
Sirtuin deacetylases in neurodegenerative diseases of aging
746

npg

 Cell Research | Vol 23 No 6 | June 2013

REVIEW
npgCell Research (2013) 23:746-758.

© 2013 IBCB, SIBS, CAS    All rights reserved 1001-0602/13  
www.nature.com/cr

Sirtuin deacetylases in neurodegenerative diseases of aging
Adrianna Z Herskovits1, 2, Leonard Guarente2

1Department of Pathology, Brigham and Women’s Hospital, 75 Francis St., Boston, MA 02115, USA; 2Department of Biology, Mas-
sachusetts Institute of Technology, 77 Massachusetts Avenue, 68-280 Cambridge, MA 02139, USA

Sirtuin enzymes are a family of highly conserved protein deacetylases that depend on nicotinamide adenine dinu-
cleotide (NAD+) for their activity. There are seven sirtuins in mammals and these proteins have been linked with ca-
loric restriction and aging by modulating energy metabolism, genomic stability and stress resistance. Sirtuin enzymes 
are potential therapeutic targets in a variety of human diseases including cancer, diabetes, inflammatory disorders 
and neurodegenerative disease. Modulation of sirtuin activity has been shown to impact the course of several aggre-
gate-forming neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, 
amyotrophic lateral sclerosis and spinal and bulbar muscular atrophy. Sirtuins can influence the progression of neu-
rodegenerative disorders by modulating transcription factor activity and directly deacetylating proteotoxic species. 
Here, we describe sirtuin protein targets in several aggregate-forming neurodegenerative diseases and discuss the 
therapeutic potential of compounds that modulate sirtuin activity in these disorders.
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Introduction

Silent Information Regulator 2 (Sir2) proteins, also 
known as sirtuins, were originally identified as genetic 
silencing factors [1, 2] and were later found to prolong 
lifespan in yeast [3, 4]. Sir2 is a deacetylase that acts 
on histones and other proteins in the presence of nico-
tinamide adenine dinucleotide (NAD+) [5] and it also 
possesses mono-ADP-ribosyltransferase activity [6], 
functions that are conserved in eukaryotic organisms 
[7]. NAD-dependent deacetylation by sirtuins was later 
linked with caloric restriction and aging in several organ-
isms [4, 8]. These findings have launched a new field 
within the discipline of biology with an increasing num-
ber of laboratories devoted to studying the role of mam-
malian sirtuins during normal cellular senescence and in 
aging-related diseases [9].

In mammals, there are seven members of the sirtuin 
family and they have been associated with protection 
against diseases of aging by a variety of mechanisms 

such as regulation of stress response, apoptosis and DNA 
repair [10-14]. Sirtuins are categorized as class III his-
tone deacetylases (HDACs); however, it is worth noting 
that not all sirtuin substrates are histones and several 
members of this protein family do not have deacetylase 
activity [15, 16]. Phylogenetic analysis suggests that 
HDACs evolved before histones and a major function 
of these enzymes is the deacetylation of non-histone 
substrates [15, 16]. Some researchers have proposed that 
sirtuins should be renamed NAD-dependent deacylases 
to reflect the repertoire of enzymatic activities performed 
by these proteins [17]. 

Based on sequence similarity, the sirtuins from eubac-
teria, archaea and eukaryotes are categorized into five 
groups that have varied enzymatic activities [18]. Class I 
sirtuins (SIRT1, SIRT2, and SIRT3) have robust deacety-
lase activity in the presence of NAD+ [19], whereas 
Class II sirtuins (SIRT4) have ADP-ribosyltransferase 
activity [20]. Class III sirtuins (SIRT5) have NAD-
dependent demalonylase and desuccinylase activities in 
addition to deacetylase activity [19, 21, 22]. The class IV 
sirtuins (SIRT6 and SIRT7) are deacetylase enzymes that 
may be weaker and more substrate-specific than the class 
I deacetylases in vitro [19, 23-27], and SIRT6 has also 
been shown to have ADP-ribosyltransferase activity [23-
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25]. A fifth group of sirtuins, class U, has been identified 
in bacteria and is phylogenetically intermediate between 
class I and class IV sirtuins [18]. 

