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Background. The prevalence of obesity and type 2 diabetes mellitus (T2DM) has become the most serious global public health issue.
In recent years, there has been increasing attention to the role of long noncoding RNAs (lncRNAs) in the occurrence and
development of obesity and T2DM. The aim of this work was to find new lncRNAs as potential predictive biomarkers or
therapeutic targets for obesity and T2DM. Methods. In this study, we identified significant differentially expressed mRNAs
(DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) between adipose tissue of individuals with obesity and
T2DM and normal adipose tissue (absolute log2FC ≥ 1 and FDR < 0:05). Then, the lncRNA-miRNA interactions predicted by
miRcode were further screened with a threshold of MIC > 0:2. Simultaneously, the mRNA-miRNA interactions were
explored by miRWalk 2.0. Finally, a ceRNA network consisting of lncRNAs, miRNAs, and mRNAs was established by
integrating lncRNA-miRNA interactions and mRNA-miRNA interactions. Results. Upon comparing adipose tissue from
individuals with obesity and T2DM and normal adipose tissues, 364 significant DEmRNAs, including 140 upregulated and
224 downregulated mRNAs, were identified in GSE104674; in addition, 231 significant DEmRNAs, including 146 upregulated
and 85 downregulated mRNAs, were identified in GSE133099. GO and KEGG analyses have shown that downregulated
DEmRNAs in GSE104674 and GSE133099 were associated with obesity- and T2DM-related biological pathways, such as
lipid metabolism, AMPK signaling, and insulin resistance. Furthermore, 28 significant DElncRNAs, including 14 upregulated
and 14 downregulated lncRNAs, were found. Based on the predicted lncRNA-miRNA and mRNA-miRNA relationships, we
constructed a competitive endogenous RNA (ceRNA) network, including five lncRNAs, ten miRNAs, and 15 mRNAs.
KEGG-GSEA analysis revealed that four lncRNAs (FLG-AS1, SNAI3-AS1, AC008147.0, and LINC02015) in the ceRNA
network were related to the biological pathways of metabolic diseases. Conclusions. Through ceRNA network analysis, our
study identified four new lncRNAs that may be used as potential biomarkers and therapeutic targets of obesity and T2DM,
thus laying a foundation for future clinical studies.

1. Introduction

Obesity is a complex multifactorial disease caused by an
imbalance between energy intake and consumption. In addi-
tion, obesity is a common complication of type 2 diabetes
mellitus (T2DM) patients and is significantly associated with
an increased risk of T2DM [1–3]. Studies have shown that
approximately 80%-90% of T2DM patients can be attributed

to overweight or obese [4]. Obese men are seven times more
likely to develop T2DM than individuals with a healthy
weight range, and obese women have a 12-fold higher risk
[5]. In the United States, the prevalence of obesity is as high
as 39.6% (41.1% for women and 37.9% for men) [6]. At pres-
ent, the trend of obesity seems to be stable in most developed
countries, but in developing countries, the prevalence of obe-
sity is increasing towards the current level in the United
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States [7]. The pathophysiological regulatory network of obe-
sity and T2DM has always been a hot spot for scientists and a
difficult point of research. An increasing number of studies
have suggested that long noncoding RNA (lncRNA) plays
an important role in the occurrence and development of obe-
sity and T2DM [8, 9].

