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Simple Summary: Anti-stress is an emergent research point to current cattle industry. Land transport
stress, a negative off-site fattening mode, causing a serious problems to beef cattle production,
such as nutrition-metabolism, hormone secretion levels, and immune competence are imbalanced.
In this paper we compared among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY),
and Cattle Yak (CY) about ruminal microbe diversity and immune functions before and after
transportation. The results showing that transport stress leads to increase secretion of hormone, both
pro-inflammatory cytokines and rumen lipopolysaccharide. Meanwhile, the ruminal microbiota
OTUs, Chao1, and Shannon were also changed, and Prevotella1 in NY group was higher than other
groups before transport; after transport Firmicutes and Lactobacillus were increased than other groups
in CY. The rumen microbiota also related with serum cytokine. Under transport stress, rumen
microbiota affect the secretion of hormone levels and immune functions and breed factors affect the
performance of stress resistance.

Abstract: The intensity and specialization of beef cattle production make off-site fattening,
and introduce new breeds need transportation to achieve the goals. The present study was aimed
to investigate effects of land transport stress on hormones levels, microbial fermentation, microbial
composition, immunity and correlation among them among Simmental Crossbred Cattle (SC), Native
Yellow Cattle (NY), and Cattle Yak (CY). High-throughput sequencing was used to investigate
the rumen microbial diversity. After transport stress cortisol (COR), adrenocorticotropic hormone
(ACTH) and pro-inflammatory cytokines IL-6, TNF-α, and IL-1β were increased (p < 0.05) in all
groups. Rumen lipopolysaccharide (LPS) was increased (p < 0.05) in SC and CY groups. Total volatile
fatty acids were increased (p < 0.05) in all groups. The ruminal microbiota about OTUs, Chao1,
and Shannon in SC and CY groups were higher than before transport. Prevotella1 in NY group was
higher (p < 0.05) than other groups before transport; after transport Firmicutes and Lactobacillus were
increased (p < 0.05) than other groups in CY. Lactobacillus was positively correlated with IL-6 and IL-4.
Under transport stress, cattle may suffer from inflammatory response through modulating HPA axis
and microbiota metabolite affects the secretion of hormone levels and immune function and breeds
factor affect the performance of stress resistance.
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microorganism immunity
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1. Introduction

The intensity and specialization of beef cattle production make off-site fattening, introduce
new breed and commercial trade more and more common, and need transportation to achieve the
goals [1]. During animal’s transportation, the nutrition-metabolism balance, hormone secretion levels,
and immune competence are imbalanced due to animals’ transport stress. It affects meat quality, risk of
disease, and even causes death [2]. In the south of China, the land is unevenly distributed, especially
in the Sichuan provenience, and there are a number of feed ingredients which are used for feeding of
animals. Therefore, Sichuan province is an ideal place for beef cattle production. A previous study
indicated that the health of cattle was seriously affected by the transportation of 15 h [3]. Breed is one
factor can affect animals production, immune function and anti-reversion [4,5].

There are a number of different breeds of beef cattle in China, from the three breeds were used
in the present study. Native Yellow Cattle (NY: Xuanhan Yellow Cattle) are a unique local breed
which were domesticated in China for thousands of years ago and have adapted to the local natural
environmental conditions; they account for about 80% of indigenous breeds [6]. Xuanhan Yellow
Cattle is one of the indigenous yellow cattle live in southern parts of China, and the body of yellow
cattle is not massive compared with the introduced breeds such as Simmentals. Cattle Yak (CY: Jersey
×Maiwa Yak) is a hybrid of yak and NY. This breed is found at Qinghai-Tibet Plateau and adapted
the cold and hypoxia environmental conditions. These animals provide milk, labor force, meat, and
pelage with the local herdsman. Finally, Simmental Crossbred Cattle (SC: Simmental × Xuanhan) is
an improved crossbreed of Simmental cattle and Xuanhan cattle that generally has better production
performance. However, no previous research was conducted on different anti-stress abilities among
these breeds. Transport stress reduces cattle immunity. Immune stimulation for most cell activation
causes inflammatory factors, such as TNF-α, IL-4, IL-6, and IL10, to be released to the serum, as well
as oxidative stress increases the expression and production of pro-inflammatory cytokines (IL-1β
and TNF-α) [2]. Similarly, animals exposed to stressful environments emit gastrointestinal pathogens
that can induce increases in the secretion of virulence factors [7]. The central nervous system via the
hypothalamic-pituitary-adrenal system controls the secretion of hormones under stress conditions,
stimulating ACTH and releasing cortisol [8]. More than 100 trillion bacteria, including thousands of
different species, have been reported in mammalian gastrointestinal tracts. In ruminants, microbiota
and organ systems react to secreted hormones and stimulate the body lead to immune response. Rumen
microbes play a very important rule in digest fiber and maintain homeostasis, (transport stress has been
reported to affect ruminant microbiota abundance (cellulolytic bacteria, Ruminococcus amylophilus, and
Prevotella albensis) [9–11]. Microbiome are signaling hub that can integrate many information such as
diet, stress and genetic, commensal bacteria and epithelial cells are the most important elements for the
immune system, especially the bacteria reside on a single layer of the intestinal epithelial cells [12,13].

Factors such as epithelial permeability and the expression of critical factors, including tight-junction
and antimicrobial proteins, are regulated by intestinal epithelial cells and influenced by CD4+T
helper cells [13,14]. Accordingly, the present study examined the anti-transport stress ability
among the three different cattle breeds, in terms of nutrition-metabolism balance, hormone secretion
level, and immunocompetence. It is also evaluated the changes in rumen microbiota through
high-throughput sequencing.

2. Materials and Methods

2.1. Animal Care and Study Design

All procedures of the experiment were approved by the Animal Care and Use Committee of
Animal Nutrition Institute, Sichuan Agriculture University, and followed the current laws of animal
protection (Ethics Approval Code: SCAUAC201408-3).

A total of 18 male beef cattle with similar body condition (20 months of age with consistent
feeding methods) were used: 6 SC (Simmental × Xuanhan yellow cattle crossbred cattle), 6 NY (NY:
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Xuanhan Yellow Cattle) cattle, and 6 CY (Jersey ×Maiwa yak crossbred cattle), and selected 5 cattle
used for rumen microorganism detection in every groups. All cattle originated a farm located 350 km
from the Sichuan Agricultural University in Ya’an city (coordinates 29◦59′58.96′′ N, 103◦0′33.65′′ E,
and 580 m altitude) and were transported for 6 h (h: hours) at an average speed of 50–60 km/h to
Nine Cattle Company in Changning County, located in Sichuan province (coordinates 28◦40′24.46′′

N, 104◦58′53.55′′ E, and 261.12 m altitude). The journey started at 18:00 on 19 November 2016, and
the cattle arrived at 24:00 on 20 November 2016. The outside temperature was between 7–15 ◦C with
a relative humidity of 75–90%. Animals were deprived of food and water during transportation.
Samples were taken 4 h before transportation and immediately after arrival.

