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Abstract

Motivation: Transcriptional regulation mechanisms allow cells to adapt and respond to external stimuli by altering
gene expression. The possible cell transcriptional states are determined by the underlying gene regulatory network
(GRN), and reliably inferring such network would be invaluable to understand biological processes and disease
progression.

Results: In this article, we present a novel method for the inference of GRNs, called PORTIA, which is based on
robust precision matrix estimation, and we show that it positively compares with state-of-the-art methods while
being orders of magnitude faster. We extensively validated PORTIA using the DREAM and MERLINþP datasets as
benchmarks. In addition, we propose a novel scoring metric that builds on graph-theoretical concepts.

Availability and implementation: The code and instructions for data acquisition and full reproduction of our results
are available at https://github.com/AntoinePassemiers/PORTIA-Manuscript. PORTIA is available on PyPI as a Python
package (portia-grn).

Contact: moreau@esat.kuleuven.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptional regulation is a crucial mechanism that allows cells
to adapt to changing environmental conditions and respond to ex-
ternal stimuli (Sławek and Arod�z, 2013) by dynamically modulating
their gene expression. Transcription factors (TFs) play a central role
in this behaviour by regulating their own expression and the one of
their downstream target genes (TGs) (Aibar et al., 2017), effectively
constituting complex gene regulatory networks (GRNs) that under-
lie the possible transcriptional states of each cell (Aibar et al., 2017).
Although gene expression is also impacted by higher-level epige-
nomic regulation mechanisms (chromatin accessibility and DNA
methylation) (Klemm et al., 2019), TFs have the most relevant role.
For this reason, elucidating the structure of GRNs is crucial for
understanding both physiological cell processes and pathological
mechanisms (Ruyssinck et al., 2014). A deeper understanding of
GRNs could indeed open possibilities for the treatment of complex
diseases such as cancer (Plaisier et al., 2016; Chen et al., 2014).

Inferring GRNs from experimental gene expression data is a
non-trivial challenge that poses several major issues due to the noisi-
ness, scarcity and complexity of the available data (Gardner and
Faith, 2005) which cause the severe under-determination of the
problem (Ruyssinck et al., 2014). Moreover, gene expression data
are heterogeneous, since they can be acquired from different experi-
mental methods, such as (i) wild-type measurement (naturally occur-
ing expression levels), (ii) time series (multiple observations

obtained after initial perturbation of the system), (iii) multifactorial
perturbation data (simultaneous perturbation of multiple genes), or
from more controlled experiments such as (iv) transient gene knock-
downs (KD) and (v) homozygous gene knock-outs (KO). In the first
case, a gene’s expression is reduced through genetic techniques per-
formed at RNA level (e.g. RNAi). In knock-out experiments,
both copies of the same gene are made non-functional (e.g. through
non-sense mutations or null mutations that result in a complete loss-
of-function). Each type of experiment leads to data with certain
peculiarities. For example, time series allow causal analysis of
GRNs (Geurts et al., 2018), but are scarce and can suffer from de-
sign issues such as the need for cell synchronization over time (Bar-
Joseph et al., 2012). KO experiments are very informative as they
show how the intervention on a gene affects the rest of the network.
The causal relationship is captured using the so-called null-mutant
Z-score (Prill et al., 2010). However, such approach requires knock-
ing out each gene separately, making the whole procedure time-
consuming and expensive. KD experiments are less controlled than
the latter, since interventions are often performed at transcriptional
level. Finally, multifactorial data are the least expensive, as they
allow the study of multiple regulatory genes in parallel, but are less
informative than data collected through other techniques. KO, KD
and multifactorial data are all steady-state measurements obtained
after initial perturbation of the system.

Because of its complexity, the analysis of this data requires
algorithmic methods. Various computational methods for the
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reconstruction of GRNs have been proposed during the last decades.
They can roughly be categorized as follows: logical models, continu-
ous models, information-theoretic approaches and feature selection
methods based on machine learning models.

Logical models build upon Boolean functions to model the rela-
tion between genes (genes are either expressed or unexpressed), and
include Boolean probabilistic and stochastic networks (Kauffman,
1969; Shmulevich et al., 2002; Liang and Han, 2012) as well as
Petri nets (Heiner et al., 2012). Because discrete values are not suited
for modelling subtle variations in gene expression values, methods
including linear models (D’haeseleer et al., 1999; Gardner et al.,
2003; Yip et al., 2010), Bayesian networks (Friedman et al., 2000;
Perrin et al., 2003; Grzegorczyk and Husmeier, 2011), linear and
non-linear autoregressive models (Michailidis and d’Alch�e Buc,
2013), as well as models based on differential equations (Chen
et al., 1999; Kikuchi et al., 2003) have been proposed.

Correlations and mutual information (Stuart et al., 2003; Steuer
et al., 2002) have been used to quantify the statistical dependence
between genes, but predicting the GRN structure from correlation
matrices directly leads to the prediction of a large amount of false
positives. Therefore, more sophisticated approaches based on condi-
tional mutual information (Zhang et al., 2012) or on the maximum
relevance/minimum redundancy principle (Meyer et al., 2007) were
proposed. ARACNe (Margolin et al., 2006a,b) and ARACNe-AP
(Lachmann et al., 2016) rely on the data processing inequality to
discard spurious correlations from its predictions.