lncRNAs are transcripts longer than 200 bases with
low protein-coding potential that were originally thought
to be by-products of RNA polymerase II transcription
and considered “noise” in gene transcription [8, 10–12].
Despite their lack of protein coding capacity, there is
increasing evidence that lncRNAs are widely involved in
the regulation of gene expression. lncRNAs are generally
considered to be important regulators of adipogenesis
and adipocyte metabolism [13–17]. lncRNAs also play a
role in the pathogenesis of T2DM and T2DM-related
complications [18–24]. Competitive endogenous RNA
(ceRNA) was first proposed by Salmena et al. [25] and
was defined as a class of noncoding RNAs that bind to
miRNA. In recent years, an increasing number of reports
have showed that lncRNAs can act as ceRNAs by compet-
itively binding to microRNAs (miRNAs), inhibiting
miRNA activity and regulating mRNA expression. The
lncRNA Gm15290 sponges miR-27b to promote PPARγ-
mediated adipogenesis in vitro and to increase fat deposi-
tion and body weight in high-fat diet- (HFD-) fed mice
[26]. The lncRNA H19 acts as a ceRNA of miR-30a to
enhance the expression of the downstream C8orf4, modulat-
ing adipogenic differentiation in human adipose tissue-
derived mesenchymal stem cells [27]. The lncRNA NEAT1-
miR-181b-mLST8 is involved in regulating the mTOR sig-
naling pathway in a T2DM-related ceRNA network [28].
The regulation of the lncRNA H19-miR-140-HE4 axis has a
certain effect on hyperglycemia [29]. The lncRNA MEG3
promotes ATF4 expression by competitively inhibiting
miR-214, leading to hepatic insulin resistance [30].

The theory of ceRNA has been widely used in the path-
ogenesis of diseases such as cancer, muscular dystrophy,
and neurodegenerative diseases. However, studies on ceR-
NAs in metabolic diseases, especially obesity and T2DM,
are limited. In this study, we identified differentially
expressed mRNAs and lncRNAs between adipose tissue of
individuals with obesity and T2DM and normal adipose tis-
sues. Then, the lncRNA-miRNA interactions predicted by
miRcode were further screened according to MIC > 0:2.
Simultaneously, the mRNA-miRNA interactions were
explored by miRWalk 2.0. Finally, a ceRNA network consist-
ing of lncRNAs, miRNAs, and mRNAs was established by
integrating lncRNA-miRNA interactions and mRNA-
miRNA interactions. The aim of this work was to find new
lncRNAs as potential predictive biomarkers or therapeutic
targets for obesity and T2DM.

2. Materials and Methods

2.1. Collection of RNA-seq Datasets. The Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) data-
base was searched to identify all datasets that have evalu-
ated mRNA, miRNA, and lncRNA expression in adipose
tissue samples of T2DM patients with obesity [31]. The
following medical subject headings (MeSH) were used for
the search: (“diabetes mellitus” OR “type 2, diabetes melli-
tus”OR “T2DM”) AND “obesity”AND (“adipose tissue”OR
“fatty tissue”). The search was restricted to human samples of
adipose tissue with a minimum of 3 healthy controls (no
T2DM or obesity) and 3 obese T2DM patients. Finally, two
RNA sequencing (RNA-seq) datasets, GSE133099 and
GSE104674, were obtained. The GSE104674 dataset contains
24 patient samples and 24 healthy control samples based on
the GPL16558 AB 5500 Genetic Analyzer (Homo sapiens)
platform. The GSE133099 dataset contains 6 patient samples
and 6 health control samples based on the GPL16791 Illu-
mina HiSeq 2500 (Homo sapiens) platform (dataset-related
information is listed in Table 1).

2.2. Identification of Differentially Expressed mRNAs and
lncRNAs. The ensemble ID of samples was converted
by annoE 1.0.3 (https://github.com/ChrisLou-bioinfo/
AnnoENSG2GENE) based on GENCODE 31 (19.06.19)
version [32]. The lncRNA, miRNA, and mRNA ensem-
ble IDs that were not included in the GENCODE database
were excluded. The edgeR, an R package for differential
expression analysis of RNA-seq expression profiles with
biological replication, was used to identify significant dif-
ferentially expressed mRNAs (DEmRNAs) and differen-
tially expressed lncRNAs (DElncRNAs) in samples from
patients with T2DM and obesity and in normal samples
[33]. All q values used the false discovery rate (FDR) to
correct the statistical significance for multiple testing.
DEmRNAs and DElncRNAs with absolute log2FC ≥ 1
and FDR < 0:05 were considered significant and were visu-
alized through volcano graphs.