2.2. Blood and Rumen Fluid Sample Collection and Storage

Rumen fluid and blood were sampled at 09:00 on 19 November 2016, and at 24:00 on 20 November
2016. The blood samples were collected from the jugular vein of the beef cattle. Samples were kept
refrigerated on ice until all the samples were collected, then processed immediately at the laboratory
and were centrifuged at 4000 rpm for 15 min to obtain serum and frozen at −20 ◦C for the testing
index. The rumen fluid was sampled through the oral cavity into the rumen with an oral collector.
The first 300 mL of rumen fluid was discarded to avoid reticulum fluid or salivary contaminated
fluid or body surface bacteria, and then 400 mL of rumen fluid was collected and squeezed through
four layers of gauze and tested pH (HJ-90B, Aerospace Computer Company, Beijing, China) using a
precision strip test immediately. 0.25 mL of metaphosphoric acid was added to 1 mL rumen fluid and
centrifuged at 15,000× g for 15 min by gas chromatography (GC-MS, Agilent Technologies, Palo Alto,
CA, USA) for detection of acetic, propio nic and butyric acids concentrations. Finally, the samples
were frozen in liquid nitrogen and stored at −80 ◦C until DNA extraction. Serum Cortisol (COR),
adrenocorticotrophic hormone (ACTH) detected by double-antibody radioimmunoassay (RIA); Serum
T3, T4, IgG, IgA, TNF-α, IL-1β, IL-6, IL-10, IL-4 and lipopolysaccharide (LPS) a double antibody
sandwich ELISA (ELISA kit: Shang HaiLengton Bioscience Co, Ltd., Shanghai, China) and LPS was
detected both in rumen fluid and serum.

2.3. DNA Extraction

Rumen fluid (1 mL) was centrifuged at 12,000× g for 10 min at 4 ◦C for DNA extraction, using a
QIAamp DNA kit (Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer instructions.
DNA extracts were dissolved in 200 mL EB buffer, and then the quality and quantity of the extracted DNA
were determined by UV spectrophotometric analysis using a NanoDrop ND-1000 Spectrophotometer
(Nyxor Biotech, Paris, France). DNA used in subsequent experiments had to present an A260/A280
ratio between 1.7 and 1.9, indicating intact and highly pure DNA. All DNA samples were stored at
−80 ◦C.

2.4. PCR Amplification, Library Construction and Illumina Sequencing

The V4 regions of the 16S rRNA gene were amplified using primers Arc Primer5’→3’:515F(5’-
GTGCCAGCMGCCGCGGTAA-)and Arc 806R(5’-GGACTACH VGGGTW TCTA AT-3’) [15] (PCR
adoption KOD-401B: TOYOBO KOD-Plus-Neo DNA Polymerase, PCR instrument: Applied
Biosystems® Gene Amp® PCR System 9700 (Thermo Fisher Scientific, Massachusetts, MA, USA). 16S
rRNA genes were amplified using the specific primer with a 12 nt unique barcode. The PCR mixture
(25 µL) contained 1× PCR buffer, 1.5 mM MgCl2, 0.4 µM deoxynucleoside triphosphate, 1.0 µM of
each primer, 0.5 µM of KOD-Plus-Neo (TOYOBO, New England Biolabs, Beijing, China), and 10 ng
template DNA. The PCR amplification procedure consisted of initial denaturation at 94 ◦C for 1 min,
followed by 30 cycles (denaturation at 94 ◦C for 20 s, annealing at 54 ◦C for 30 s, and elongation at
72 ◦C for 30 s), and a final extension at 72 ◦C for 5 min. Three replicates of PCR reactions for each
sample were combined. PCR products mixed with 1/6 the volume of 6× loading buffer were loaded on
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2% agarose gel for detection. Samples with a bright main strip between 200–400 bp were chosen for
further experiments.

2.5. Library Preparation and Sequencing

Sequencing libraries were generated using a TruSeq DNA PCR-Free Sample Prep Kit (Illumina,
San Diego, CA, USA), following the manufacturer’s recommendations, and index codes were added.
The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific, Massachusetts,
MA, USA) and Agilent Bioanalyzer 2100 system. Lastly, the library was applied to paired-end
sequencing (2 × 250 bp) with the Illumina Hiseq apparatus at Rhonin Biosciences Co (Rhonin
Biotechnology Ltd., Chengdu, China) [16]. Each PCR reaction terminated in a linear amplification
period was repeated three times. After PCR amplification, the PCR product of the same sample was
mixed then detected with 5 V/cm, 20 min (1% agarose gel electrophoresis), using an OMEGA Gel
Extraction Kit (Rhonin Biotechnology Ltd., Chengdu, China) gel to cut the PCR products and TE
buffer elution recovery to target the DNA fragment. Finally, library construction was completed
by the Illumina TruSeq DNA PCR-Free Sample Prep Kit (New England Biolabs, Beijing, China).
Next-generation sequencing was performed by the Illumina Hiseq 2500 PE250, which was conducted
by an Illumina Hiseq Rapid SBS Kit v2 (New England Biolabs, Beijing, China).

2.6. Bioinformatics and Statistical Analysis

1. Paired end reads assembly. The sequences were analyzed according to Usearch (v8.1.1756,
http://www.drive5.com/usearch/) and the quantitative insights into microbial ecology (QIIME) [15]
pipeline. Paired-end reads from the original DNA fragments were merged using FLASH [17]. Then,
sequences were assigned to each sample according to the unique barcode.

2. OTUs clustering and taxonomy assignment. We adopted relatively stringent quality controls.
We first filtered low-quality reads (length <200 bp, more than two ambiguous base ‘N’ or average base
quality score <30) and truncated sequences where quality scores decayed (score <11). After finding
the duplicated sequences, we discarded all the singletons, which may be bad implications (http:
//www.drive5.com/usearch/manual/singletons.html) and lead to overestimation of diversity. Sequences
were clustered into operational taxonomic units (OTUs) at a 97% identity threshold using UPARSE
(version 7.1 http://drive5.com/uparse/) algorithms [18]. We picked representative sequences and
removed potential chimeras using the Uchime algorithm [19]. Taxonomy was assigned using the
Silva database [20] and the uclust classifier in QIIME. Representative sequences were aligned using
PyNAST [21] embedded in QIIME.

In case the sequencing depth influenced community diversity, the OTU table was rarified to make
all samples hold the same sequence number. We tested 10611 sequences for every sample and total
13,797 OTU. All data analyses were performed using R or Python [22,23]. The random seed number
was fixed at 1234. Phylogenetic diversity (PD) [16] was calculated following Picante [22]. Weighted
and Un-weighted Unifrac distances were calculated in GUniFrac [23]. Other alpha- and beta-diversity
metrics were calculated in Vegan [23]. Rarefaction curves were generated based on these three metrics.
Principal component analysis (PCoA) was applied to reduce the dimensions of the original community
data. Principal Coordinate Analysis (PCoA) and Non-metric Multi-Dimensional Scaling (NMDS) were
performed using the Ape [24] and Vegan packages, respectively. Hierarchical cluster analysis was
done using the R function hclust. Random Forest analyses were done using.