More recently, feature selection approaches based on Machine
Learning methods such as Random Forest (Breiman, 2001) or gradi-
ent boosting (Friedman, 2001) have been used. GENIE3 (Irrthum
et al., 2010) and its time-series-targeted variant dynGENIE3 (Geurts
et al., 2018) build on the former, while ENNET (Sławek and Arod�z,
2013) and GRNBoost (Aibar et al., 2017) on the latter. PLSNET
(Guo et al., 2016) and TIGRESS (Haury et al., 2012) rely instead on
partial least squares and least angle regression, respectively. Finally,
NIMEFI (Ruyssinck et al., 2014) generalizes the task of feature se-
lection by combining multiple models, like random forests, elastic-
net and support vector machines.

In this article, we describe PORTIA, a novel algorithm for GRN
inference based on power transforms and covariance matrix inver-
sion. In our vision, a key aspect of GRN inference is the need to dis-
entangle direct from indirect (e.g. transitive) correlations. Our work
has thus been conceptually inspired by Direct Coupling Analysis
methods used in the field of protein contact prediction (Jones et al.,
2012; Baldassi et al., 2014), but several major adaptations were ne-
cessary to transfer these concepts to the GRN inference task.

We benchmarked PORTIA on the widely used DREAM datasets,
as well as the more recent MERLINþP datasets, showing that it
competes very well with state-of-the-art models, while being orders
of magnitude faster. We also analysed the potential causes of its mis-
predictions, showing that beyond performance, the topology of
GRNs inferred by PORTIA differs from other methods. Finally, we
propose a novel and more informative scoring metric for the GRN
inference task, based on these graph-theoretical concepts. PORTIA
is freely available at: https://github.com/AntoinePassemiers/
PORTIA.

2 Materials and methods

2.1 Datasets
We benchmarked our method on GRN inference datasets provided
in the editions 3, 4 and 5 of the DREAM (Dialogue for Reverse
Engineering Assessments and Methods) challenge. All datasets are
available on the website https://www.synapse.org/ and are widely
used in literature as common benchmark within the GRN inference
community. In addition, we evaluated our method on the more re-
cent MERLIN-P datasets (Siahpirani and Roy, 2017).

From DREAM3, we considered the In Silico Size 100 dataset,
and we refer to it as DREAM3 for short. From DREAM4, we con-
sidered the In Silico Size 100 (we call it DREAM4 from now on)
and the In Silico Size 100 Multifactorial (called DREAM4MF)

datasets. Each of these datasets contains five different in silico gene
networks generated with GeneNetWeaver (Schaffter et al., 2011).
Except for DREAM4MF, the datasets comprise time series, gene
KO and gene KD experiments.

From the DREAM5 challenge, we adopted the Network
Inference Challenge dataset (called DREAM5 from now on), com-
posed of one in silico network generated with GeneNetWaver, as
well as two in vivo networks from Escherichia coli. and
Saccharomyces cerevisiae. Despite being two well-studied organ-
isms, the drawback of evaluating on these real networks is the
incompleteness of the experimentally determined regulatory interac-
tions. Inferred networks are being evaluated on these verified inter-
actions, even though they might constitute a subset of the actual
network. DREAM5 consists of a combination of multifactorial
data, sparse time series and very few KO experiments. It is worthy
of note that DREAM5 is the only DREAM challenge for which a list
of potential TFs was provided. Network sizes, as well as the number
of measurements and other statistics, are provided in Supplementary
Table S1.

We further validated PORTIA on datasets from the MERLINþP
study. Three types of yeast expression datasets are considered: nat-
ural variation (NatVar), knock-out (KO) and response to stress
(StressResp). Each of the GRNs inferred from these datasets was
evaluated with three different goldstandard networks (Siahpirani
and Roy, 2017). Finally, performance on two natural variation data-
sets from human lymphoblastoid cell lines (LCL) was assessed,
based on the same goldstandard network derived from regulator
perturbation data (Cusanovich et al., 2014).

2.2 PORTIA: a method for Gaussian modelling of GRNs
In this section, we describe PORTIA, our algorithm for GRN infer-
ence. The full pipeline is shown in Figure 1. We represent each target
dataset as a gene expression matrix X 2 R

n�m
þ composed of n ex-

pression measurements and m genes. For the DREAM5 and
MERLINþP datasets, a list L of potential TFs is provided. If such a
list is not available, we consider by default that every gene j is in L.
This is equivalent to assuming that the GRN can be any sub-graph
of the complete graph.

Gene expression levels generally have an asymmetric (skewed)
distribution, and are governed by non-linear regulatory relation-
ships. For this reason, Gaussian modelling might not be suitable, un-
less a prior non-linear transformation of the data is performed
beforehand. We thus processed the input data X by applying a
power transform on each gene (each column) individually, ensuring
that the relationship between gene expressions becomes more linear,
and the joint distribution more Gaussian-like. Namely, we assume
that the relationship between the expression of two genes i and j be-
fore processing is non-linear but monotonic [i.e. a positive change in
the expression of a TF always induces a positive (negative) change in
the expression of a TG if the sign of the regulatory relationship is
positive (negative), and vice versa.]. More specifically, each column
X�j is transformed using the Box–Cox transform (Box and Cox,
1964), a general-purpose (monotonic) power transform:

Yij ¼
X

kj

ij � 1

kj
if kj 6¼ 0

log Xij otherwise

8><
>:

(1)

where k is a parameter vector found by maximum likelihood estima-
tion. Power transforms are usually applied on each column of the
data matrix X independently. However, enforcing the marginals to
be Gaussian does not guarantee that the joint distribution will be
Gaussian too. For this reason, we propose an extension of our ap-
proach, called etePORTIA, that jointly optimizes the parameters of
the power transforms. We described it in Supplementary Material.

