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Abstract: We report ultrasensitive and highly selective detection of testosterone based on
microring resonance sensor using molecularly imprinted polymers (MIP). A silicon-on-insulator
(SOI) micoring resonator was modified by MIP films (MIPs) on a surface. The MIPs was synthesized
by thermopolymerization using methacrylic acid as functional monomer and ethylene glycol
dimethacrylate as crosslinking agent. The concentration of detected testosterone varies from
0.05 ng/mL to 10 ng/mL. The detection limit reaches 48.7 pg/mL. Ultrahigh sensitivity, good
specificity and reproducibility have been demonstrated, indicating the great potential of making a
cost effective and easy to operate lab-on-Chip and down scaling micro-fluidics devices in biosensing.
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1. Introduction

Testosterone is a special steroid hormone that acts as the primary androgenic hormone. It is
mainly secreted through the reproductive organs, playing key roles in human health. The testosterone
levels depend on age, the typical value for male adults is 2.01~7.50 ng/mL [1]. Low testosterone
levels can lead to serious problems like underdeveloped genitalia, abnormalities in skeletal and
muscle development, and diminished masculinity [2]. A precise detection of testosterone levels is
thus important to the study of medical and sports endocrinology [3]. Traditional blood sampling is
limited as the testosterone levels are closely related to serum and plasma free concentrations [4]. A
non-invasive measurement in saliva is preferred, as the salivary testosterone mainly exists in the free
form rather than bounding to sex hormone binding globulin. This method is further beneficial as it
eliminates the need of specialist sampling equipment and allows for large quantities of acquisition.
Currently, numerous efforts have been devoted to detect testosterone, including enzyme-linked
immunosorbent assay (ELISA) techniques [5], radioimmunoassay (RIA) [6,7], high performance
liquid chromatography (HPLC) [8], gas chromatography-mass spectrometer (GC-MS) [9] and
liquid chromatography-mass spectrometry (LC-MS) [10]. These time-consuming procedures require
specialized personnel and expensive instrumentation, limiting them from been more extensively
used. A more easy-to-use, economical and rapid method is thus expected.

Microring resonator represents one of the most vibrant research fields for optical sensor due
to its supreme capability in label-free, rapid, ultra-sensitive and ultra-selective detection. The
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sensing light is coupled into the resonator with resonance condition, and constrained by waveguide
surface with an evanescent field exponentially decaying into the surrounding medium [11,12].
The resonant wavelength is therefore affected by the refractive index of the solution in contact
with the waveguide surface. Generally, microring resonators for sensing have focused on
proof-of-principle investigations, such as improving performance of resonator [13], measuring
in buffer of streptavidin-biotin interactions [14], detecting of proteins or virus [15]. Besides
demonstrating the ability to monitor in real-time for the chemical modification and biological
molecules binding of the sensor surface [16], the microring resonator also demonstrated to monitor
multiplexed molecular binding simultaneously [17]. Previous reports concerning the recognition
of biomolecules using microring resonator are mainly based on immunoassay techniques [18,19].
However, these recognition elements are time-consuming, unstable, typically possess high cost and
only work under physiological conditions. Therefore, a robust and cost-effective recognition element
is needed.

Molecular imprinting stands out as a promising method to create artificial receptors with
molecular recognition sites [20]. The template molecule, functional monomer, crosslinking agent
and initiating agent are aggregated into polymers followed by removing the templates to form
recognition cavities [21]. The achieved MIPs are robust, stable and reproducible compared with
natural material [22], representing an ideal alternative to biomolecules and having been widely used
in biosensors [23,24] and other areas [25]. Usually, MIPs are combined with sensor by two typical
methods. The first is that the pre-made MIP particles are immobilized on the surface of a sensor
by physical capture [26]. This method forms a thick film and suffers from low sensitivity. The
second utilizes in-situ self-assembly of MIPs directly in the surface of the sensor. Ultrathin film can be
obtained and better sensitivity has been demonstrated compared to physical capture [27,28]. Different
sensor structures have been applied in the second approach [24,29].

In this study, MIPs were prepared in the surface of microring resonator to detect testosterone
by thermal polymerization. The template molecule and functional monomer were firstly treated
with pre-polymerization to form self-assembled monolayer (SAM). The initiating agent was then
covalently coupled to the carboxyl-terminated SAM, followed by MIPs directly immobilized in
surface of the sensor during polymerization. The fabricated MIPs sensor was used to detect different
concentrations of testosterone. The selectivity of the MIPs sensor was also evaluated by detecting
microcystin-LR. Subsequently, the sensor was regenerated by an acetic acid-ethanol solution.
Ultrahigh sensitivity, good specificity and reproducibility have been demonstrated, promising for
real-time and low-cost salivary testosterone detection.