2.7. Correlation Between Rumen Microbiota and Cattle Physiological Variables

Non-parametric Spearman rank correlation coefficient analysis implemented in PAST software
was used to analyze the relationship between Serum hormones, immune function and Rumen fluid
characteristics and bacterial communities in rumen fluid. The resulting correlation matrix was
visualized in a heat-map format generated by the corr-plot package of R (Corrplot: visualization of a
correlation matrix, R package version 02-0. 2010) [22].

http://www.drive5.com/usearch/
http://www.drive5.com/usearch/manual/singletons.html
http://www.drive5.com/usearch/manual/singletons.html
http://drive5.com/uparse/
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The results were analyzed with the Statistical Package for Social Sciences (SPSS, version 22.0, IBM,
Armonk, NY, USA). A single-factor analysis of variance (ANOVA) and two-factor analysis variance
were used to analyze all data, and Duncan’s multiple comparisons were used to separate means where
significant differences were found. A value of p-values < 0.05 was considered statistically significant.
Data are shown as mean, mean ± standard deviations (SD).

3. Results

3.1. Serum Hormones

The results of serum hormones of the present study are presented in Table 1, there were no
significant differences (p > 0.05) between different breeds of cattle in terms of the concentration of COR
and ACTH before transportation, the concentration of ACTH was significantly (p < 0.05) lower in
the CY group than the NY and SC groups after transportation. Transport stress led to consistent and
significant (p < 0.05) increases in the concentrations of COR and ATCH, but there was no noticeable
difference across breeds in COR levels after transportation were observed Table 1. Transport stress
significant (p < 0.05) affects the secretion of COR while the breed factor affects the secretion of COR
and ACTH were not significant (p > 0.05) Table 5. Meantime, after transportation, the concentration of
T3 and T4 were decreased among all the cattle breed groups, but only T3 were significant (p > 0.05)
decreased in SC group.

Table 1. Hormones levels before and after transportation.

Item Treatment NY SC CY

COR B 130.77 ± 34.45 B 133.06 ± 23.78 B 125.57 ± 12.37 B

(ng/mL) A 158.37 ± 22.26 A 160.54 ± 25.17 A 156.89 ± 18.71 A

ACTH B 338.86 ± 70.49 B 340.58 ± 58.31 B 295.15 ± 48.59 B

(pg/mL) A 422.71 ± 61.02 Aa 437.84 ± 70.92 Aa 357.32 ± 66.26 Ab

T 3 B 6.89 ± 0.778 a 6.91 ± 0.885 Aa 5.37 ± 0.776 b

(ng/mL) A 7.18 ± 0.386 a 5.14 ± 0.684 Bb 5.51 ± 0.618 b

T 4 B 243.89 ± 35.286 a 231.14 ± 35.594 a 184.32 ± 70.257 b

(ng/mL) A 253.56 ± 37.249 a 206.31 ± 43.599 b 186.63 ± 47.442 b

Note: Data are shown as means ± SD (n = 6), the serum index includes COR (cortisol), ACTH (adrenocorticotropic
hormone), T3 (Triiodothyronine), T4 (thyroxine). For treatment column Before transport: B. After transport: A. In the
same row, values with the same or no small letter superscripts (a, b and c) mean no significant difference (p > 0.05),
while with different small letter superscripts (a, b and c) mean significant difference (p < 0.05), in the same column,
values of the same index with no capital letter superscripts (A and B) mean no significant difference (p > 0.05),
while with different capital superscripts (A and B) mean significant difference (p < 0.05). SC (Simmental Crossbred
Cattle: Simmental × Xuanhan), NY (Native Yellow Cattle: Xuanhan Yellow Cattle), and CY (Cattle Yak: Jersey ×
Maiwa Yak).

3.2. Rumen Fluid Characteristics

The results of rumen fluid characteristics are presented in Table 2. There was no significant
difference (p > 0.05) for rumen pH among three different breeds before transportation, but after
transportation the pH was reduced in the NY, SC, and CY groups and there was significant (p < 0.05)
reduced in SC, and CY groups, in the NY had higher (p < 0.05) pH than SC and CY groups after
transportation. The concentration of serum LPS (lipopolysaccharide) was increased in the NY, SC,
and CY groups after transportation, but only in CY group significantly increased (p < 0.05). The factor
of breed affects serum LPS significant (p < 0.05). Meanwhile, there were higher concentrations of rumen
LPS after transportation in NY, CY, and SC groups than before transportation, and in SC and CY groups
were significantly increased (p < 0.05), but there were no significant (p > 0.05) differences in NY group
after transportation. For rumen volatile fatty acid, the concentration of acetic acid, propionic acid,
butyric acid, and the acetic to propionic acid ratio were increased after transportation, furthermore,
after transportation in NY, SC, and CY groups had a significant (p < 0.05) higher concentrations of total
volatile fatty acid (TVFA) than before transportation. The concentration of acetic acid was significant
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(p < 0.05) affected by the factors of transportation and breed, but there was non-significant (p > 0.05)
differences among three cattle breeds before transportation. The concentration of propionic acid was
non-significant (p > 0.05) differences among three cattle breeds before transportation, meanwhile after
transportation all groups had a significant (p < 0.05) higher concentrations of propionic acid than before
transportation. After transportation the ratio of acetic to propionic acids was significant (p < 0.05)
increased in NY and CY groups, while there was non-significant (p > 0.05) in SC group. The CY
group had a significant (p < 0.05) higher concentrations of rumen lactic acid than SC and NY groups,
meantime, SC had a significant (p < 0.05) higher concentrations of rumen lactic acid than NY group
before transportation, and after transportation the concentrations of rumen lactic acid was decreased
in SC group (p < 0.05), while the concentration of serum lactic acid was significant (p < 0.05) increased
in all cattle breeds after transportation.

Table 2. Fluid characteristics before and after transportation.