The seven mammalian sirtuins have different sub-
cellular localizations, a significant consideration when 
evaluating their in vivo substrates. SIRT1 is generally 
thought to have a nuclear localization, although cytoplas-
mic SIRT1 has also been reported and may be associated 
with apoptosis, differentiation and oncogenic transfor-
mation [28-32]. SIRT2 is a predominantly cytoplasmic 
protein that has been shown to deacetylate tubulin, but 
may also shuttle to the nucleus where it functions as a 
mitotic checkpoint protein [33, 34]. SIRT3, SIRT4 and 
SIRT5 are localized to the mitochondria, but have dif-
ferent enzymatic activities [19, 20, 22, 35]. SIRT6 is a 
chromatin-associated nuclear protein [24, 25], and SIRT7 
is localized to nucleoli [36]. The subcellular localizations 
and enzymatic activities for the mammalian sirtuins are 
diagrammed in Figure 1.

Over the past few years, sirtuins have been explored 
in Alzheimer’s disease, Parkinson’s disease, Hunting-
ton’s disease, amyotrophic lateral sclerosis and spinal 
and bulbar muscular atrophy by a variety of techniques 
including in vitro assays, cell culture, animal models of 
neurodegenerative disease and studies of human tissue. 
In this review, we will summarize recent findings in sir-
tuin neurobiology, highlight the mechanism of action for 
sirtuins in these neurodegenerative disorders, and discuss 
the therapeutic potential of compounds that modulate sir-
tuin activity. 

Alzheimer’s disease

Alzheimer disease (AD) is the most common neuro-
degenerative disorder, affecting nearly half of all people 
over the age of eighty five [37]. AD is genetically het-
erogeneous and has been linked with mutations in genes 
encoding amyloid precursor protein (APP), presenilin 1 
(PS1) and presenilin 2 (PS2) as well as the ε4 allele of 
apolipoprotein E. Amyloid precursor protein cleavage by 
the β- and γ-secretase complexes leads to the formation 
of amyloid-β (Aβ) peptides that can aggregate and form 
amyloid plaques. Amyloid plaques and neurofibrillary 
tangles comprising hyperphosphorylated tau protein are 
the pathologic hallmarks of the human disease. Current 
treatments are not curative; therefore, the validation of 
new therapeutic targets is crucial [38].

The initial clues that modulation of sirtuin activity 
might affect AD pathology came from studies reporting 
that a sirtuin agonist, resveratrol, was able to attenuate 
cell death induced by Aβ and oxidized lipoproteins in 
cell culture models [39-41]. These cell culture findings 

were confirmed in several subsequent studies [42, 43] 
and resveratrol was found to enhance proteasome-me-
diated clearance of Aβ [44]. Several studies examining 
the effect of resveratrol in vivo found that this compound 
reduced the plaque burden in the brains of transgenic 
mice overexpressing APP [45, 46]. The topic of whether 
resveratrol specifically modulates sirtuin activity via a 
direct or indirect mechanism that also involves AMP ki-
nase (AMPK), phosphoinositide 3-kinase (PI3K) or other 
targets is controversial [47-53]. Several studies have also 
reported that resveratrol only potentiates SIRT1 activity 
in the presence of a fluorescent moiety that is used for in 
vitro pharmacologic screens [49, 54, 55]. A more recent 

Figure 1 Subcellular localization and function of the mammalian 
sirtuins. The seven sirtuins are categorized into four groups 
based on their sequence homology, and these proteins have 
varied enzymatic activities and subcellular localizations [18]. 
Class I sirtuins (SIRT1, SIRT2, and SIRT3) are depicted with 
red text. These proteins have robust deacetylase activity in the 
presence of NAD+ [19]. SIRT1 is generally thought to have a 
nuclear localization, although cytoplasmic SIRT1 has also been 
reported in neurons and other cell types [28-32], SIRT2 is a pre-
dominantly cytoplasmic protein that may shuttle to the nucleus 
[33, 34] and SIRT3 is a mitochondrial protein [35]. The class II 
sirtuin (SIRT4) is highlighted in brown. This protein has ADP-
ribosyltransferase activity and is also a mitochondrial protein 
[20]. The class III sirtuin (SIRT5) is depicted in blue and this 
mitochondrial enzyme has NAD-dependent demalonylase and 
desuccinylase activities in addition to a weaker deacetylase ac-
tivity [19, 21, 22]. The class IV sirtuins (SIRT6 and SIRT7) are 
in green text. SIRT6 is a nuclear protein with weak deacetylase 
activity and ADP-ribosyltransferase activity [23-25], and SIRT7 
is localized to nucleoli and it has deacetylase activity [19, 26, 
27]. 
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paper suggests that resveratrol activates SIRT1 activity 
via an allosteric mechanism and the fluorescent tag used 
in in vitro assays mimics large hydrophobic residues 
present at positions -1 and -6 of substrates including 
PGC-1α and Foxo3a [56]. Therefore, in addition to drug 
studies, it is important to also use genetic strategies with 
concomitant evaluation of downstream targets to evalu-
ate whether modulation of sirtuin pathways can account 
for a specific biological phenotype. 