2.3. Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes Analysis of DEmRNAs. clusterProfiler, an R pack-
age for comparing biological themes among gene clusters
[34], was used for Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis of the signif-
icant DEmRNAs. GO was used to describe gene functions in
three categories: biological process (BP), cellular component
(CC), and molecular function (MF). The GO and KEGG
analyses were searched for results at the significance level
set at adjusted P < 0:05.

2.4. lncRNA-miRNA-mRNA Network. The miRcode (http://
www.mircode.org/) was used to predict interactions between

Table 1: Basic information of the datasets from GEO.

Dataset ID Platform First author Year Region Sample size (T2DM/N) Types

GSE133099 GPL16791 Rajan MR 2019 Sweden 6/6 lncRNA, miRNA, mRNA

GSE104674 GPL16558 Stenvers DJ 2019 Netherlands 24/24 mRNA

T2DM: type 2 diabetes mellitus; N: normal.
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lncRNAs and miRNAs [35]. Moreover, the association
between each probe for the DElncRNA and each available
miRNA was assessed by using the maximal information coef-
ficient (MIC) computed by minerva, an R package [36, 37].
The lncRNA-miRNA interactions were screened for the sig-
nificance level set at MIC > 0:2 [38].

The mRNA-miRNA interactions were predicted by
miRWalk 2.0 (http://www.umm.uni-heidelberg.de/apps/
zmf/mirwalk/), which incorporates 12 algorithms for predic-
tion (TargetScan, RNAhybrid, RNA22, PITA, PicTar2, miR-
Walk, Microt4, miRNAMap, miRDB, mirBridge, miRanda,
and miRMap) [39]. The target miRNAs identified by at least
seven algorithms were selected for further analysis.

Then, a lncRNA-miRNA-mRNA network was estab-
lished by integrating lncRNA-miRNA interactions and
mRNA-miRNA interactions and was visualized with Cytos-
cape 3.7.1 software [40].

2.5. KEGG Analysis for the Target miRNAs. The mirPath v.3
(http://www.microrna.gr/miRPathv3/) was used for KEGG
analysis of the target miRNAs [41]. The KEGG analysis
results were searched for pathways at the significance level
of adjusted P < 0:05.

2.6. Gene Set Enrichment Analysis. clusterProfiler was
used for Gene Set Enrichment Analysis (GSEA) of the
lncRNAs in the lncRNA-miRNA-mRNA network [42].
The Spearman correlation coefficient between lncRNAs

and mRNAs in the GSE133099 dataset was calculated,
and the ranked gene list was generated according to the
correlation coefficient value. The KEGG-GSEA results
were searched for pathways at the significance level of
adjusted P < 0:05.

3. Results

3.1. Identification of Differentially Expressed mRNAs. Two
RNA-seq datasets (GSE133099 and GSE104674) were
included in our study. A total of 364 significant DEmRNAs,
including 140 upregulated and 224 downregulated mRNAs,
were found in the GSE104674 dataset (Figure 1(a)); in addi-
tion, 231 significant DEmRNAs, including 146 upregulated
and 85 downregulated mRNAs, were identified from the
GSE133099 dataset (Figure 1(b)).

3.2. GO and KEGG Analyses of Significant DEmRNAs. The
significantly upregulated and downregulated DEmRNAs of
GSE133099 and GSE104674 were utilized for GO and KEGG
analyses. For GO analysis of the GSE133099 dataset, when
considering BPs, the top three enriched terms of the down-
regulated DEmRNAs were the steroid metabolic process, ste-
roid biosynthetic process, and organic hydroxy compound
biosynthetic process; the top three enriched terms of the
upregulated DEmRNAs were the extracellular structure
organization, extracellular matrix organization, and circula-
tory system processes. With regard toMF, the downregulated
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Figure 1: The volcano plot of significant DEmRNAs in GSE104674 (a) and GSE133099 (b). Red dots represent upregulated mRNAs, and blue
dots represent downregulated mRNAs.
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DEmRNAs were enriched in organic acid binding, oxidore-
ductase activity acting on the CH-OH group of donors
NAD and NADP as acceptors, and oxidoreductase activity
acting on the CH-OH group of donors; the upregulated
DEmRNAs were enriched in extracellular matrix structural
constituents, receptor ligand activity, and integrin binding.
In terms of CCs, the extracellular matrix, collagen-
containing extracellular matrix, and endoplasmic reticulum
lumen are the top three enriched terms in upregulated