Item Treatment NY SC CY

Serum LPS B 13.63 ± 3.144 14.61 ± 2.022 13.25 ± 2.199 B

(ng/mL) A 15.77 ± 2.08 17.56 ± 2.186 17.54 ± 1.69 A

Rumen LPS B 13.03 ± 2.589 10.93 ± 2.557 B 10.65 ± 2.55 B

(ng/mL) A 15.26 ± 2.323 a 14.86 ± 2.383 Ab 14.22 ± 1.923 Ac

Serum lactic acid B 0.91 ± 0.349 B 0.99 ± 0.464 B 1.27 ± 0.479
(mmol/L) A 1.74 ± 0.192 A 1.85 ± 0.363 A 1.7 ± 0.31

Rumen lactic acid B 0.26 ± 0.049 c 0.78 ± 0.641 Ab 1.97 ± 0.373 Aa

(mmol/L) A 0.25 ± 0.066 b 0.43 ± 0.099 Ba 0.54 ± 0.168 Ba

Acetic acid B 21.52 ± 0.986 23.51 ± 7.56 B 21.69 ± 4.495 B

(mmol/L) A 33.36 ± 5.628 c 45.22 ± 7.21 Aab 36.01 ± 2.486 Ab

Propionic acid B 6.03 ± 1.35 6.17 ± 2.2 B 5.17 ± 0.883 B

(mmol/L) A 7.2 ± 1.608 b 11.43 ± 2.93 Aa 7 ± 1.06 Ac

Butyric acid B 2.3 ± 0.411 B 3.2 ± 1.73 B 2.46 ± 0.181 B

(mmol/L) A 5.06 ± 1.557 Ac 7.7 ± 1.406 Aa 6.85 ± 1.969 Ab

Acetic : propionic B 3.72 ± 0.691 B 3.84 ± 0.093 4.16 ± 0.218 B

acids A 4.59 ± 0.311 Aab 4.05 ± 0.372 b 5.13 ± 0.267 Aa

TVFA B 29.85 ± 1.49 B 32.87 ± 3.32 B 29.31 ± 5.55 B

(mmol/L) A 45.62 ± 4.34 Ab 64.345 ± 5.52 Aa 47.93 ± 3.48 Ab

PH
B 7.27 ± 0.09 7.3 ± 0.06 A 7.22 ± 0.11 A

A 6.98 ± 0.03 a 6.75 ± 0.09 Bb 6.79 ± 0.12 Bb

Note: Data are shown as means ± SD (n = 6). Before transport: B. After transport: A. In the same row, values with
the same or no small letter superscripts (a, b and c) mean no significant difference (p > 0.05), while with different
small letter superscripts (a, b and c) mean significant difference (p < 0.05), in the same column, values of the same
index with no capital letter superscripts (A and B) mean no significant difference (p > 0.05), while with different
capital superscripts (A and B) mean significant difference (p < 0.05). SC (Simmental Crossbred Cattle: Simmental ×
Xuanhan), NY (Native Yellow Cattle: Xuanhan Yellow Cattle), and CY (Cattle Yak: Jersey ×Maiwa Yak).

3.3. Immunity Levels

After transportation the concentration of IgG significantly (p < 0.05) decreased in all groups and
presented in Table 3, but there were non-significant (p > 0.05) difference among the NY, SC and CY
groups before and after transportation. The factor of transportation significantly (p < 0.05) affects
the level of IgG in serum (Table 5). Similarly, the concentration of IgA was reduced in three different
cattle breeds after transportation; however, there was non-significant (p > 0.05) effect by the factor of
transportation. For the pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, the concentrations were
increased significantly (p < 0.05) after transportation in all cattle breeds. The CY group had a lower
level of IL-1β than other groups before transportation (p < 0.05). The anti-inflammatory cytokines
IL-10 and IL-4 were increased after transportation, but IL-10 did not increase significantly (p > 0.05)
for all cattle breeds, and the concentration of IL-4 was increased significantly (p < 0.05) only in CY
group after transportation. However, there was significant (p < 0.05) higher concentration of IL-4 in
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NY than CY groups before transportation, and for IL-10 in NY group had a significant (p < 0.05) higher
concentration than both SC and CY groups before transportation.

Table 3. Immunity levels before and after transportation.

Item Treatment NY SC CY

IgG B 1.03 ± 0.05 A 1.13 ± 0.01 A 1.32 ± 0.06 A

(mg/mL) A 0.75 ± 0.08 B 1.05 ± 0.02 B 0.95 ± 0.02 B

IgA B 14.98 ± 5.31 19.22 ± 2.19 15.21 ± 3.39
(ug/mL) A 13.82 ± 5.04 ab 18.03 ± 3.16 a 13.64 ± 2.34 b

TNF-α B 12.65 ± 1.86 Ba 9.77 ± 1.48 Ab 11.58 ± 1.03 Ba

(pg/mL) A 15.61 ± 1.24 A 16.02 ± 1.31 B 15.38 ± 2.81 A

IL-1β B 2000.61 ± 455.54 Bb 1716.15 ± 239.57 Bb 2225.56 ± 391.49 Ba

(pg/mL) A 2682.02 ± 511.69 Ab 2834.96 ± 310.28 Ab 3265.82 ± 335.59 Aa

IL-6 B 695.02 ± 135.81 Ba 688.45 ± 57.96 Ba 594.1 ± 45.63 Bb

(pg/mL) A 845.49 ± 68.06 A 802.35 ± 82.38 A 857.58 ± 45.92 A

IL-10 B 783.66 ± 97.12 a 621.33 ± 70.11 b 621.03 ± 127.17 b

(pg/mL) A 806.59 ± 78.53 a 689.08 ± 111.145 ab 648.91 ± 171.76 b

IL-4 B 498.49 ± 113.535 a 444.01 ± 50.79 ab 361.82 ± 64.257 Bb

(pg/mL) A 504.49 ± 204.821 501.25 ± 47.275 477.85 ± 50.824 A

Note: Data are shown as means ± SD (n = 6). Before transport: B. After transport: A. In the same row, values with
the same or no small letter superscripts (a, b and c) mean no significant difference (p > 0.05), while with different
small letter superscripts (a, b and c) mean significant difference (p < 0.05), in the same column, values of the same
index with no capital letter superscripts (A and B) mean no significant difference (p > 0.05), while with different
capital superscripts (A and B) mean significant difference (p < 0.05). SC (Simmental Crossbred Cattle: Simmental ×
Xuanhan), NY (Native Yellow Cattle: Xuanhan Yellow Cattle), and CY (Cattle Yak: Jersey ×Maiwa Yak).

3.4. Alpha-Diversity Measures and OTU Analysis

The alpha diversity index estimation of the 16S rRNA gene libraries of the beef cattle rumen
emerged from the sequencing analysis are presented in Table 4. To obtain the taxonomic information
for each OTU, the uclust taxonomy was used for analysis, and the default algorithm sought 97% OTU
representative sequences of similar levels.