In 2005, a study directly linked neuroprotection with 
SIRT1 expression by using lentiviral-mediated overex-
pression, and protection from Aβ-induced neurotoxicity 
was observed in mixed cortical culture models [57]. The 
proposed mechanism was that SIRT1 and resveratrol re-
duced Aβ-stimulated NF-κB signaling in microglia. The 
following year, a second group confirmed that SIRT1 is 
neuroprotective in Aβ models of AD using a combination 
of cell culture systems and murine models. They found 
that neuronal SIRT1 expression decreased levels of 
ROCK1, a serine/threonine Rho kinase previously shown 
to regulate Aβ metabolism, and this effect enhanced 
α-secretase activity, thus promoting a non-amyloidogenic 
pathway for processing APP [14, 58]. 

Additional in vivo evidence that SIRT1 may amelio-
rate Aβ pathology was established in the APP/PS1 model 
of AD. In this model, overexpression of SIRT1 decreased 
plaque burden, improved behavioral phenotypes and po-
tentiated α-secretase-mediated processing by deacetylat-
ing retinoic acid receptor β, a transcriptional activator of 
ADAM10. ADAM10 is a component of the α-secretase, 
which processes APP along an anti-amyloidogenic path-
way that decreases formation of toxic Aβ42 species [59]. 

Tau pathology is a major aspect of Alzheimer’s dis-
ease pathology and neurofibrillary tangles distribution 
correlates with cognitive impairment in patients [60]. 
The first study exploring the effect of SIRT1 on neuro-
degenerative changes in a mouse model that exhibits tau 
pathology was published in 2007 [13]. This study used 
resveratrol and lentiviral-mediated SIRT1 overexpression 
in cell culture models and the p25 mouse model of AD, 
a transgenic line that recapitulates additional aspects of 
AD including hyperphosphorylated tau protein, neurofi-
brillary pathology and neuronal loss [61]. This paper re-
ported behavioral effects including reduced learning im-
pairment and molecular changes such as deacetylation of 
PGC-1α and p53 in the presence of active SIRT1, but the 
effect on tau and amyloid processing was not explored 
[13]. 

A subsequent study using the sirtuin inhibitor nicoti-
namide found that tau phosphorylation is ameliorated in 
a triple transgenic model of AD. Neuroprotection by a 
sirtuin inhibitor may have been due to the use of a com-

pound that affects multiple sirtuins in a mouse model 
that displays both tau and amyloid pathologies simulta-
neously [12]. Levels of acetylated α-tubulin increased in 
this study; therefore, the protective effect of nicotinamide 
may have been partially due to inhibition of SIRT2 [12]. 

Subsequent work by a third group of researchers has 
found that SIRT1 deletion causes increased tau acetyla-
tion, phosphorylation, cognitive defects and early mor-
tality in the P301L tau mouse model [62, 63]. These ob-
servations are supported by in vitro and neuronal culture 
data indicating that SIRT1 can directly deacetylate tau 
protein at multiple residues. Studies on human tissue also 
indicate that tau is acetylated at an early stage during the 
disease process in patients. The mechanism proposed 
by these investigators is that removal of acetyl groups 
may expose lysine residues to ubiquitin ligases so that 
tau protein could be marked for proteasomal degradation 
[62, 64]. Major mechanisms that have been proposed for 
SIRT1 in Alzheimer’s disease pathogenesis are summa-
rized in Figure 2.