DEmRNAs only (Figures 2(a) and 2(b)). In the KEGG
pathway enrichment analysis of the GSE133099 dataset,
when considering downregulated DEmRNAs, the terpe-
noid backbone biosynthesis, circadian rhythm, AMPK sig-
naling pathway, and steroid biosynthesis were enriched.
With regard to upregulated DEmRNAs, the Hippo signal-
ing pathway, PI3K-Akt signaling pathway, and AGE-
RAGE signaling pathway in diabetic complications were
the top three enriched pathways (Figures 2(c) and 2(d)).
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Figure 2: GO and KEGG analyses for significant DEmRNAs in GSE104674. The bubble charts present GO analysis results of downregulated
(a) and upregulated mRNAs (b). The network charts present KEGG analysis results of downregulated (c) and upregulated mRNAs (d).
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In the GO analysis of the GSE104674 dataset, when
considering BPs, the top three enriched terms of the
downregulated DEmRNAs were cell chemotaxis, humoral
immune response, and response to metalions. With regard
to MF, the upregulated DEmRNAs were enriched in
substrate-specific channel activity, cation channel activity,
and passive transmembrane transporter activity. In terms
of CCs, the catenin complex was enriched in downregu-
lated DEmRNAs; the extracellular matrix, synaptic mem-
brane, and postsynaptic membrane were the top three
enriched terms in upregulated DEmRNAs (Figures 3(a)
and 3(b)). For KEGG pathway enrichment analysis of
the GSE104674 dataset, when considering downregulated
DEmRNAs, viral protein interactions with cytokine and
cytokine receptors, insulin resistance, cytokine-cytokine
receptor interactions, hematopoietic cell lineages, and
nitrogen metabolism were enriched. With regard to upreg-
ulated DEmRNAs, neuroactive ligand-receptor interactions
and Staphylococcus aureus infection were enriched
(Figures 3(c) and 3(d)).

3.3. Identification of mRNA-miRNA Interactions. GO and
KEGG enrichment analyses showed that significantly down-
regulated DEmRNAs in the GSE133099 and GSE104674
datasets were involved in obesity- and T2DM-related biolog-
ical pathways, such as lipid metabolism, AMPK signaling,
and insulin resistance. Therefore, the intersection of the
significantly downregulated DEmRNAs in the GSE133099
and GSE104674 datasets was selected for further analysis
(Figure 4(a)). Subsequently, the 15 selected mRNAs (BMP3,
CA3, NDRG4, RORB, LRP1B, NTRK3, RGS2, NPC1L1,
CECR2, SYT17, PCK1, SLC27A2, AZGP1, PFKFB3, and
ADH1B) were used to predict target miRNAs via miRWalk
2.0. A total of 1178 mRNA-miRNA pairs were found, and
these pairs included 720 distinct miRNAs (Figure 4(b)).

