strains may be determined by the ability of the organisms to evade
innate immune effectors resulting in high microbial numbers
established early after infection and progressing to septicemia.

Previously, Russo et al. (2008) described a rat soft-tissue
model to screenA. baumannii virulence factors and antimicrobial
reagents but the host response against this bacterium was not
investigated. Additionally, an excisional, murine A. baumannii
infection wound model comparable to our model was recently
described and used to investigateA. baumannii biofilm formation
and antibiotic efficacy (Thompson et al., 2014). In that model,
cyclophosphamide is used as a neutropenic agent to establish
an A. baumannii persistent infection. Yet, cyclophosphamide
also preferentially depletes suppressor or regulatory T cells
(Yasunami and Bach, 1988; Ghiringhelli et al., 2004) and
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FIGURE 5 | MAb 1A8 administration decreases cutaneous neutrophil infiltration. (A) IHC of MPO released by neutrophils in wounds removed from
A. baumannii-infected (control IgG2a + A. baumannii), and mAb 1A8-treated A. baumannii-infected (1A8 + A. baumannii) mice. MPO-specific mAb was used to
stain MPO (dark) released in skin tissue indicative of neutrophil infiltration. Inset shows restricted dermal accumulation of neutrophils. Representative 20X (upper
panel) and 40X (lower panel; magnified black boxes in upper panel) MPO-immunostained sections of the skin lesions are shown. Scale bars: 20 μm. (B) Number of
neutrophils per field in wounded skin tissue of control IgG2a + A. baumannii and 1A8 + A. baumannii animals. (C) MPO concentration in the supernatant of tissue
homogenates excised from control IgG2a- and mAb 1A8-treated A. baumannii-infected mice. (D) Superoxide (O2

− ) production was quantified by measurement of
SOD1 activity in tissue homogenates excised from control IgG2a + A. baumannii and 1A8 + A. baumannii mice. For (B–D), bars represent the mean values for
seven clinical isolates (each symbol); error bars denote standard deviations. Asterisks denote P-value significance (∗P < 0.05) calculated using student’s t-test
analysis. The experiments were performed twice with similar results obtained.

affects circulating macrophages (Santosuosso et al., 2002). The
advantage of using the mAb 1A8 over cyclophosphamide to
deplete neutrophils is that it acts preferentially on these cells
of innate immunity, making neutrophil function studies more
reliable. Nevertheless, cyclophosphamide, while not specific for
certain immune cells, is still a valuable model in understanding
A. baumannii pathogenesis (Lin et al., 2012; Manepalli et al.,
2013; Thompson et al., 2014).

Many studies used the anti-Gr-1 mAb RB6-8C5 as a
neutrophil-depleting agent. For example, RB6-8C5-induced
neutropenia in C57BL/6 and Balb/c mice prior to A. baumannii
pulmonary infection resulted in an acute lethal respiratory
disease that was associated with high A. baumannii burden
and systemic dissemination (van Faassen et al., 2007).
Nevertheless, the expression of Gr-1 on non-neutrophils
has raised concern regarding the use of RB6-8C5 to induce

neutropenia, as the results of studies that used this antibody
may be confounded by the unintended depletion of other
Gr-l-expressing cells. On the other hand, the mAb 1A8 binds
specifically to Ly-6G+ cells (Fleming et al., 1993), and its
administration has no impact on Gr-1-expressing cells (Daley
et al., 2008).

The importance of neutrophils in the response to
A. baumannii invasion in dermal tissue is not well established.
Neutrophils begin arriving at a tissue injury site within minutes,
in association with trauma or disruption in the integrity of
the skin barrier. These phagocytic cells orchestrate other cells
of the innate immune system, circulating through the body
and extravasating to sites of infection and injury where they
perform important roles in host defense. We showed that mAb
1A8 reduces the number of circulating neutrophils in the blood
of Balb/c mice using differential leukocyte counts and flow
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FIGURE 6 | Neutropenia altered pro-inflammatory cytokine production. Homogenates of extracted wounded tissue from control IgG2a + A. baumannii and
1A8 + A. baumannii mice, 3 and 7 days post-infection were prepared and the supernatants were analyzed for (A) TNF-α, (B) IFN-γ, (C) IL-1β, and (D) IL-6 levels.
Bars represent the mean values for seven clinical isolates (each symbol); error bars denote standard deviations. For (A–D), asterisks denote P-value significance
(∗P < 0.05) calculated using student’s t-test analysis. Cytokine quantification was performed thrice with similar results obtained.

cytometry. Likewise, IHC, neutrophil counts, and MPO levels
revealed that this antibody decreases neutrophil infiltration into
wounded tissue. Our results indicate that neutrophil deficiency
exacerbates A. baumannii infection. The reported short lifespan
of these cells, together with their potent antimicrobial functions,
have limited our understanding of their role in immunity to
that of effector cells. However, neutrophils also control adaptive
immune responses during acute and chronic microbial infections
(Sporri et al., 2008; Mantovani et al., 2011). For instance,
neutrophils play an important role regulating natural killer (NK)
cell maturation (Jaeger et al., 2012). NK cells are closely related
to neutrophils, playing a crucial role in host defense against
A. baumannii pulmonary infection (Tsuchiya et al., 2012). Also,
neutrophils are critical activators of NK cells in mice, acting
against Legionella pneumophila infection (Sporri et al., 2008).