Although these preclinical studies provide compelling 
evidence that SIRT1 and resveratrol may influence both 
Aβ and neurofibrillary tau pathology in cell culture and 
animal models, the crucial test will be whether there is 
a clinical benefit for patients with AD. There are several 
ongoing or recently completed clinical trials that may 
address this issue by testing various formulations of res-
veratrol in AD patients. A phase II double blind, placebo-
controlled trial sponsored by the Alzheimer’s Disease 
Cooperative Study is currently recruiting patients with 
mild-to-moderate dementia who will be treated for 12 
months with resveratrol or placebo. Evaluation using 
brain imaging and cerebrospinal fluid biomarkers are pri-
mary outcomes [65]. In addition, the Department of Vet-
eran’s Affairs is sponsoring a phase III trial to investigate 
the effects of resveratrol in combination with glucose and 
malate over 12 months in AD patients using cognitive 
testing as a primary outcome [66]. A third study evalu-
ates the use of Etanercept, an anti-inflammatory agent 
that inhibits TNF-α, in combination with nutritional 
supplements including resveratrol, versus the nutritional 
supplements alone over a period of 6 weeks using cogni-
tive testing as the primary outcome [67]. These clinical 
trials are an important first step in evaluating the safety 
and efficacy of targeting this pathway in human popula-
tions. 

Parkinson’s disease

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, affecting 1% of the popula-
tion over 60 years of age in industrialized countries [68]. 
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PD is a movement disorder causing tremor, rigidity, 
bradykinesia and postural instability; however, cognitive 
and behavioral changes including sleep impairments, 
olfactory deficits and neuropsychiatric disorders can also 

manifest [69]. Neuropathologic analysis shows a sub-
stantial loss of dopaminergic neurons in the substantia 
nigra and accumulation of intracytoplasmic Lewy bod-
ies, inclusions that contain α-synuclein and ubiquitin [69]. 

Figure 2 Mechanisms of activity for sirtuins in Alzheimer’s disease. In vitro and neuronal culture data show that SIRT1 can 
directly deacetylate tau protein at multiple residues [62-64]. The mechanism proposed by these investigators is that removal 
of acetyl groups may expose lysine residues to ubiquitin ligases so that tau protein is marked for proteasomal degradation 
[62, 63]. This process decreases accumulation of hyperphosphorylated PHF tau, cognitive defects and early mortality in the 
P301L tau mouse model [62, 63]. Overexpression of SIRT1 has also been shown to decrease plaque burden and improve be-
havioral phenotypes by deacetylating retinoic acid receptor β, a transcriptional activator of ADAM10. ADAM10 is a component 
of the α-secretase, which processes APP along an anti-amyloidogenic pathway that decreases formation of toxic Aβ42 spe-
cies [59]. An independent study has also shown that SIRT1 expression may decrease levels of ROCK1, a serine/threonine 
Rho kinase previously shown to regulate Aβ metabolism, and this effect also promotes the non-amyloidogenic α-secretase 
pathway [14, 58]. The SIRT1 agonist resveratrol was also found to enhance proteasome-mediated clearance of Aβ [44] and 
reduce the plaque burden in the brains of transgenic mice overexpressing APP [45, 46]. Experiments using mixed cortical 
culture models have also shown that SIRT1 acts to reduce Aβ-stimulated NF-κB signaling in microglia [57]. 
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While there is no cure for PD, medications and surgery 
can improve some of the symptoms.

Activation or overexpression of SIRT1 and its ho-
mologues by genetic means or resveratrol treatment has 
been shown to be protective in cell culture, worm and 
mouse models of PD [11, 70-73]. The mechanism for 
SIRT1 activity in this disease has been supported in mul-
tiple studies that have shown a role of SIRT1 in the acti-
vation of heat shock factor 1 (HSF1), which affects tran-
scription of molecular chaperones including heat shock 
protein 70 that regulate homeostasis of cellular proteins 
[11, 74, 75].