3.4. Identification and Analysis of lncRNA-miRNA
Interactions. The expression profiles of lncRNAs andmiRNAs
were obtained from the GSE133099 dataset. A total of 28 sig-
nificant DElncRNAs, including 14 upregulated and 14 down-
regulated lncRNAs, were found (Figure 4(c) and Table 2).
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Figure 3: GO and KEGG analyses for significant DEmRNAs in GSE133099. The bubble charts present GO analysis results of downregulated
(a) and upregulated mRNAs (b). The network charts present KEGG analysis results of downregulated (c) and upregulated mRNAs (d).
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Figure 4: Identification of mRNA-miRNA and lncRNA-miRNA interactions. The downregulation significant DEmRNAs of GSE104674 and
GSE133099 intersection was visualized by Venn plot (a). The mRNA-miRNA interactions predicted by miRWalk 2.0 were visualized by
UpSet plot (b). The volcano plot of significant DElncRNAs (c). Correlation analysis between lncRNA and miRNA based on MIC (d). The
lncRNA-miRNA interactions were visualized by alluvial diagram (e). KEGG pathway analysis for target miRNA (f).

6 Journal of Diabetes Research



Thereafter, the DElncRNA-miRNA interactions were
identified by MIC correlation testing and the miRcode web
tool prediction. Correlations between 16 DElncRNAs and
22 miRNAs were found after applying the MIC threshold
(Figure 4(d) and Table 3). Moreover, a total of 438
DElncRNA-miRNA interactions with 18 lncRNAs and 82
miRNAs were found by miRcode. The intersection of the
above two groups was selected for further analysis; these
intersections contained 35 DElncRNA-miRNA interactions
with five lncRNAs and 17 miRNAs (Figure 4(e)).

DIANA-miRPath was exploited to explore the signal-
ing pathways in which the 17 target miRNAs may be
involved. These target miRNAs were enriched not only
in cancer-related pathways but also in lipid metabolism-
related pathways, such as fatty acid biosynthesis, fatty acid
metabolism, steroid biosynthesis, and fatty acid elongation
(Figure 4(f)).

3.5. Construction of the lncRNA-miRNA-mRNA Network.
When the lncRNA-miRNA pairs and the mRNA-miRNA
pairs contained a common miRNA, they were selected for
further analysis. After integrating the lncRNA-miRNA

interactions and mRNA-miRNA interactions, a lncRNA-
miRNA-mRNA network with five lncRNAs (FLG-AS1,
SNAI3-AS1, AC008147.2, LINC02015, and ZNF295-AS1),
ten miRNAs (hsa-miR-103a-3p, hsa-let-7d-5p, hsa-miR-
365a-3p, hsa-miR-222-3p, hsa-miR-590-5p, hsa-miR-103a-
2-5p, hsa-miR-23a-3p, hsa-miR-23a-5p, hsa-miR-221a-3p,
and hsa-miR-27a-3p), and 15 mRNAs (BMP3, CA3,
NDRG4, RORB, LRP1B, NTRK3, RGS2, NPC1L1, CECR2,
SYT17, PCK1, SLC27A2, AZGP1, PFKFB3, and ADH1B)
was created (Figure 5).

3.6. Gene Set Enrichment Analysis. For GSEA analysis, there
were 39, 51, 67, 85, and zero enriched pathways for FLG-
AS1, SNAI3-AS1, AC008147.0, LINC02015, and ZNF295-
AS1, respectively (Figures 6(a)–6(d)). There were 16 intersec-
tions of enriched pathways of FLG-AS1, SNAI3-AS1,
AC008147.0, and LINC02015, including cellular senescence;
ubiquitin-mediated proteolysis; TGF-beta signaling; pyru-
vate metabolism; fatty acid degradation; peroxisomes; valine,
leucine, and isoleucine degradation; steroid biosynthesis;
fatty acid metabolism; fatty acid biosynthesis; glycerolipid
metabolism; PPAR signaling; carbon metabolism; micro-
RNAs in cancer; Wnt signaling; and glycolysis/gluconeogen-
esis (Figure 6(e)).