In vivo data usually contain more genes than experimental meas-
urements and thus the sample covariance matrix S is likely to be
rank-deficient. To overcome this problem, we perform a shrinkage
estimation of the covariance matrix. Let D ¼ I � S 2 R

m�m be a di-
agonal matrix, where I is the identity matrix and � the Hadamard
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product. Consequently, Djj corresponds to the variance in the ex-
pression levels of gene j. The shrinkage (Ledoit and Wolf, 2004) esti-
mator S ¼ aI � Sþ ð1� aÞS is a convex linear combination of
sparse matrix D and sample covariance matrix S. When S is well-
conditioned (with a sufficiently large), its inverse H (see end-result
of step 2 in Fig. 1) can be accurately estimated. We did not infer a
using the approach from Ledoit–Wolf (Ledoit and Wolf, 2004),
since our goal is to minimize quadratic risk on the precision matrix
instead of the covariance matrix. We used 0.8 in all of our experi-
ments, a value that is much greater than all a estimations found with
the Ledoit–Wolf method (<0.3 on the DREAM datasets).

As next step (third step in Fig. 1), we corrected the precision ma-
trix in order to remove gene-specific biases caused by the small sam-
ple size. The idea was pioneered in the context of protein contact
prediction and has been shown to be crucial for accurate reconstruc-
tion of protein contact maps. This step also turned out to play a
determining role in our own methodological developments.
Techniques include average product correction (Dunn et al., 2008) or
additive row-column weighting (Gouveia-Oliveira and Pedersen,
2007). We did not perform average product correction, to preserve
the interpretation of conditional independence in Gaussian Graphical
Models (Hi;j ¼ 0() yi?? yjjfyk 8k 62 fi; jgg): each zero entry in H
should remain zero after correction. Instead, we performed a multi-
plicative row-column weighting. Also, impossible regulatory links
were removed: a gene cannot regulate another gene if it is not listed
in L among the potential transcription factors. Let lðHi�Þ be the aver-
age of non-zero values in column Hi�. Rows corresponding to genes
that are not in L were discarded during the computations of H�j. The
corrected matrix M is thus computed as follows:

Mij ¼
2jHijj

lðjHi�jÞlðjH�jjÞ
if i 2 L

0 otherwise

8<
: (2)

2.3 Modelling edge directionality
Due to the undirected nature of Gaussian Graphical Models, the ap-
proach described in the previous section will a priori not perform well un-
less it is supplemented with directional information. For this reason, we
considered an additional step (fourth step in Fig. 1), using three sources
of directional information that do not impact the speed of the whole in-
ference process, namely the expression data itself, the list of potential TFs
and null-mutant Z-scores computed from KO experiments. However, all
these information might not necessarily be available in all contexts.

First, we re-weighted each score Mij with weight
Bij=maxðBij;BjiÞ, where Bij is the ith coefficient of linear regression
for the prediction of the jth gene’s expression. We propose a way to
solve the m linear regression problems in quadratic time, and pro-
vide the details in Supplementary Material.

In Equation 2, the relation between TF i and TG j is discarded if
i 62 L (where L is the list of TFs). Sidelining of such relations poses

an issue only if undiscovered TFs are missing from L. Precisely to
limit this risk in the framework of the DREAM5 challenge, sensitiv-
ity was privileged over specificity in the TF selection process.
Assuming there are no false negatives among potential TFs, L is a
great source of directional hints, as x% of regulatory links can be
discarded when L contains 1� x% of the total network size.

Another way of taking into account the directionality of regula-
tory relationships, is to rely on null-mutant Z-scores, similarly to the
method described in Greenfield et al. (2010). We propose to com-
pute these scores as follows:

Zij ¼
jXknockout

ij � ljj
rj

if KOs available for genes i and j

Z otherwise

8<
: (3)

where Z is the median of all Z-scores across all KO experiments,
Xknockout

i� are the expression levels for KO experiment of gene i, lj is
the average expression level of TG j across all KO experiments, and
rj the standard deviation obtained similarly. We discarded experi-
ments involving multiple knocked-out genes, to avoid dealing with
the ambiguity caused by these genes being confounders. When mul-
tiple KO experiments are available for the same TF, then Z-scores
are averaged across experiments. Calculation of these Z-scores is a
principled way of approximating the causal effect of a gene KO on
all other genes, since it quantifies the deviation of the expression
of all genes (but one) after KO from the background noise. Since
Z-scores, when they can be computed, are highly informative about
causal relationships in GRNs, we will also report their performance
as a standalone baseline method in the Section 3.

The final score matrix M predicted by PORTIA is obtained as
follows: Mij ¼MijZ

2
ij. We squared the elements in Z to attach a

higher degree of importance to the top scores derived from interven-
tional data. For low values in Z, interventional and observational
data have approximately equal importance. Because squaring is a
scale-dependent operation, Z is first L2-normalized.

Also, we performed a post-processing step on M, where each
row is multiplied by its standard deviation. This step is of great im-
portance as it allows high scores to stand out of the background
noise. Indeed, because GRNs are likely to be scale-free networks,
where most genes are regulated by a few hubs (Liu and Hu, 2019),
detecting these hubs would enable the accurate prediction of many
regulatory links at once. Therefore, we used standard deviation as a
proxy for the node centrality of these hub genes.

Finally, the sign of each regulatory link can be simply reported
as the sign of the corresponding element in the precision matrix.
Indeed, because genes are assumed to be co-expressed in a monoton-
ic manner, their expression correlates either positively or negatively.