SIRT1 is not the only class III HDAC linked to a 
neuroprotective phenotype in PD. In 2007, researchers 
identified a compound that increases the inclusion size of 
α-synuclein aggregates and examined this molecule’s in 
vitro activity. This small molecule was a SIRT2 inhibitor, 
and a secondary screen of structural analogues to iden-
tify more potent molecules was performed. The SIRT2 
inhibitors showed dose-dependent rescue of α-synuclein-
mediated toxicity in cell culture systems and were also 
able to protect dopaminergic neurons from cell death in 
a Drosophila model of PD [76]. While the exact mecha-
nism for reducing α-synuclein-A53T-mediated cell death 
is not known, these compounds decreased the number 
but increased the size of α-synuclein aggregates in a 
cellular model. A recent study validated these observa-
tions showing that genetic deletion of SIRT2 is protec-
tive in a chemically induced mouse model of PD using 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
[77]. The proposed mechanism is that SIRT2 becomes 
active as a response to MPTP-induced stress causing 
Foxo3a deacetylation, which leads to increased levels 
of the pro-apoptotic factor Bim and neuronal death [77]. 
Major mechanisms that have been proposed for SIRT1 
and SIRT2 in Parkinson’s disease pathogenesis are dia-
grammed in Figure 3.

The experimental evidence that SIRT1 and SIRT2 
have opposing effects on PD models of neurodegenera-
tion in vivo means that target specificity within this class 
of histone deacetylases is important. The identification 
of multiple compounds that affect sirtuin activity and 
improve PD pathogenesis is encouraging. With sufficient 
evidence from preclinical studies and more information 
about the safety of using these compounds, it will be pos-
sible to test whether these molecules will help patients 
suffering from these neurodegenerative disorders in the 
upcoming years.

Huntington’s disease

Huntington’s disease (HD) is an autosomal dominant 

neurological disorder characterized by cognitive dysfunc-
tion, personality changes, and loss of coordination and 
motor functions. It is caused by the expansion of a CAG 
repeat that codes for a stretch of glutamine residues, af-
fecting the conformation and aggregation propensity of 
the huntingtin protein [78]. This disease causes increas-
ing disability over many years and current treatments al-
leviate symptoms but are not curative.

Sirtuin deacetylases have been investigated as phar-
macologic targets to slow the progression of HD in cell 
culture and animal models that recapitulate elements of 
the human disease. In nematode models of polyglutamine 
cytotoxicity, both resveratrol treatment and genetic over-
expression of SIRT1 were shown to be neuroprotective 
[79, 80]. This finding was confirmed in primary neuronal 
culture derived from knock-in mice carrying a mutant 
huntingtin protein [79]. However, the converse is true 
in Drosophila models where genetic or pharmacologi-
cal reduction of either SIRT1 or SIRT2 homologues was 
shown to be neuroprotective [81]. It is not clear why sir-
tuins have different effects on HD pathogenesis in these 
animal systems.

Studies using pharmacologic approaches to altering 

Figure 3 Sirtuin-mediated deacetylation in Parkinson’s disease. 
In PD, SIRT1 can deacetylate heat shock factor 1 (HSF1), 
which increases hsp70 transcription and decreases the forma-
tion of abnormal protein aggregates [11, 74, 75]. Genetic dele-
tion of SIRT2 is protective in a chemically induced MPTP-model 
of PD [77]. It is proposed that SIRT2-mediated Foxo3a deacety-
lation leads to increased levels of the pro-apoptotic factor Bim 
and neuronal death [77]. Studies using small molecule inhibi-
tors have shown that SIRT2 modulates the size and number of 
α-synuclein aggregates [76].
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sirtuin activity have also reported widely differing ef-
fects in mouse models of HD. In a chemically-induced 
model of HD, cognitive and motor deficits caused by 
3-nitropropionic acid administration were improved by 
pretreating the animals with resveratrol [82]. However, 
treatment with resveratrol did not improve survival in the 
N171-82Q mouse model of HD, a transgenic line that 
overexpresses a truncated huntingtin protein, although 
there was some improvement in peripheral tissues [83]. 
A third study used the HDR6/1mouse model, which 
overexpresses a moderately sized fragment of N-terminal 
huntingtin. These mice were treated with nicotinamide, 
a chemical inhibitor that may affect multiple sirtuin pro-
teins. This treatment increased BDNF and PGC-1α gene 
expression and improved HD-associated motor deficits, 
but did not reduce huntingtin aggregation or weight loss 
in these mice. All three studies taken together suggest 
that resveratrol and nicotinamide may be useful thera-
peutic compounds; however, pharmacokinetic and phar-
macodynamics studies should be performed to confirm 
that active metabolites indeed penetrate disease-relevant 
tissues and cause changes in HD-relevant molecular tar-
gets.