We observed that 1A8-treated mice infected with
A. baumannii are subject to a higher bacterial burden than
controls. Histological analysis demonstrated that the presence
of high numbers of bacteria in 1A8-treated animals was due
to a reduction in neutrophil recruitment. Neutrophils are
potent effectors of the innate immune response and contribute
to protection in bacterial infections, including A. baumannii
pneumonia (van Faassen et al., 2007), through their direct
antimicrobial capacity and the production of cytokines and
chemokines that instruct the recruitment and activation of
other immune cells (Mantovani et al., 2011). We observed a
significant early decrease in the levels of IFN-γ in the cutaneous
tissue of 1A8-treated animals infected with A. baumannii;
this cytokine produced by NK cells is an important activator

of macrophages and inducer of MHC class II molecule
expression which are important to control infections caused
by extracellular microbes. Perhaps, the reduced production of
IFN-γ in neutropenic animals impairs the effector functions of
macrophages including phagocytosis, reactive oxygen species
synthesis, bacterial antigen processing, and presentation to T
cells interfering with the amplification of the immune response
resulting in delayed resolution of the bacteria from wounded
tissue.

TNF-α, a cytokine mostly produced by macrophages, was
found to be similarly secreted in control and neutropenic
mice. However, it is well-known that IL-1β regulates IL-6
production in human monocytes (Tosato and Jones, 1990).
Thus, high levels of IL-1β and IL-6 suggest that macrophages
supplemented the low number of neutrophils being unable
to successfully eliminate A. baumannii from skin tissue. This
is a plausible scenario because macrophages are important in
early host defense against A. baumannii infection through the
efficient phagocytosis and killing of the bacterium limiting its
replication (Qiu et al., 2012; Bruhn et al., 2015). A previous
study in our laboratory showed an increase in macrophage
recruitment to the lungs in mice treated with cyclophosphamide,
suggesting that the massive infiltration of these phagocytic cells
may compensate for the reduction of neutrophils early during
infection (Manepalli et al., 2013). In this regard, macrophages
express diverse pathogen pattern recognition molecules (e.g.,
Toll-like receptors) to identify and engulf microbes and
their derivatives (Steele et al., 2003; Qiu et al., 2012) being
capable of clearing a low inoculum of microbes without the
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recruitment of neutrophils (Marriott and Dockrell, 2007). In
addition, macrophages modulate microbial invasion by releasing
pro-inflammatory cytokines and depend on the action of
neutrophils to eliminate A. baumannii. This is also evinced by
the reduced production of superoxide, part of the antimicrobial
armamentarium of neutrophils. Also, A. baumannii possess a
superoxide dismutase that confers resistance against the toxic
effects of reactive oxygen species by effectively catalyzing the
conversion of superoxide radicals (• O2−) into hydrogen peroxide
and oxygen (Smith et al., 2007; Heindorf et al., 2014).

Previous studies of neutrophil function support both a
positive (Devalaraja et al., 2000) and a negative (Ashcroft et al.,
2000) role for these innate immune cells in wound healing.
We observed that neutropenia does not affect tissue repair in
uninfected animals but promotes late collagen expression and
deposition in injured tissue. However, during A. baumannii
infection, neutrophil-depletion delays wound healing since
mAb 1A8-treated C57BL/6 mice exhibited slower tissue repair
than control IgG2a-treated animals which could be possibly
explained by longer persistence of the bacteria in the wounds
of neutropenic animals. Surprisingly, neutropenic animals
displayed high collagen expression and content in wounded
cutaneous tissues. Neutrophils have been shown to produce
collagenases that degrade collagen in an early wound, so a lack of
neutrophils may directly result in increased ultimate quantitative
collagen content of wounds (Steed, 1997). Another intriguing
possibility is that an increase in macrophage recruitment and
function, favorable to healing, in tandem with the depletion
of neutrophils, accounts for the increased wound collagen

content observed in neutrophil-depleted mice.Macrophages have
proven to be key regulators of wound healing, with differential
effects at various stages of wound healing (Koh and DiPietro,
2011).

CONCLUSION

This is the first report that experimentally and specifically
studies the impact of neutrophils in controlling A. baumannii
cutaneous infection. MAb 1A8-induced neutropenia intensifies
A. baumannii-skin invasion and disease progression in vivo.
The depletion of neutrophils contributes to the higher bacterial
burden found in murine cutaneous lesions during A. baumannii
infection as well as delayed wound healing. Therefore, we hope
that this study can aid in clarifying the role of neutrophils in
regulating skin and soft tissue infections caused by A. baumannii.
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