The richness of rumen microbiota was based on 97% similarity cut-off and normalization.
The continued to be total 1,263,210-row sequences and total 1,217,669 clean sequences; every sample
includes 33,824.13 clean sequences, 84,852 reads after filtration, with a mean of 2357 reads per sample
were detected. In the current study, the results showed significantly (p < 0.05) different by the chao1
index in SC group before and after transportation, while both breed and transport factors were
non-significant (p > 0.05) affect the chao1 index. After transportation, the Shannon index was increased
for CY and SC groups, but only the SC group changed significantly (p < 0.05) and had the highest
Shannon index after transportation. Additionally, NY group was significantly (p < 0.05) higher than
other groups about OTUs before transportation, all OTUs were increased among all cattle breeds
after transportation, and only SC group increased significant (p < 0.05), meanwhile, the factor of
breeds affects the number of OTUs very significant (p < 0.05) Table 5. The beta diversity was further
analyzed by principal coordinate analysis (PCoA). In Figure 1, PCO1 plots of bacterial 16S rRNA
showed obvious clusters among different cattle breeds before transportation (Figure 1A), and percent
variation explained 20.3% and 12.9%, it also showed visible clusters between BNY and ANY, BSC and
ASC, BCY and ACY before and after transportation in Figure 1B–D, respectively. According to the Venn
diagram at a 97% similarity level, 2444 and 2357 OTUs (86.87% and 85.21% of the total sequences) were
common to before and after transportation among NY, SC and CY groups, respectively. The NY group
shared 787 (2.19% of sequences) and 789 (2.31% of sequences) OTUs, with SC and CY groups before
transportation, respectively. Compared with before transportation, the OTUs (sequences) unique in
NY, SC and CY groups were 2801(5.04% of sequences), 3333 (8.02% of sequences), and 1815 (2.98% of
sequences) after transportation, respectively (Figure 2).
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Table 4. Alpha diversity indices.

Item Treatment NY SC CY

OTUs
B 2610.75 ± 100.24 a 2255.8 ± 372.33 Bb 2093.6 ± 146.02 b

A 2410.25 ± 387.46 b 2755.6 ± 177 Aa 2184 ± 113.74 b

Chao1
B 4219.42 ± 340.24 3678.18 ± 1014.29 B 3343.85 ± 375.36
A 3947.86 ± 849.05 a 4315.88 ± 606.76 Aa 3688.9 ± 426.59 b

Shannon
B 6.5 ± 0.14 6.38 ± 0.19 B 6.15 ± 0.18
A 6.41 ± 0.3 b 6.67 ± 0.07 Aa 6.2 ± 0.08 b

Note: Data are shown as means ± SD (n = 5). Before transport: B. After transport: A. In the same row, values with
the same or no small letter superscripts (a, b and c) mean no significant difference (p > 0.05), while with different
small letter superscripts (a, b and c) mean significant difference (p < 0.05), in the same column, values of the same
index with no capital letter superscripts (A and B) mean no significant difference (p > 0.05), while with different
capital superscripts (A and B) mean significant difference (p < 0.05). SC (Simmental Crossbred Cattle: Simmental ×
Xuanhan), NY (Native Yellow Cattle: Xuanhan Yellow Cattle), and CY (Cattle Yak: Jersey ×Maiwa Yak).
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(defined at 3% dissimilarity in UPARSE) before and after transportation in the NY, SC, and CY 
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Microbiota Composition of Rumen

All sequences were classified from phylum to species based on the SILVA (From Latin silva, forest,
http://www.arb-silva.de) taxonomic database and using the analytical program QIIME. We assigned
the OTUs to 22 phyla, 38 classes, 59 orders, 97 families, 237 genus, and 338 species. High-throughput
sequencing was showed 2477 and 2376, 2255 and 2755, 2093 and 2184 OTUs (defined at 3% dissimilarity
in UPARSE) before and after transportation in the NY, SC, and CY groups, respectively. A few common
kinds of bacteria and phyla were found by taxonomic analysis such as Bacteroidetes and Firmicutes
(>18%) were the most dominant phyla before and after transportation in groups. The highest relative
abundance reached to 80%, the lowest reached to 70% for Bacteroidetes for some samples, there was
no significant (p > 0.05) difference among NY, SC, and CY groups before transportation, while after
transportation the relative abundance of Bacteroidetes were reduced in all groups, but only in NY
group reduced very significantly (p < 0.05) (from 78.43% to 73.47%) (Figure 3 and Supplementary Table
S1). However, the relative abundance of Firmicutes were increased in all groups after transportation,
and there were increased significantly (p < 0.05) in SC group (from 18.80% to 22.87%), but there was no
significant (p > 0.05) difference among NY, SC, and CY groups before transportation. SC group had the
highest relative abundance about proteobacteria (up to 1.73%) but non-significant (p > 0.05) difference
before transportation among the groups.

At the genus level, 237 genera were observed in the rumen, and dominant genera included
Prevotella 1 (all sample average 25.21%), Rikenellaceae RC9 gut group (18.87%), Christensenellaceae R-7
group (2.46%), Lactobacillus (2.29%), Lachnospiraceae NK4A136 group (1.44%), the Ruminococcaceae
NK4A214 group (1.36%), Butyrivibrio 2 (1.14%), and Ruminococcus 1 (0.82%). Transportation leads to the
abundance of Prevotella 1 significant (p < 0.05) reduced in all NY, SC, and CY groups. Meanwhile the NY
group had the significant (p < 0.05) lower (only 25.266%) than both SC (30.81%) and CY (29.645%) groups
before transportation. Before transportation in SC group (8.45%) for the abundance of Rikenellaceae RC9
gut group was significant (p < 0.05) lower than both NY (17.717%) and CY (15.684%) groups before
transportation, and the abundance of Christensenellaceae R-7 was increased after transportation in all
groups including NY (from 2.143% to 3.261%) and SC (from 2.115% to 2.72%) groups were changed
significant (p < 0.05). For Lactobacillus CY group (2.488%) was higher (p < 0.05) than NY group (1.923%),
and transportation leads the abundance increased in all groups but only in NY group increased

http://www.arb-silva.de
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significant (p < 0.05). There was reduced for the abundance of Butyrivibrio 2 in all three different cattle
breeds, and in NY and CY groups were significant (p < 0.05) decreased. To identify the specific bacterial
taxa associated with breeds and transportation, we compared microbiota among NY, SC, and CY
groups before transportation, and between BNY and ANY, BSC and ASC, BCY and ACY using the
linear discriminant analysis effect size (LEfSe) method. Figure 4, (A) shows a representative cladogram
of the structure of predominant bacteria, showing the most significant differences in taxa between the
three groups (NY, SC and CY before transport). The data indicated that eight specific genera, five
specific Family, three specific Order, and two specific Class belong to two dominant phyla (Spirochaetae
and Tenericutes) in BSC groups, 11 specific genus, five specific Family, two specific Order, and two
specific Class belong to two specific dominant phyla (Saccharibacteria and Lentisphaerae) in BNY
groups and in BCY group only five specific genus belong to one specific Family. In addition, to identify
the specific bacterial taxa associated with transport stress (Figure 4B–D), predominant bacteria between
BNY and ANY, BSC and ASC, BCY and ACY were shown. 9 specific genus belong to one and one
specific phyla Spirochaetae and Lentisphaerae were found in BNY, and ANY groups (Figure 4B), 6 and
11 specific genera belong to two specific families (Bacteroidales and Christensenellaceae) and one
specific class (Gammaproteobacteria) was found in BCY and ACY groups (Figure 4C) respectively.
Fifteen and 16 specific genera belong to two (Firmicutes and Actinobacteria), and four (Euryarchaeota,
Deferribacteres, Spirochaetae and Proteobacteria) specific phyla were found in BSC and ASC groups
(Figure 4D).Animals 2019, 9, x 11 of 21 
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Figure 4. LEfSe identified the most differentially abundant taxons in NY, SC, and CY (A) before
transport, BNY and ANY (B), BSC and ASC (C), BCY and ACY (D). Taxonomic cladogram obtained
from LEfSe analysis of 16 S sequences (relative abundance ≥0.5%). (red) BNY-enriched taxa, (blue) taxa
enriched in BSC, (green) taxa enriched in BCY (A), (red) BNY-enriched taxa, (green) taxa enriched in
ANY (B), (red) BCY-enriched taxa, (green) taxa enriched in ACY (C), (red) BSC-enriched taxa, (green)
taxa enriched in ASC (D). The brightness of each dot is proportional to its effect size. Phylum: p (put “p”
in front of the microbes or don’t use italics), class: c(put “c” in front of the microbes and use italics),
order: o(put “o” in front of the microbes and use italics), family: f (put “f” in front of the microbes
and use italics), genus: g(put “g” in front of the microbes and use italics or not put “g” in front of
the microbes but use italics) and species: s (put “s” in front of the microbes and use italics), all data
were same.