Genetic models of SIRT1 overexpression have pro-
vided more clarity with multiple mouse models showing 
that SIRT1 is protective against mutant huntingtin neuro-
toxicity. Using the R6/2 model, a transgenic mouse that 
overexpresses truncated N-terminal huntingtin, Jeong et 
al. [84] showed that deleting the catalytic exon of SIRT1 
exacerbated the disease, while overexpressing SIRT1 by 
2-3-fold improved survival and reduced protein aggrega-
tion in HD. A second study used a truncated huntingtin 
N171-82Q model in addition to a full-length huntingtin 
protein model and found that SIRT1 overexpression im-
proved motor function and attenuated brain atrophy in 
these transgenic mouse lines [10].

Although both studies showed a clear improvement in 
HD symptoms, several mechanisms for the role of SIRT1 
were proposed. In the disease state, mutant huntingtin 
interacts directly with SIRT1, inhibiting its enzymatic 
activity. One possible mechanism is that SIRT1 deacety-
lates TORC1, facilitating its interaction with CREB and 
transcription of BDNF, a neurotrophic factor that is pro-
tective in HD [84]. Other possible consequences of the 
inhibition of SIRT1 activity by mutant huntingtin include 
decreased activation of TrkB, the receptor for BDNF, and 
Foxo3a, a transcription factor linked to BDNF and DAR-
PP32 expression in neurons [10, 78, 84]. While there are 
several plausible explanations, the basic observation that 
SIRT1 is protective has been described in three genetic 
mouse models of HD. Further validation studies will 
examine the regulation of transcriptional networks by 

SIRT1 and its use as a therapeutic target in HD. 
SIRT2 has also been investigated in the context of 

HD and pharmacologic inhibition has been shown to 
decrease neurodegeneration in Drosophila, cell culture 
and mouse models [85, 86]. The mechanism for this 
phenomenon has been linked with SIRT2 inhibitor-
mediated decrease in sterol biosynthesis, a pathway that 
has been shown to be dysfunctional in HD models [85]. 
Cholesterol metabolism may affect myelination and syn-
apse maintenance, however, the mechanism by which 
cholesterol homeostasis affects HD pathophysiology has 
not been fully elucidated [87]. Genetic deletion of SIRT2 
did not affect disease progression, α-tubulin acetylation, 
or biosynthesis of cholesterol in the R6/2 mouse model 
of HD [88]. It is plausible that compensatory changes in 
other proteins may occur when SIRT2 is deleted in the 
mouse germline, whereas SIRT2 inhibitors produce an 
acute reduction in the protein’s activity. It is also possible 
that changes in sterol biosynthetic pathways induced by 
SIRT2 inhibitors may be due to off-target effects from 
these compounds. More recently, viniferin, a naturally 
occurring resveratrol derivative, was found to be protec-
tive in cell culture models of HD. This compound in-
creases SIRT3 levels, causing deacetylation of MnSOD 
and LKB [89]. As a result, activation of AMPK by its 
upstream kinase LKB promotes mitochondrial biogen-
esis and increases cell survival in HD models [89]. The 
major mechanisms that have been proposed for sirtuins 
in HD pathogenesis are diagrammed in Figure 4. While 
the mechanism for neuroprotection in HD is still unclear, 
multiple research groups have identified compounds that 
target three distinct sirtuins and appear to be protective in 
mouse models of HD. Additional preclinical studies will 
need to explore their safety profiles and whether they 
may also be of benefit in patients.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is the most com-
mon form of motor neuron disease, a rapidly progressive 
condition that affects muscle strength and coordination. 
Over the past 20 years, causal mutations in a function-
ally diverse set of genes including SOD1 [90], TDP43 
[91, 92], FUS [93], UBQLN2 [14] and C9ORF72 [94-97] 
have been identified, and there are also many proposed 
etiologies that focus on distinct aspects of disease patho-
genesis [98]. In addition to playing a role in familial 
ALS, recent studies have also shown that these proteins 
may be altered in sporadic forms of the disease [14, 95, 
96, 99-105]. People on an average live 2-5 years fol-
lowing diagnosis, and there are no known cures for the 
disease; therefore, the investigation of new therapeutic 
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targets is crucial. 
The first study linking SIRT1 with ALS pathogenesis 