2.4 Performance assessment
We used the DREAMTools Python package (Cokelaer et al., 2015)
to compare reconstructed networks to the goldstandard networks

Fig. 1. Illustrative summary of our methods. All gene expression data (multifactorial, time series, KO, KD, etc.) are concatenated as a single matrix X used to estimate a covari-

ance matrix S. The latter is ensured to be full-rank and its inverse is denoted by H. A correction step is performed to filter out gene-specific biases. Finally, directional informa-

tion is added in order to predict an asymmetric score matrix M. The adjacency matrix of the reconstructed network is obtained by setting a threshold for the scores in M
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from DREAM3 and DREAM4. With regard to DREAM5, recon-
structed networks were evaluated with the help of the MATLAB
script provided on the competition’s website. Finally, we measured
the performance on the MERLINþP datasets ourselves (the code is
available on our repository). For each dataset, the same overall score
metric was computed as follows (Marbach et al., 2012):

Overall score ¼ �1

2
log 10ðpAUROC pAUPRÞ (4)

where pAUROC and pAUPR are P-values obtained after computing the
AUROC and AUPR scores on 25 000 randomly generated networks.

Inferred networks are directed (in the sense that the direction of
the regulatory link is predicted), but evaluated regardless of the mode
of regulation, meaning that no consideration is given to whether a TF
enhances or inhibits the expression of regulated genes. We remind
that, however, PORTIA natively provides such information.

3 Results

In the following sections, we show the results of our method PORTIA
and its variant etePORTIA against state-of-the-art GRN inference
methods on four widely used datasets (see Methods) from past edi-
tions of the DREAM challenge, as well as the MERLINþP datasets.

3.1 PORTIA is the best performing on all DREAM

datasets except DREAM4MF
Table 1 shows the performance of PORTIA on the DREAM3 data-
set. etePORTIA has both higher AUPR and AUROC than any other
method on network 1, remains highly competitive for the other net-
works, and has the highest overall score. Since single-gene KO
experiments are provided in an exhaustive manner for both
DREAM3 and DREAM4, we reported also the performance of null-
mutant Z-scores described in Section 2.3 (which are already part of
PORTIA’s pipeline) as a separate baseline method for these datasets.
Interestingly, PORTIA and its end-to-end version barely improve
the baseline Z-score method on DREAM3. It might be suggested
that performance on this dataset is independent of the degree of
sophistication of the modelling, but rather mostly related to the
appropriate use of interventional data (ENNET, PORTIA and
etePORTIA, are all three based on KO-derived Z-scores).

DREAM4 results shown in Table 2 are similar to DREAM3, as
Z-scores alone exhibit good performance. However, we notice a sig-
nificant improvement of PORTIA and etePORTIA with respect to
Z-scores (þ28.956 and þ29.4, respectively). Overall, both versions
of PORTIA outperform all other approaches. Also, PORTIA and
etePORTIA have higher AUPRs and AUROCs than the state-of-the-
art on three out the five networks, while ENNET leads on the
remaining two ones. After the removal of KO experiments from the
datasets in DREAM3 and DREAM4, all methods are underperform-
ing as shown in the second-to-last column in Tables 1 and 2, also re-
vealing how some methods implicitly benefit from interventional
data (e.g. PLSNET, but mostly GENIE3). In both cases, TIGRESS is
performing the best (with 8.128 and 24.873 scores, respectively).

Table 3 reports the performance of each method on
DREAM4MF. Because of the absence of directional information
(e.g. TF list), and despite the theoretical ability of PORTIA to infer
asymmetric adjacency matrices, our method only outperforms
ARACNe-AP. On this dataset, GRN reconstruction performance
seem to strongly reflect the asymmetry of inferred GRNs, as shown
in Figure 2d. ENNET outperforms all other methods on three out of
the five networks, and has the highest overall score (52.543).
Overall, all methods have similar results, except ARACNe-AP which
produced the lowest score (17.520).

Table 4 summarizes results on the three networks of DREAM5.
Overall, PORTIA and etePORTIA outperform all methods on the
in vivo E.coli and S.cerevisiae networks, which constitue the hardest
problem instances. ENNET has the highest overall score (infinity)
due to an abnormally high contribution from the in silico network
(which mostly has to do with the way P-values are produced, based
on stretched exponentials). Results remain similar after the removal
of KO experiments.

3.2 PORTIA positively compares with other methods for

the reconstruction of GRNs from yeast and human

lymphoblastoid cell lines
Each multi-column reported in Table 5 corresponds to a separate
gene expression dataset. For the yeast datasets, metrics have been
averaged across the three available goldstandard networks. PORTIA
and etePORTIA have the highest overall scores (45.852 and 45.891,
respectively), and are only outperformed by TIGRESS on the gold-
standard network from Geuvadis for lymphoblastoid cell lines
(LCL), where TIGRESS is the only method producing networks bet-
ter than random. It must be noted that the strong differences be-
tween Niu’s and Geuvadis’ goldstandards in terms of performance
can very likely be attributed to the high sparsity and little agreement
between these networks (the underlying experiments involve differ-
ent TFs). Regardless, PORTIA is the only method that systematically
produced significant results on the three yeast datasets for each gold-
standard network (P-value < 0.01). AUROC, AUPR and P-value
are provided for each goldstandard network in Supplementary
Tables S9–S12. We attribute the overall low performance on these
datasets to the strong sparsity of goldstandard networks, giving little
room for evaluating the most confident predictions of each method,
and the inherent difficulty of the task: in vivo networks have com-
plex underlying mechanisms, and these mechanisms may be ideal-
ized when generating GRNs artificially (e.g. DREAM). However,
results on the MERLINþP and DREAM5 suggest that PORTIA is
able to provide more accurate reconstructions of GRNs when the
number of involved genes is very large.