3.5. Correlation Between Rumen Microbiota and Physiological Variables

The relationship between ruminal microbiota abundance [representing at least 0.1% of the bacterial
community in at least one sample (in phyla and genus level)] and physiological parameters were used
to analyze the evaluated correlations.

The results showed (Figure 5) that the rumen pH was negatively correlated with f. Ruminococcaceae
(R = −0.514, p < 0.05), Ruminococcaceae UCG-002 (R = −0.782, p < 0.01), Saccharofermentans (R = −734,
p < 0.01) Lactobacillus (R = −0.596, p < 0.01), f. Bacteroidales BS11 gut group (R = −0.695, p < 0.01),
positively correlated with Prevotella1(R = 0.547, p < 0.01), Butyrivibrio2 (R = 0.521, p < 0.01). Rumen
LPS were negatively correlated with Prevotella 1 (R = −0.627, p < 0.01), and Butyrivibrio2 (R = −0.528,
p < 0.01), positively correlated with Ruminococcaceae UCG-002 (R = 0.472, p < 0.05), Lactobacillus
(R = 0.521, p < 0.01). The rumen fermentation characteristics of acetic acid were negatively correlated
with Prevotella 1 (R = −0.527, p < 0.01), Butyrivibrio2 (R = −0.577, p < 0.01), and positive correlated with
Ruminococcaceae UCG-002(R = 0.543, p < 0.01), Saccharofermentans (R = 0.648, p < 0.01). Acetic:propionic
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acids were negatively correlated with Prevotella 1 (R = −0.467, p < 0.01) and f.Bacteroidales S24-7 group
(R = −0.577, p < 0.01). TVFA was negatively correlated with Prevotella 1 (R = −0.649, p < 0.01) and
Butyrivibrio 2 (R = −0.565, p < 0.01) while positive correlated with Saccharofermentans (R = 0.648,
p < 0.01) and Ruminococcaceae UCG-002 (R = 0.539, p < 0.01). The concentration of rumen lactic acid
was positive correlated with f.Bacteroidales BS11 gut group (R = 0.529, p < 0.01), Lactobacillus (R = 0.555,
p < 0.01), Ruminococcaceae UCG-002 (R = 0.609, p < 0.01). For the immune system, the abundance of
Prevotella 1 was positively correlated with IgA (R = 0.547, p < 0.01) while negatively correlated with
pro-inflammatory cytokines IL-6 and TNF-α (R = −0.476, p < 0.01, R = −0.452, p < 0.05 respectively).
The abundance of f.Bacteroidales BS11 gut group was positively correlated with pro-inflammatory
cytokines IL-6 and IL-1β (R = 0.585, p < 0.01, R = 0.378, p < 0.05 respectively), meantime positively
correlated with anti-inflammatory cytokines IL-4 and IL-10 (R = 0.618 and 602, p < 0.01, respectively).
Lactobacillus was positively correlated with IL-6 (R = 0.445, p < 0.05), serum lactic acid (R = 0.602,
p < 0.01), and IL-4 (R = 0.557, p < 0.01), while negatively correlated with IgA (R = −0.596, p < 0.01),
Butyrivibrio 2 negatively correlated with serum lactic acid (R = −0.561, p < 0.01), anti-inflammatory
cytokines IL-4 and IL-10 (R = −0.579 and -0.565, p < 0.01, respectively). While Saccharofermentans was
positively correlated with IL-4 and IL-10 (R = 0.623 and 0.648, p < 0.01, respectively) serum lactic acid
(R = 0.544, p < 0.01).Animals 2019, 9, x 13 of 21 
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Figure 5. Correlation between rumen microbiota and cattle physiological variables. Spearman
non-parametric Rank correlation matrix between serum index, characteristics of rumen fermentation
parameters and microbiota abundance (representing at least 1% of the bacterial community in at least
one sample). The red color represents a negative correlation; the blue color represents a positive
correlation, and the white color represents no correlation. The OTU count data were subjected to
variance stabilizing transformation, then pairwise serum index, characteristics of rumen fermentation
parameters. Spearman correlations between bacterial and biological parameters at corresponding
were analyzed.
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Table 5. Two-way analysis of transportation stress and beef breed.

Item
Transport Breeds Transport × Breeds

F p F p F p

COR 13.856 <0.001 0.262 0.77 0.192 0.826
ACTH 10.057 0.0812 0.817 0.445 14.668 <0.001

Serum LPS 21.157 0.029 24.027 <0.001 0.593 <0.001
Rumen LPS 9.094 0.006 0.654 0.529 0.149 0.862

Rumen lactic acid 24.048 <0.001 1.634 0.216 9.769 0.001
Serum lactic acid 21.823 <0.001 20.274 <0.001 0.82 0.452

pH 33.873 <0.001 22.273 <0.001 4.392 <0.001
Acetic acid 42.38 <0.001 14.98 <0.001 1.684 0.207

Propionic acid 16.37 <0.001 3.349 0.052 3.73 0.039
Butyric acid 47.527 <0.001 16.458 <0.001 0.89 0.424

Acetic: propionic 22.877 <0.001 3.658 0.041 2.733 0.085
TVFA 39.951 <0.001 8.164 0.002 1.934 0.166
IgA 0.365 0.547 10.874 <0.001 0.138 0.871
IgG 26.078 <0.001 0.109 0.897 0.308 0.738

TNF-α 10.252 0.0617 16.084 <0.001 10.169 <0.001
IL-1β 15.095 <0.001 7.98 0.044 14.218 <0.001
IL-6 1.78 0.186 15.228 <0.001 1.025 0.363
IL-10 1.878 0.174 1.917 0.153 10.522 <0.001
IL-4 13.701 <0.001 1.112 0.334 2.305 0.106

OTUs 2.351 0.138 4.388 0.024 2.765 <0.001
Chao1 1.529 0.228 1.297 0.292 0.414 0.665

Shannon 1.621 0.215 7.464 0.003 1.905 0.171

Note: Two-way analysis including transport, breeds and interaction factors, F (F-value), p (p-value), when (p < 0.05)
means that factor effect the index significant and (p > 0.05) means that factor effect the index not significant.