used both resveratrol and lentiviral injection and found 
that these interventions provided short term neuropro-
tection, although clinical outcomes documenting an 
improvement in motor function or lifespan of the whole 
animal were not assessed [13]. Several subsequent stud-
ies used tissue culture to demonstrate that resveratrol 
protects neurons in a cell-based model of ALS [106, 
107]. Further analysis found that resveratrol elicits pro-
tection from neurotoxic factors in patient cerebrospinal 
fluid (CSF) using rat brain cortical motor neurons. This 
study found that incubating neuronal cultures with CSF 
from ALS patients was more damaging than exposing 
neuronal cells to CSF from control subjects. Further-
more, resveratrol protected cultured neurons from cyto-
toxic factors present in CSF whereas riluzole, the only 
FDA approved medication for the treatment of ALS, was 

not beneficial in this cellular model [107]. These findings 
suggest that resveratrol may act via a different mecha-
nism from riluzole, a medication that is believed to work 
by reducing glutamate excitotoxicity or blocking voltage-
gated sodium channels [108]. 

Two papers have investigated the effect of resveratrol 
in the G93A mouse model of ALS, the most commonly 
used transgenic line that develops ALS pathology due to 
overexpression of a mutant SOD1 [109]. While dietary 
resveratrol treatment was not sufficient to effect disease 
outcomes [110], intraperitoneal injection of resveratrol 
was sufficient to produce a significant improvement in 
both symptoms and survival of G93A mice [111]. The 
proposed mechanism was that SIRT1 can deacetylate 
HSF1, inducing the transcription of molecular chaper-
ones such as hsp70 and hsp25, and decreasing motor 
neuron death [11, 70, 75, 111]. Resveratrol is reported to 
have a short half-life in vivo [112], and the different ad-

Figure 4 Sirtuin targets in Huntington’s disease. Mutant huntingtin protein can directly inhibit SIRT1 activity, affecting mul-
tiple downstream targets. According to one model, SIRT1 deacetylates TORC1, facilitating its interaction with CREB, which 
is linked to BDNF and DARPP32 expression in neurons [10, 78, 84]. Other possible consequences of the inhibition of SIRT1 
activity by mutant huntingtin include the decreased deacetylation and altered activities of Foxo3a, p53 and PGC-1α [10]. In 
addition, sterol biosynthesis is dysregulated in HD (indicated by the wavy line) and studies using SIRT2 inhibitors have shown 
decreased neurodegeneration accompanied with decreased sterol biosynthesis in HD models [85-87, 127]. It has been pro-
posed that SIRT2 affects cholesterol biosynthetic pathways, which may affect myelination and synapse maintenance in HD 
mouse models [85-87]. More recently, viniferin, a naturally occurring resveratrol derivative, was shown to be protective in cell 
culture models of HD. This compound increases SIRT3 levels, affecting LKB and MnSOD acetylation [89].
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ministration routes used in these studies may account for 
their different findings. SIRT1 levels have been shown to 
change both in G93A mouse models [113] as well as in 
patient tissue [114], suggesting that this protein may be a 
relevant disease target both in mouse models and human 
disease. 

A recent paper identified SIRT3 as a relevant player 
in ALS pathogenesis using a cell-based model. SIRT3 
was shown to protect against mitochondrial fragmenta-
tion and neuronal cell death induced by SOD1 G93A 
overexpression [115]. The major mechanisms that have 

been proposed for sirtuins in ALS pathogenesis are 
diagrammed in Figure 5A. Additional research confirm-
ing the effect of pharmacologic intervention in animal 
models of ALS will be important in evaluating whether 
sirtuin modulatory compounds should enter the human 
clinical trial pipeline. 

Spinal and bulbar muscular atrophy

Spinal and bulbar muscular atrophy (SBMA), also 
known as Kennedy’s disease, is a slowly progressive 