3.3 PORTIA is orders of magnitude faster than existing

methods
Supplementary Tables S2 and S3 report the complexity and running
times of different GRN inference methods, including ours. All com-
putations were performed on an AMD EPYC processor with 16
cores and 64 GB RAM (CentOS 8). Despite its cubic complexity

Table 1. AUROC, AUPR and overall scores of different GRN inference methods, evaluated on the five networks from DREAM3

Method Net1 Net2 Net3 Net4 Net5 Overall score (no KO) Overall score

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

ARACNe-AP 0.021 0.563 0.030 0.555 0.039 0.581 0.056 0.530 0.065 0.513 2.475 2.975

GENIE3 0.019 0.602 0.014 0.552 0.021 0.532 0.037 0.491 0.060 0.514 0.574 1.289

PLSNET 0.018 0.541 0.029 0.526 0.044 0.674 0.065 0.576 0.071 0.517 2.742 4.835

TIGRESS 0.050 0.760 0.051 0.692 0.045 0.628 0.066 0.562 0.071 0.526 8.128 8.151

ENNET 0.382 0.887 0.593 0.926 0.347 0.866 0.273 0.770 0.236 0.684 5.372 78.413

Z-scores 0.692 0.913 0.854 0.963 0.576 0.887 0.508 0.847 0.445 0.788 — 142.938

PORTIA 0.726 0.956 0.826 0.986 0.512 0.888 0.507 0.873 0.385 0.798 3.492 144.029

etePORTIA 0.728 0.956 0.832 0.986 0.516 0.888 0.506 0.872 0.386 0.798 3.598 144.373
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(when L contains all m genes), it clearly appears that PORTIA is

orders of magnitude faster than other state-of-the-art methods. As
expected, the end-to-end version etePORTIA is comparatively
slower since the estimated covariance matrix has to be factorized at

each iteration until convergence is reached.

4 Discussion

4.1 A novel GRN inference evaluation metric based on

the underlying causal structures
The hypothesis behind PORTIA’s development is that GRN infer-
ence methods need to reliably filter out indirect correlations from

predicted relations, analogously to direct coupling-based protein
contact prediction methods (Dunn et al., 2008; Jones et al., 2012).
However, standard metrics like AUROC or AUPR are not sufficient
to fully characterize to what extent the disentanglement of direct
and indirect correlations occurs, especially when computed on the
whole gene network. Therefore, we looked at the causes of mispre-
dictions from a graph-theoretic perspective.

For each network, we categorised the false-positive (FP) cases
according to the causal structure of the sub-network wherein the
regulatory link is predicted. Next, we associated a relevance score
with each category and computed a metric reflecting the overall rele-
vance of the inferred network. In graphs illustrated in Figure 2b,
plain arrows correspond to existing relations in the goldstandard
and dashed arrows marked with a cross correspond to regulatory

Table 2. AUROC, AUPR and overall scores of different GRN inference methods, evaluated on the five networks from DREAM4

Method Net1 Net2 Net3 Net4 Net5 Overall score (no KO) Overall score

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

ARACNe-AP 0.052 0.614 0.073 0.601 0.096 0.630 0.063 0.614 0.080 0.650 10.086 10.934

GENIE3 0.105 0.835 0.101 0.766 0.182 0.821 0.113 0.807 0.128 0.821 1.840 32.307

PLSNET 0.055 0.765 0.058 0.704 0.083 0.740 0.073 0.746 0.059 0.712 10.046 17.057

TIGRESS 0.090 0.807 0.072 0.695 0.162 0.797 0.099 0.748 0.107 0.765 24.873 24.723

ENNET 0.462 0.894 0.384 0.853 0.455 0.880 0.418 0.867 0.312 0.853 23.886 80.753

Z-scores 0.407 0.898 0.357 0.806 0.383 0.818 0.318 0.838 0.141 0.769 — 64.296

PORTIA 0.613 0.932 0.504 0.890 0.438 0.869 0.472 0.888 0.292 0.840 13.271 93.252

etePORTIA 0.619 0.935 0.514 0.889 0.437 0.869 0.462 0.889 0.286 0.846 14.418 93.696

Table 3. AUROC, AUPR and overall scores of different GRN inference methods, evaluated on the five networks proposed in the DREAM4 in

silico network challenge, size 100 multifactorial networks

Method Net1 Net2 Net3 Net4 Net5 Overall score

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

ARACNe-AP 0.119 0.602 0.086 0.568 0.163 0.655 0.131 0.645 0.124 0.627 17.520

GENIE3 0.156 0.750 0.153 0.726 0.229 0.764 0.217 0.788 0.191 0.795 37.008

PLSNET 0.110 0.716 0.265 0.828 0.227 0.796 0.208 0.819 0.186 0.780 44.155

TIGRESS 0.159 0.751 0.156 0.698 0.228 0.765 0.214 0.779 0.224 0.755 36.426

ENNET 0.179 0.725 0.262 0.802 0.287 0.811 0.296 0.821 0.282 0.831 52.543

PORTIA 0.137 0.693 0.139 0.706 0.230 0.773 0.229 0.778 0.144 0.725 32.819

etePORTIA 0.138 0.706 0.151 0.704 0.237 0.774 0.230 0.778 0.155 0.729 34.050

Fig. 2. (a) Top scores predicted by PORTIA on networks from four different datasets. X-axis is the ranking of the gene pair, Y-axis is the score of the gene pair (in log-scale)

and the presence of a bar at position i indicates that reporting the corresponding ith pair as a regulatory link would result in a FP, and its colour indicates the causal structure

of the sub-network wherein the FP occurs, as illustrated in (b). (b) Colour legend for (a). (c) Average normalized discounted cumulative gain (NDCG) of each method on each

dataset, measured in percentage. (d) Matrix symmetry of the inferred and goldstandard networks from the DREAM4MF dataset
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relations that are (erroneously) present in the inferred network. We
grouped all possible cases into categories, sorted by decreasing order
of relevance:

• True positive: A gene directly regulates another gene.
• Chain: A gene indirectly regulates another gene.
• D-connected genes that fall in none of the two previous catego-

ries: The two genes are either part of a fork (they are indirectly

regulated by the same TF) or a reversed chain (indirect regulatory

relation predicted in the wrong direction)
• D-separated genes: This category is composed of colliders (2 TFs

regulating the same gene) and undirected links (remaining cases).