4. Discussion

With the development of the social economy, the inci-
dence of obesity and T2DM has increased. It has been
proven that the accumulation of adipose tissue, especially
abdominal fat, can exacerbate insulin resistance and
increase the risk of T2DM [43]. Obesity and T2DM tend
to promote the occurrence and development of tumors,
which imposes a huge economic burden to the world.
In recent years, with the deepening of basic research on
obesity and related metabolic diseases, lncRNAs have
been identified to have great potential as biomarkers in
fat metabolism-related diseases [12]. Recent studies have
shown that lncRNAs have clinical application value and
are convenient as biomarkers for disease diagnosis [44,
45]. Some lncRNAs have been reported to play a role
in obesity or T2DM. However, these studies did not link
obesity to T2DM. To understand more about the biolog-
ical effects of lncRNAs in T2DM patients with obesity,
we constructed a ceRNA network in this study, including
five lncRNAs, ten miRNAs, and 15 mRNAs.

The KEGG-GSEA results showed that four lncRNAs
(FLG-AS1, SNAI3-AS1, AC008147.0, and LINC02015) in
the ceRNA network were associated with cancer-related
pathways, such as cellular senescence, microRNAs in cancer,
and Wnt signaling. Other studies also showed that these
lncRNAs were associated with cancers. As shown in the liter-
ature, FLG-AS1 may be involved in the pathogenesis of oral
cancer [46]; SNAI3-AS1 can promote the growth and metas-
tasis of hepatocellular carcinoma by inducing tumor epithe-
lial to epithelial-mesenchymal transition [47]; LINC02015
is a protective factor for glioblastoma multiforme and is sig-
nificantly upregulated in metastatic esophageal squamous
cell carcinoma [48, 49]. In addition, ZNF295-AS1 is involved

Table 2: The significant DElncRNAs in T2DM with obesity.