Figure 5 Sirtuin targets in motor neuron diseases. (A) In the SOD1 G93A mouse model of amyotrophic lateral sclerosis, in-
traperitoneal injection of resveratrol is protective. The proposed mechanism is that SIRT1 can deacetylate HSF1, inducing 
transcription of hsp70 and hsp25. Induction of these heat shock proteins decrease proteotoxic stress from misfolded protein 
aggregates [11, 70, 75, 111]. SIRT3 and PGC-1α were also shown to protect against mitochondrial fragmentation and neuro-
nal cell death induced by SOD1 G93A overexpression in cell culture [115]. (B) In spinal and bulbar muscular atrophy (SBMA), 
the polyglutamine-expanded androgen receptor can be directly deacetylated by SIRT1 at lysines 630, 632, and 633. It has 
been shown that deacetylation of the androgen receptor at these residues can decrease aggregation and toxicity in cellular 
models of SBMA [124].
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neurodegenerative disease affecting motor and sensory 
neurons [116, 117]. SBMA is a polyglutamine repeat 
disorder caused by the expansion of a CAG trinucleotide 
repeat in the N-terminal region of the androgen receptor 
(AR) [116-118]. This disorder causes muscle weakness 
in males between the age of 30 and 50 and is also as-
sociated with endocrine problems including testicular 
atrophy, infertility and gynecomastia due to androgen in-
sensitivity [117]. Surgical or pharmacological reduction 
of testosterone has been shown to ameliorate the SBMA 
disease phenotype in animal models [119, 120]; however, 
this therapy has not yet shown a clear benefit in human 
clinical trials [121, 122].

A recent publication has shown that the polyglu-
tamine-expanded androgen receptor can be directly 
deacetylated by SIRT1. Although SIRT1 was previously 
shown to repress androgen receptor activity via deacety-
lation [123], the role of this process in SBMA had not 
previously been explored. SIRT1 was found to protect 
motor neurons with polyglutamine-expanded androgen 
receptors by deacetylating lysines 630, 632, and 633 
[124]. The role of SIRT1 in SBMA is illustrated in Figure 
5B. This work is an important finding with great thera-
peutic potential, because targeting AR acetylation via 
SIRT1 activation is a treatment strategy that may be safer 
and have fewer side effects than other avenues that are 
being explored such as long-term androgen withdrawal. 

Conclusions

Numerous sirtuin targets are altered in these neuro-
degenerative disorders, and compounds modulating the 
activity of sirtuins are promising therapeutic strategies. 
There are three major mechanisms through which SIRT1 
has been shown to affect neurodegenerative disorders. 
SIRT1 has been shown to deacetylate transcription 
factors and coactivators, whose downstream targets 
influence aggregate formation. One example of this 
mechanism is the deacetylation of HSF1, which induces 
the transcription of molecular chaperones that may be 
relevant to the pathogenesis of both PD and ALS [11, 
70, 75, 111]. In AD, overexpression of SIRT1 affects the 
acetylation of retinoic acid receptor β, a transcriptional 
activator of ADAM10, which influences the processing 
of APP along an anti-amyloidogenic pathway [59].

A second mechanism through which SIRT1 has been 
shown to influence neurodegenerative disease is by 
modulating the protein turnover of proteotoxic species 
by direct deacetylation. An example of this mechanism is 
observed in AD where direct deacetylation of tau protein 
by SIRT1 may promote protein clearance by removing 
acetyl groups from lysine residues that are subsequently 

marked by ubiquitination to signal for protein degrada-
tion by the proteasome system [62]. This mechanism has 
also been employed to explain the effect of SIRT1 on the 
stability of some of its other targets [125, 126].

The enzymatic activity of SIRT1 can also be reduced 
by direct interaction with proteotoxic species. An exam-
ple of this phenomenon is observed in HD where mutant 
huntingtin protein directly interacts with SIRT1, interfer-
ing with its ability to activate downstream targets such as 
TORC1, Foxo3a and PGC-1α [10, 78, 84]. Overexpres-
sion of SIRT1 by genetic means is protective and com-
pounds that either increase SIRT1 activity or disrupt the 
interaction between SIRT1 and mutant huntingtin may be 
of clinical benefit.

In the past few years, it has become clear that modula-
tion of mammalian sirtuins may be a valuable therapeutic 
strategy in several neurodegenerative diseases. However, 
many research questions remain. Given the large number 
of biological substrates affected by sirtuins, the identifi-
cation of precise and disease-relevant molecular targets 
is a challenging goal. Multiple HDACs have been shown 
to influence the course of diseases; however, the degree 
to which their molecular activities can be coordinated 
has not been fully characterized. Evaluating the safety 
and efficacy of small molecules that can modulate sirtuin 
activity will be important elements in the development of 
new therapies to treat neurodegenerative diseases.
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