Two genes A and B are d-separated if there is no TF C regulating

both of them.
• Spurious, etc.: No indirect causal relationship can justify the

presence of a FP. We refer to spurious correlations as correla-

tions that cannot be attributed to anything causal, including in-

direct effects (forks, chains, etc.), regardless of the directionality

of regulatory links in the goldstandard networks. However, it is

likely that many FPs will fall in this category within in vivo net-

works (networks from DREAM5 and MERLINþP) due to the

fact that our knowledge of these networks is still incomplete.

We propose a variant of the Normalized Discounted
Cumulative Gain (NDCG), taking into account the relevance of
each prediction, as an evaluation metric for quantifying the
information content of a reconstructed GRN. Details about its im-
plementation are provided in Supplementary Materials. A ready-
to-use Python implementation of NDCG is available as part of the
portia-grn Python package. NDCG scores, averaged across all
networks in a same dataset, are reported in Figure 2c for each
dataset. It can be noted that PORTIA and its end-to-end variant
etePORTIA outperform other methods on DREAM3 (except the

baseline Z-scores), DREAM4, DREAM5 and all yeast goldstan-
dard networks from MERLINþP.

4.2 The causes of misprediction are dataset-dependent
Beyond NDCG scores, finer analysis reveals the different difficulties
that GRN inference tools are facing. The causal structures wherein
false positive (FPs) occur not only depend on the inference tool itself,
but also on the dataset, as shown in Figure 2a for PORTIA. Each bar
indicates a FP among the top-scoring predictions, and its colour
relates to the causal structure (given by panel b of the same figure)
that is the most likely to justify the presence of such FP. On
DREAM3, most of the top-scoring gene pairs resulting in FPs occur
in regulatory chains. Indeed, the incorporation of interventional data
allows PORTIA to discard confounding effects and mostly report
meaningful causal relationships. However, KO experiments do not
allow to disentangle direct causal relationships from chains. Such bar
plot is not shown for DREAM4, as it strongly resembles what has
been observed for DREAM3. The dataset on which PORTIA produ-
ces the highest proportion of reversed chains (genes at the ends of a
regulatory chain inferred in the wrong direction) is DREAM4MF, re-
vealing the difficulty of the method at inferring the correct direction
of regulatory links, even among its highest-scoring pairs. Overall, a
large proportion of FPs is explained by the presence of forks. Indeed,
two genes that are d-connected are expected to show a correlation,
which can be attributed to a common TF. Causal structures are less
consistent on the MERLINþP datasets, which is mostly due to the
strong sparsity of the experimentally verified interactions. The FP
counts for each causal structure, GRN inference method and network
have been reported in Supplementary Tables S4–S8.

4.3 Interventional data better contribute to the accurate

reconstruction of GRNs than observational data
Causal relationships cannot be inferred from observations alone,
and require either assumptions or additional information

Table 5. ROC-AUC scores of different GRN inference methods on three yeast expression datasets and an LCL dataset from MERLIN-P, eval-

uated on three and two goldstandard networks, respectively

Method LCL (Niu) LCL (Geuvadis) NatVar (Average) KO (Average) Stress (Average) Overall score

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

ARACNe-AP 0.137 0.503 0.134 0.493 0.034 0.578 0.019 0.521 0.022 0.548 3.687

GENIE3 0.125 0.482 0.137 0.501 0.015 0.481 0.016 0.506 0.016 0.502 0.323

PLSNET 0.130 0.484 0.118 0.468 0.033 0.523 0.015 0.488 0.019 0.514 14.977

TIGRESS 0.138 0.500 0.150 0.520 0.020 0.498 0.020 0.520 0.015 0.497 1.587

ENNET 0.128 0.491 0.128 0.483 0.037 0.569 0.024 0.521 0.028 0.536 17.463

PORTIA 0.140 0.502 0.141 0.502 0.110 0.657 0.029 0.552 0.031 0.559 45.852

etePORTIA 0.140 0.509 0.140 0.505 0.111 0.660 0.028 0.552 0.031 0.559 45.891

Table 4. AUROC, AUPR and overall scores of different GRN inference methods, evaluated on the three networks proposed in the DREAM5

GRN inference sub-challenge

Method In silico E.coli S.cerevisiae Overall score (no KO) Overall score

AUPR AUROC AUPR AUROC AUPR AUROC

ARACNe-AP 0.174 0.682 0.056 0.566 0.020 0.516 0.418 1.723

GENIE3 0.288 0.812 0.096 0.620 0.021 0.518 0.000 39.304

PLSNET 0.238 0.853 0.043 0.569 0.020 0.514 34.251 37.972

TIGRESS 0.307 0.781 0.067 0.592 0.020 0.514 33.914 31.803

ENNET 0.438 0.848 0.054 0.608 0.019 0.512 65.948 >300

PORTIA 0.383 0.822 0.110 0.620 0.028 0.537 41.691 75.425

etePORTIA 0.385 0.822 0.110 0.620 0.028 0.536 43.143 76.374
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collected through interventions (Pearl, 2009). From the perspec-
tive of causal calculus, gene KO experiments are valuable inter-
ventions as they allow sampling from PðXj doðX�j ¼ 0ÞÞ, and null-
mutant Z-scores are simple approximations of how dissimilar
this distribution is from P(X). Expressions containing the doð�Þ
operator are used to formalize causal relationships, but they can
be evaluated only with the aid of experimental interventions,
such as null mutations (complete loss-of-function of a gene). In
particular, doðX�j ¼ 0ÞÞ refers to gene j not being expressed due
to a KO mutation.