lncRNA logFC logCPM P value FDR Change

AP001432.1 -3.84 -1.85 1:41 × 10-4 3:05 × 10-2 Down

AC092134.1 -2.94 0.69 6:96 × 10-5 1:77 × 10-2 Down

ZNF295-AS1 -2.58 1.29 2:32 × 10-4 4:35 × 10-2 Down

AL353898.3 -2.49 -1.03 1:14 × 10-4 2:58 × 10-2 Down

LINC01230 -2.44 3.41 1:28 × 10-5 5:30 × 10-3 Down

Z95114.3 -2.22 -0.34 3:49 × 10-5 1:07 × 10-2 Down

SNAI3-AS1 -2.04 1.25 2:31 × 10-4 4:35 × 10-2 Down

LINC02015 -1.93 5.23 7:79 × 10-6 3:65 × 10-3 Down

AC121247.1 -1.92 -0.15 7:91 × 10-5 1:92 × 10-2 Down

AL079343.1 -1.89 1.57 3:26 × 10-5 1:01 × 10-2 Down

AL355816.2 -1.66 0.53 5:35 × 10-6 2:69 × 10-3 Down

FLG-AS1 -1.51 0.66 2:61 × 10-4 4:70 × 10-2 Down

LINC01239 -1.41 5.73 2:07 × 10-5 7:46 × 10-3 Down

AC008147.2 -1.15 3.43 1:68 × 10-4 3:46 × 10-2 Down

AP001528.3 1.09 4.76 8:79 × 10-6 3:98 × 10-3 Up

EMX2OS 1.19 3.00 2:55 × 10-5 8:61 × 10-3 Up

AC017002.1 1.29 3.16 1:21 × 10-4 2:70 × 10-2 Up

AL031429.1 1.59 5.97 3:36 × 10-6 1:97 × 10-3 Up

LINC00968 1.96 5.12 7:07 × 10-12 5:63 × 10-8 Up

AL359091.4 2.07 -0.36 4:27 × 10-5 1:27 × 10-2 Up

AP000892.3 2.21 2.22 4:83 × 10-5 1:37 × 10-2 Up

AC025580.2 2.30 -0.46 2:47 × 10-4 4:50 × 10-2 Up

LINC01173 2.41 -0.04 1:83 × 10-4 3:71 × 10-2 Up

LINC01503 2.46 -0.02 1:15 × 10-4 2:58 × 10-2 Up

AC079298.3 2.55 1.98 6:62 × 10-6 3:18 × 10-3 Up

AC124276.2 2.74 -0.24 2:53 × 10-4 4:57 × 10-2 Up

LINC01705 2.89 -0.16 2:44 × 10-4 4:47 × 10-2 Up

AP000879.1 5.95 -0.61 1:71 × 10-10 7:94 × 10-7 Up
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in the pathogenesis of epithelial ovarian cancer [50] and lung
cancer [51] and can predict survival in patients with gastric
cancer [52]. Though they have not been reported in meta-
bolic diseases such as obesity and T2DM, KEGG-GSEA anal-
ysis revealed that these lncRNAs were related to the
biological pathways of metabolic diseases, such as glucose
metabolism-related pathways, lipid metabolism-related
pathways, the TGF-beta signaling pathway, and the PPAR
signaling pathway. Therefore, the lncRNAs in this network
may play an important role in obesity and T2DM. These
lncRNAs may act as ceRNAs to regulate other RNA tran-

scripts by competing for shared miRNAs, thus regulating
the pathogenesis of obesity and T2DM.

The miRNAs are highly conserved, single-stranded,
noncoding small RNAs with a length of 18 to 25 nt [53,
54] that can regulate gene expression by inhibiting the
translation of their target mRNAs or reducing their stability
at the posttranscriptional level. Studies have shown that
one-third of the human genome can be regulated by
miRNAs [55], which play an important regulatory role
in cancers and metabolic diseases. Most miRNAs in the
ceRNA network have been found to be closely related

Table 3: Basic information of the target miRNA with MIC > 0:2.