4. Discussion

The microbiota influences the brain-gut axis and immunity. The present data was the first to
confirm the immunity and microbiota status as affected by transport stress and breeds factors.

4.1. Effect of Hormone Balance in Serum

The previous work showed elevated levels of COR and ACTH among animals in stressful
conditions [25]. Transport stress leads to central nervous system (CNS) excitement and stimulation
of the sympathetic nervous system. As a result, the secretion of hormones got out of control and
increased ACTH and COR are released [26]. Up-regulated COR concentration stimulates carbohydrate,
fat, protein metabolism, and provides energy for the body under stressful condition [27]. Under the
transportation, the concentration of COR and ACTH increased, and in CY group had the lowest
level of ACTH, while in SC group had the highest concentration of COR after transportation. T3, T4
can regulate growth in central nervous system, while cattle under heat-stress the concentration was
reduced, it was the same with present research, and in SC group had a higher level compare with NY
and CY groups before transportation, it means different breeds have effect on the concentration of the
hormone, and 6 h transport leads to cause stress to all cattle breeds

4.2. Effects of Transport Stress on Rumen Fermentation Characteristics

There were non-significant differences in volatile fatty acid (VFA) among NY, SC, and CY groups
before transportation, which might be owing to all groups had the same diet, and environment condition
or all breeds had the same ratio for VFA production to absorption in the rumen. The concentration of
TVFA was increased after transportation because during the transportation cattle were very nervous,
and under stress, the hormone level changed such as, COR, it leads to increased metabolic strengthening
and the respiratory rate and sweat secretion, while deprived of water, which might lead to cattle
dehydration [27]. The concentration of propionic acid was increased and can leads to the increase the
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concentration of glucose because glucose can be produced by gluconeogenesis from propionic acid [28],
and during the heat stress cattle have a higher respiratory rate and energy consumption [29,30].
This research supported that during transportation stress, both propionic acid levels were increased.
It has been reported that acetic acid can reduce the efficiency of rumen energy utilization [31]. Under the
transportation stress the ratio of acetic: propionic acids were increased, it means rumen fermentation
mode changed and efficiency reduced, and SC groups had the lowest acetic: propionic acids and the
highest TVFA level, it means during the transportation stress SC’s energy efficiency was higher when
compared with NY and CY groups. All these means, during transportation stress, cattle required more
energy, but the efficiency reduced. While butyric acid can effects bacteria and it also have a protective
effect on gastrointestinal mucosa, promoting the function of the immune system [32]. Our data indicated
that with the increase of butyric acid concentrations in the rumen, the anti-inflammatory cytokines
and pro-inflammatory cytokines were synchronously increased and that Butyrivibrio 2 was negatively
correlated with IL-1β, IL-6. Both lactic acid and volatile fatty acids affect rumen pH, as an essential
indicator of animal health: low or high pH will lead to rumen metabolic disorder, based on the number
of gram-negative bacterium deaths under a low-pH environment [27]. The data support in that view,
after transportation pH and the abundance of Bacteroidetes, were decreased, and pH was positively
correlated with Bacteroidetes. LPS are a major component of the outer membrane of gram-negative
bacteria: when gram-negative bacteria disintegrate, and dissolve lipopolysaccharides are released.
LPS are among the main components of bacterial endotoxin [33], but it can also stimulate the host’s
innate immune system and enhance the resistance of the body. Specifically, the collateral pathway
of the complement can be directly activated under low concentrations of LPS. On the other hand,
high concentrations of LPS cause a systemic inflammatory response and activation of mononuclear
macrophages. The endothelial fine cells will release inflammatory mediators such as TNF-α, IL-1,
IL-6, IL-8, oxygen-free radicals, and histamine, but also directly or indirectly induce apoptosis of the
immune cells, inhibiting the body’s immune function [34]. In the present study, after transportation the
concentration of LPS were increased in both blood and rumen, means during the transportation stress
cattle may be suffering an inflammatory reaction, while there were reduced concentrations of some
gram-negative bacteria such as the dominant members of Bacteroidetes and Proteobacteria. There were
effects of transportation, breeds, and transportation × breeds for the increased concentration of LPS in
serum and rumen LPS.

4.3. Effect of Transport Stress on Rumen Microorganisms

The previous study reported that in cattle, the abundance of rumen Bacteroidetes reduced in stress
condition [35,36]. Pre-weaning stress does not change the microbial community constantly in the rumen
and feces by the analyzed species richness (chao1 index) [35]. In this study, richness estimates and
diversity indices indicated that transport stress affects rumen microbial diversity, and after transport,
the index about chao1, Shannon, and OTUs in SC group was higher than any other groups. The factor
of breed significant effect the Shannon and OTUs index supported by Paz, H. A. [37].

Our data showing that Bacteroidetes, Firmicutes, Proteobacteria, and Lentisphaerae were the
most common microbial flora in phyla levels among different breeds of beef cattle (NY, SC, and CY
groups) before and after transportation. These microbes are essential for rumen fermentation [38–41].
This research showed that the relative abundance of Bacteroidetes were higher than Firmicutes in
the rumen, which was consisted of previous research of Jami, E [42]. Before transportation there
were higher abundant of Bacteroidetes in NY group than other groups, and after transportation SC’s
abundance of Firmicutes were the highest, meaning, the major microbial flora were the same for
different breeds, but each microbial flora’s proportion was different in rumen, so for different breeds
have a different fermentability and lead to different digestive capacity.

It has been reported that Bacteroidales can degrade cellulose and their genomes can encode the
decomposition of plant polysaccharide [43,44]. It means that the ability to degrade cellulose might be
influenced by transport stress, and it should be carefully fed more coarse fodder while cattle under the
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transport stress. Prevotella was the most abundant genus belongs to Bacteroidetes phyla. The previous
research suggested that dietary balance between carbohydrates and protein were the primary factor
based on shifting microbial community, and the abundance of Bacteroides are associated with high
protein and fat diets [45,46], and our study shows that transport stress leads to reduced Prevotella,
and Prevotella can influence the activity of dipeptidyl peptidase type IV rate-limiting and promote
oligopeptides degradation, so it can promote protein degradation [47]. In this research, Prevotella 1 and
Prevotella UCG-003 were negatively correlated with the acetic to propionic acid ratio, and previous
research showed that Prevotella which predominates associated with greater carbohydrate intake [48],
a high abundance of Prevotella can increase propionate concentration and reduced the acetic to a
propionic acid ratio in rumen fermentation [49]. It has been reported that the relative abundance of
Prevotella 1 was negatively correlated with serum BHBA but positively correlated with rumen pH [35].
This is consistent with previous findings that the abundance of Prevotella 1 was reduced as the acetic to
propionate ratio was increased [35]. Ruminococcus is a predominant microbial flora at the genus level,
and consist of Ruminobacter albums and Ruminococcus flavefaciens, and within the phylum Firmicutes
play an important rule for fiber degradation by secreting cellulase and hemicellulase to decompose
plant fiber [50]. In this study, the abundant of Firmicutes were increased after transportation and
SC group had a maximum variation, increased Ruminococcus 1 was positively correlated with the
concentration of acetic acid it means Ruminococcus 1 effects the digestion and rumen fermentation.