To empirically show the relevance of KO data, we removed it
from the datasets, when applicable. Overall scores were reported for
DREAM3, DREAM4 and DREAM5 as an extra column in
Tables 1, 2 and 4, respectively. In addition, full performance com-
parison with AUPRs and AUROCs is shown in Supplementary
Tables S13–S15. A strong loss of performance was noted for
PORTIA, etePORTIA, GENIE3 and ENNET on DREAM3 and
DREAM4. Surprisingly, we even observed a loss of 44.7% of the
overall score on DREAM5 (from 75.425 to 41.691) for PORTIA,
despite the fact that single-gene KOs were given for only 1.1% of
the genes on average. The significant performance drop of ENNET
can also be attributed to its modelling, as it also relies on Z-scores.
What is even more striking is the catastrophic performance loss of
GENIE3 (from 39.304 to 0), notwithstanding the absence of explicit
modelling of KO data. GENIE3 exhibits the same behaviour on
DREAM3 (1.289–0.574) and DREAM4 (32.307–1.840). This
shows the importance of interventional data in the discovery of
causal relationships, even when such data are sparse, and even when
their modelling is implicit.

Finally, a slight improvement of TIGRESS can be systematically
observed after removal of KO data, from 8.151 to 8.128 on
DREAM3, from 24.723 to 24.873 on DREAM4 and from 31.803 to
33.914 on DREAM5. TIGRESS outperforms PORTIA in such settings
on DREAM3 and DREAM4, however, this poses questions about the
scalability of its accuracy with respect to the availability of interven-
tional data. Indeed, the performance of GRN inference tools can rea-
sonably be expected to scale with the elucidation of real networks.

5 Conclusion

In this article, we presented PORTIA, a fast and accurate tool
devised for inferring GRNs from heterogeneous gene expression
datasets. Our method positively compares with state-of-the-art
approaches, while being at least one order of magnitude faster. In
addition, we proposed a novel scoring metric for the evaluation of
inferred GRNs, based on the local causal structures in the gold-
standard networks, thus re-weighting false positives based on their
severity. This metric, which is a variant of the normalized dis-
counted cumulative gain, better captures the directionality and lev-
els of indirection of predicted regulatory relationships than
general-purpose metrics like AUROC or AUPR. Finally, we high-
light the explicit (e.g. ENNET, PORTIA) and implicit (e.g.
GENIE3, PLSNET) dependence of GRN inference tools on KO
experiments, suggesting that the performance of some methods
(e.g. GENIE3) is not solely driven by the sophistication of their
modelling.

Acknowledgements

A.P. is grateful to Th�eo Verhelst for the insightful discussion about graphical

causal models. D.R. is grateful to Peter Watts and his Echopraxia novel for

the inspiration (ISBN: 1629238899).

Funding

A.P. was funded through an FWO (Fonds Wetenschappelijk Onderzoek) doc-

toral fellowship, with project number 1SB2721N. D.R. was funded by an

FWO post-doctoral fellowship.

Conflict of Interest: none declared.

References

Aibar,S. et al. (2017) Scenic: single-cell regulatory network inference and clus-

tering. Nat. Methods, 14, 1083–1086.

Baldassi,C. et al. (2014) Fast and accurate multivariate Gaussian modeling of

protein families: predicting residue contacts and protein-interaction part-

ners. PLoS One, 9, e92721.

Bar-Joseph,Z. et al. (2012) Studying and modelling dynamic biological proc-

esses using time-series gene expression data. Nat. Rev. Genet., 13, 552–564.

Box,G.E. and Cox,D.R. (1964) An analysis of transformations. J. R. Stat. Soc.

Ser. B (Methodological), 26, 211–243.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Chen,T. et al. (1999) Modeling gene expression with differential equations. In:

Biocomputing’99. World Scientific, pp. 29–40.

Chen,J.C. et al. (2014) Identification of causal genetic drivers of human disease

through systems-level analysis of regulatory networks. Cell, 159, 402–414.

Cokelaer,T. et al. (2015) Dreamtools: a python package for scoring collabora-

tive challenges [version 1; peer review: 3 approved with reservations].

F1000Research, 4, 1030.

Cusanovich,D.A. et al. (2014) The functional consequences of variation in

transcription factor binding. PLoS Genet., 10, e1004226.

D’haeseleer,P. et al. (1999) Linear modeling of mRNA expression levels during

CNS development and injury. In: Biocomputing’99. World Scientific,

pp. 41–52.

Dunn,S.D. et al. (2008) Mutual information without the influence of phyl-

ogeny or entropy dramatically improves residue contact prediction.

Bioinformatics, 24, 333–340.

Friedman,J.H. (2001) Greedy function approximation: a gradient boosting

machine. Ann. Stat., 29, 1189–1232.

Friedman,N. et al. (2000) Using Bayesian networks to analyze expression

data. J. Comput. Biol., 7, 601–620.

Gardner,T.S. and Faith,J.J. (2005) Reverse-engineering transcription control

networks. Phys. Life Rev., 2, 65–88.

Gardner,T.S. et al. (2003) Inferring genetic networks and identifying com-

pound mode of action via expression profiling. Science, 301, 102–105.