Symbol Genome coordinates Stem-loop sequence Mature sequence

MIR616 chr12: 57519163-57519259 hsa-mir-616
hsa-miR-616-5p

hsa-miR-616-3p

MIR6746 chr11: 61878216-61878278 hsa-mir-6746
hsa-miR-6746-5p

hsa-miR-6746-3p

MIR7111 chr6: 35470508-35470579 hsa-mir-7111
hsa-miR-7111-5p

hsa-miR-7111-3p

MIR3153 chr9: 89312225-89312306 hsa-mir-3153 hsa-miR-3153

MIRLET7D chr9: 94178834-94178920 hsa-let-7d
hsa-let-7d-5p

hsa-let-7d-3p

MIR222 chrX: 45747015-45747124 hsa-mir-222
hsa-miR-222-5p

hsa-miR-222-3p

MIR221 chrX: 45746157-45746266 hsa-mir-221
hsa-miR-221-5p

hsa-miR-221-3p

MIR5188 chr12: 124915547-124915659 hsa-mir-5188 hsa-miR-5188

MIR421 chrX: 74218377-74218461 hsa-mir-421 hsa-miR-421

MIR3609 chr7: 98881650-98881729 hsa-mir-3609 hsa-miR-3609

MIR635 chr17: 68424451-68424548 hsa-mir-635 hsa-miR-635

MIR4292 chr9: 136830957-136831023 hsa-mir-4292 hsa-miR-4292

MIR100 chr11: 122152229-122152308 hsa-mir-100
hsa-miR-100-5p

hsa-miR-100-3p

MIR7161 chr6: 158609707-158609790 hsa-mir-7161
hsa-miR-7161-5p

hsa-miR-7161-3p

MIR365A chr16: 14309285-14309371 hsa-mir-365a
hsa-miR-365a-5p

hsa-miR-365a-3p

MIR23A chr19: 13836587-13836659 hsa-mir-23a
hsa-miR-23a-5p

hsa-miR-23a-3p

MIR103A2 chr20: 3917494-3917571 hsa-mir-103a-2
hsa-miR-103a-2-5p

hsa-miR-103a-3p

MIR4725 chr17: 31575269-31575358 hsa-mir-4725
hsa-miR-4725-5p

hsa-miR-4725-3p

MIR590 chr7: 74191198-74191294 hsa-mir-590
hsa-miR-590-5p

hsa-miR-590-3p

MIR4451 chr4: 85722468-85722533 hsa-mir-4451 hsa-miR-4451

MIR27A chr19: 13836440-13836517 hsa-mir-27a
hsa-miR-27a-5p

hsa-miR-27a-3p

MIRLET7A2 chr11: 122146522-122146593 hsa-let-7a-2
hsa-let-7a-5p

hsa-let-7a-2-3p

8 Journal of Diabetes Research



to cancers [56–59]. In addition, Rohm et al. [60] found
that the expression of hsa-let-7d-5p was increased in the
experimental group compared with the undifferentiated con-
trol group during adipogenesis. Lozano-Bartolomé et al. [61]
showed that overexpression of miR-23a-3p was involved in
insulin signaling in adipocytes in vitro. miR-27a-3p plays
an important role in adipogenesis [62], regulation of fat func-
tion [63], increase in glycogen storage [64], and regulation of
insulin sensitivity [65]. miR-221-3p may affect insulin sensi-
tivity and lipogenesis by regulating ANGPTL8 [66, 67]. miR-
222-3p mediates the apoptosis of adipocytes in visceral fat
from obese individuals and may attenuate hyperglycemia in
a diabetic mouse model [68, 69].

Moreover, most of the mRNAs in the ceRNA network are
associated with obesity and T2DM. The decreased expression
of ADH1B in adipose tissue was related to obesity, systemic
insulin resistance, and a decline in β cell function [70], which
may be associated with prediabetes [71]. AZGP1 may stimu-
late lipolysis by regulating the expression of heat-related pro-
teins [72–75]. LRP1B gene polymorphism was associated
with insulin resistance, uncontrolled emotional eating, and
childhood BMI [76–78]. PCK1 has been proven to be a can-
didate genetic marker for the risk of diabetes and obesity

[79]. PCK1may also participate in the progression of diabetic
neuropathy [80]. PFKFB3 may be a gene that promotes
“healthy obesity” [81]. The overexpression of PFKFB3 may
lead to an increase in glycolysis [82]. In addition,
PFKFB3/iPFK2 is involved in the anti-inflammatory and
antidiabetic effects of PPARγ activation [83]. RGS2 may pro-
mote adipocyte differentiation and is a key regulator of pan-
creatic β cell survival [84]. SLC27A2 may be a key gene in the
PPAR signaling pathway, the adipocytokine signaling path-
way, and the insulin resistance pathway [85]. The downregu-
lation of SLC27A2 expression is negatively correlated with
diabetes and obesity-related traits, including insulin resis-
tance and BMI [86].

In summary, miRNAs and mRNAs in the ceRNA net-
work were closely related to metabolic diseases such as
obesity and T2DM. We have reason to believe that
lncRNAs in the ceRNA network can affect the occurrence
and development of obesity and T2DM by regulating the
activity of target miRNAs and the expression of target
mRNAs. However, there is no experimental evidence for
the interaction between miRNA-target pairs in the ceRNA
network. To improve reliability, these interactions should
be verified experimentally. This points the way for our
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NDRG4
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Figure 5: lncRNA-miRNA-mRNA network. This network consisting of five lncRNAs, ten miRNAs, and 15 mRNAs. The lncRNA-miRNA
interactions are indicated by dashed lines. The mRNA-miRNA interactions are indicated by solid lines. The solid red line indicates that these
interactions are confirmed by at least seven algorithms. The symbols used in the figure are indicated on the right.
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future research. In this paper, we constructed a ceRNA
network consisting of lncRNAs, miRNAs, and mRNAs,
identifying four obesity- and T2DM-related lncRNAs that

have not been reported in metabolic diseases. Therefore,
this study may provide new targets for the pathogenesis
and treatment of obesity and T2DM.
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