4.4. Effect of Transportation Stress on Immunity

At present, it is clear that microbiota greatly contributes to the metabolic and immune homeostasis
and influences health and disease [51]. Transport stress can induce immunosuppressive efficacy
and increase the risk of disease or infection. It has been reported that over-production of IL-6 will
induce inflammation, chronic metabolic disease, and severely impact on organism health [52,53].
The neuro-immune- endocrine interface can secrete IL-6 and induce inflammation that contributes or
caused by other diseases, and it can be activated by the hypothalamo-pituitary-adrenocortical (HPA)
axis [54,55], and it has been reported that under an acute stress environment the concentration of IL-6
and ACTH in plasma were accompanied by an increase in the phosphorylation of STAT3 in the anterior
pituitary [56]. The exercise can up-regulate the concentration of IL-6, and that the secretion of COR was
regulated by ACTH [57]. In the current study, after transportation the concentrations of COR, ACTH
and inflammatory cytokines IL-6, IL-1β and TNF-α had similar variation trends, both higher than
before transportation (for IL-6 increased 21.58%, 16.57% and 44.28%, for IL-1β increased 34.06%,65.19%
and 46.74% compared with before transport in NY, SC and CY groups, respectively). This also suggests
that IL-6 might directly stimulate the secretion of ACTH when under acute stress condition.

Transport stress not only affects hormone secretion but also directly or indirectly influences
the body’s immune performance. The concentration of white blood cells and neutrophil significant
decreased after transportation [3]. In germ-free (GF) mice the concentration of IgA was lower, but fecal
flora containing commensal species like Alcaligenes can indirectly send signals to lymphocytes to
induce IgA production, and improve the level of IgA, this means microbiota can significantly effect on
the immune level of the body [58,59]. It has been reported that microbial-fermented concentrate can
significantly improve the levels of IgG, IgA, and IFN-γ in the cattle serum during the heat stress and IL-6
and CCL2 correlated with stressor-induced changes in Coprococcus, Pseudobutyrivibrio, and Dorea [60].
The present study also indicates that immunoglobulin (IgA and IgG) were decreased after transportation
(for IgG decreased 27.18%, 7.08%, and 37% compared with before transportation in NY, SC, and CY
groups, respectively). IgA positive correlated with Butyrivibrio 2 and Prevotella 1 and negatively
correlated with f.Bacteroidales BS11 gut group and Ruminococcaceae UCG-002, these correlations suggest
that transportation stress induces microbial composition and physiological characteristics and immune
activities in different cattle breeds.

Meanwhile, the factors of breeds significant effect on the level of IgA, although there were no
obvious differences among all cattle breeds, SC group had a higher concentration of IgA before or
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after transportation. There are many microbiotas associated with immune response-related diseases
and health conditions. Clostridia and SCFA can induce directly T (reg) anti-inflammatory bowel
disease, while the abundance of Bacteroidetes and Lachnospiraceae were decreased or the abundance
of Actinobacteria and Proteobacteria were increased the risk of Crohn’s disease or ulcerative colitis.
Our data suggested that butyric acid was positively correlated with Butyrivibrio 2 and f.Bacteroidales
BS11 gut group, TVFA was positively correlated with Lactobacillus [61,62].

Allergy was greater associated with a decrease of abundance Bifidobacterium adolescentis and
Lactobacillus [63]. It was evidenced that gram-negative Bacteroides and gram-positive Firmicutes
are the vast majority of commensals [54], they can stimulate the host immune system and maintain
the metastable number to help enhance immunity, and also influence the metabolism and providing
nutrients to the host [54,64]. The risk of metabolic syndrome type 2 diabetes and cardiovascular
disease due to obesity were increased when the balance of Firmicutes and Bacteroidetes changed [65].
Clostridium induced T cells to express more IL-10, which is an essential cytokine for anti-inflammatory
reaction, and we found Ruminococcaceae NK4A214 group, Butyrivibrio 2, Saccharo -fermentans,
Ruminococcaceae UCG-005, and Ruminococcaceae UCG-002 were belonged to Clostridiales order, while
IL-10 was positive correlated with Saccharofermentans and Ruminococcaceae UCG-002 [66].

In our research, both pro-inflammatory and anti-inflammatory cytokines were increased after
transportation. One possible cause is that transport stress leads to pro-inflammatory cytokines TNF-α,
IL-1β, and IL-6 induce an inflammatory reaction in all groups and stimulate the immune system to
increase more IL-4 and IL-10 to an anti-inflammatory response. In fact, this can permit the colonization
of pathogens in the gastrointestinal tract and can limit their excessive multiplication [67]. There was a
maximum variety for pro-inflammatory IL-1β and IL-6 in CY groups, and the factor of breeds significant
effect the concentration of TNF-α and IL-6 it means different breeds have a different inflammatory
reaction during transport stress. Meanwhile, transport stress increased the anti-inflammatory cytokines
IL-10 and IL-4, in CY groups the level of anti-inflammatory cytokines were the lowest in all groups after
transportation. It means CY had a more serious inflammatory reaction in three groups. Lactobacillus can
induce anti-inflammatory [68], and the abundance of Lactobacillus was positively correlated with IL-4
may be to induce an anti-inflammatory response. The abundance of Lactobacillus had the same variation
tendency, Bacteroides and Clostridium can ferment fiber carbohydrate and produce short-chain fatty
acids as acetic acid, propionic acid, and butyric acid [69]. This was mostly consistent with the changed
in rumen volatile fatty acids, in this study the concentration of butyric acid was increased it can restrain
of pro-inflammatory cytokine expression and inhibition of the NFkB pathway [70], and produce
mucin and antimicrobial peptides, while up-regulating the expression of tight junction proteins in the
epithelial barrier [71].

5. Conclusions

In the present study, we concluded that transportation stress caused to change the levels of the
hormone in all cattle, the concentrations of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were
increased in all cattle breeds meantime, in order to adapt the environment changed anti-inflammatory
cytokines IL-10 and IL-4 increased to regulate endocrine balance. Transport stress affects the microbial
flora, and the relative abundance of Bacteroidetes were decreased, while Firmicutes were increased
at the phyla level, and the metabolites of microorganisms were also changed. In addition the results
indicate that under transport stress cattle may suffer from inflammatory response through modulate
HPA axis, and also affects the secretion of hormone levels and cytokines, in the meantime, microbiota,
through regulating metabolite and indirectly affecting the immune functions, it is also concluded from
the present study that breeds factor affects the performance of stress resistance.
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