Geurts,P. et al. (2018) dyngenie3: dynamical genie3 for the inference of gene

networks from time series expression data. Sci. Rep., 8, 1–12.

Gouveia-Oliveira,R. and Pedersen,A.G. (2007) Finding coevolving amino acid

residues using row and column weighting of mutual information and

multi-dimensional amino acid representation. Algorithms Mol. Biol., 2,

12–12.

Greenfield,A. et al. (2010) Dream4: combining genetic and dynamic informa-

tion to identify biological networks and dynamical models. PLoS One, 5,

e13397.

Grzegorczyk,M. and Husmeier,D. (2011) Improvements in the reconstruction

of time-varying gene regulatory networks: dynamic programming and regu-

larization by information sharing among genes. Bioinformatics, 27,

693–699.

Guo,S. et al. (2016) Gene regulatory network inference using PLS-based meth-

ods. BMC Bioinformatics, 17, 1–10.

Haury,A.-C. et al. (2012) Tigress: trustful inference of gene regulation using

stability selection. BMC Syst. Biol., 6, 1–17.

Heiner,M. et al. (2012) Snoopy – a unifying Petri net tool. In: Application and

Theory of Petri Nets. Springer, Berlin, Heidelberg, pp. 398–407.

Irrthum,A. et al. (2010) Inferring regulatory networks from expression data

using tree-based methods. PLoS One, 5, e12776.

Jones,D.T. et al. (2012) Psicov: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments.

Bioinformatics, 28, 184–190.

Kauffman,S. (1969) Homeostasis and differentiation in random genetic con-

trol networks. Nature, 224, 177–178.

Kikuchi,S. et al. (2003) Dynamic modeling of genetic networks using genetic

algorithm and s-system. Bioinformatics, 19, 643–650.

Klemm,S.L. et al. (2019) Chromatin accessibility and the regulatory epige-

nome. Nat. Rev. Genet., 20, 207–220.

Lachmann,A. et al. (2016) ARACNe-AP: gene network reverse engineering

through adaptive partitioning inference of mutual information.

Bioinformatics, 32, 2233–2235.

Ledoit,O. and Wolf,M. (2004) A well-conditioned estimator for

large-dimensional covariance matrices. J. Multivariate Anal., 88, 365–411.

Liang,J. and Han,J. (2012) Stochastic Boolean networks: an efficient approach

to modeling gene regulatory networks. BMC Syst. Biol., 6, 1–21.

Liu,Z. and Hu,W. (2019) FSM: a fast similarity measurement for gene regula-

tory networks via genes’ influence power. In: IJCAI, pp. 4547–4553.

2808 A.Passemiers et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac178#supplementary-data


Marbach,D. et al.; DREAM5 Consortium. (2012) Wisdom of crowds for ro-

bust gene network inference. Nat. Methods, 9, 796–804.

Margolin,A.A. et al. (2006a). Aracne: an algorithm for the reconstruction of

gene regulatory networks in a mammalian cellular context. BMC

Bioinformatics, 7, 1–15.

Margolin,A.A. et al. (2006b) Reverse engineering cellular networks. Nat.

Protoc., 1, 662–671.

Meyer,P.E. et al. (2007) Information-theoretic inference of large transcription-

al regulatory networks. EURASIP J. Bioinf. Syst. Biol., 2007, 1–9.

Michailidis,G. and d’Alch�e-Buc,F. (2013) Autoregressive models for gene

regulatory network inference: sparsity, stability and causality issues. Math.

Biosci., 246, 326–334.

Pearl,J. (2009) Causality. Cambridge University Press. Cambridge, England.

Perrin,B.-E. et al. (2003) Gene networks inference using dynamic Bayesian net-

works. Bioinformatics, 19, ii138–ii148.

Plaisier,C.L. et al. (2016) Causal mechanistic regulatory network for glioblastoma

deciphered using systems genetics network analysis. Cell Syst., 3, 172–186.

Prill,R.J. et al. (2010) Towards a rigorous assessment of systems biology mod-

els: the dream3 challenges. PLoS One, 5, e9202.

Ruyssinck,J. et al. (2014) Nimefi: gene regulatory network inference using

multiple ensemble feature importance algorithms. PLoS One, 9, e92709.

Schaffter,T. et al. (2011) Genenetweaver: in silico benchmark generation and

performance profiling of network inference methods. Bioinformatics, 27,

2263–2270.

Shmulevich,I. et al. (2002) Probabilistic Boolean networks: a rule-based uncer-

tainty model for gene regulatory networks. Bioinformatics, 18, 261–274.

Siahpirani,A.F. and Roy,S. (2017) A prior-based integrative framework for

functional transcriptional regulatory network inference. Nucleic Acids Res.,

45, e21.

Sławek,J. and Arod�z,T. (2013) Ennet: inferring large gene regulatory

networks from expression data using gradient boosting. BMC Syst. Biol., 7,

1–13.

Steuer,R. et al. (2002) The mutual information: detecting and evaluating

dependencies between variables. Bioinformatics, 18, S231–S240.

Stuart,J.M. et al. (2003) A gene-coexpression network for global discovery of

conserved genetic modules. Science, 302, 249–255.

Yip,K.Y. et al. (2010) Improved reconstruction of in silico gene regulatory

networks by integrating knockout and perturbation data. PLoS One, 5,

e8121.

Zhang,X. et al. (2012) Inferring gene regulatory networks from gene expres-

sion data by path consistency algorithm based on conditional mutual infor-

mation. Bioinformatics, 28, 98–104.

Fast and accurate inference of gene regulatory networks 2809