2. Experimental Section

2.1. Reagents

Methacrylic acid (MAA), Ethylene glycol dimethacrylate (EGDMA), acetonitrile and
acetic acid were purchased from Sigma-Aldrich (Schnelldorf, Germany). Testosterone and
2,2’-Azobisiobutyronitrile (AIBN) were purchased from Sinopharm Chemical Reagent Co. Ltd
(Shanghai, China). All other reagents were purchased from Sinopharm Chemical Reagents Co. Ltd
(Shanghai, China).

2.2. Instrumentation and Microring Sensor

The instrumentation to measure transmission spectrum of microring resonator contains a
tunable light source (Agilent 81600B) coupled into input waveguide and a power meter (Agilent
81635A) to collect the output light. Sensor chips employing grating couplers were manufactured on
silicon-on-insulator (SOI) wafers with a 220 nm-thick top silicon layer and 2 µm-thick buried oxide
layer, as shown in Figure 1. Figure 2a shows the optical microscope image of the microring resonator
sensor and Figure 2b shows the scanning electron microscopy (SEM) image of the waveguide. The
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radius of ring is 32 µm and the length of directional coupler is 8 µm. In addition, the width of
waveguide and gap are 500 nm. All the strip waveguides are deep etched with 220 nm except grating
couplers are shallow etched with 70 nm. The whole sensor is coated by SiO2 with 2 µm-thick upper
cladding layer while the microring resonator is exposed to the analyzed sample by removing the
upper cladding layer in the sensing window.
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2.3. MIPs Synthesis

At first, the sensor chip was cleaned by acetone, ethanol and deionized (DI) water for 5 min
individually, then dried using nitrogen. As illustrated by the schematic in Figure 3, for the preparation
of self-assembly, 5 mg of testosterone and 400 µL of functional monomer MAA were added into 2 mL
of acetronitrile and placed at 25 ˝C for 3 h. Subsequently, 0.5 mL of crosslinking agent EGDMA and
9 mg of initiating agent AIBN were appended to the solution. After being treated with nitrogen gas
for 10 min, the reaction solution was cast onto the surface of sensor chip. The sensor chip was placed
in a hot-air oven at 60 ˝C for 12 h for polymerization. After the polymerization, the sensor chip was
washed by an acetic acid-ethanol solution (volume ratio is 1:1) to remove potential residual organics
and the template molecule. At last, the sensor chip was rinsed by DI water and dried by nitrogen.
Furthermore, non-imprinted polymer films (NIPs) were synthesized without using the testosterone
as template molecule, and were used to evaluate the specificity of the sensor.
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2.4. Testosterone Detection

The solution of testosterone is made by serial dilution in DI water. Before each measurement,
the MIPs sensor was taken out and stabilized for several minutes. Then, the sensor chip is exposed
to testosterone solution with different concentrations. The transmission spectrum for each solution is
measured. The sensor chip is washed by an acetic acid-ethanol solution (volume ratio is 1:1), cleaned
by DI water and dried by nitrogen after each measurement.

3. Results and Discussion

3.1. Quantitative Detection

The adsorption properties of sensor were characterized by the shift of resonant wavelength.
The affinity binding of testosterone molecules was detected by a series of testosterone samples with
the concentrations ranging from 0.05 to 10 ng/mL. The transmission spectra and the wavelength
shift of the sensor chips coated by the MIPs and NIPs respectively, in the different concentrations of
testosterone were showed in Figure 4. From Figure 4a,b, a remarkable resonant wavelength shift of
sensor coated by the MIPs can be clearly observed when changing the concentration of testosterone
from 0.05 ng/mL to 0.2 ng/mL, but the resonant wavelength of the sensor coated by the NIPs is not
significantly shift. Furthermore, the sensitivity of sensor is S = 4.803 nm/ng¨ ml´1, which obtained by
fitting as shown in Figure 4c. We adopt the traditional method of using 3 times standard deviations σ
as a measure of the sensor resolution [30] R = 3σ = 0.234 nm, while σ = 0.078 nm depends on the total
system noise and the spectral resolution. Furthermore, the detection limit L = R/S = 48.7 pg/mL were
obtained. This result suggested that the microring resonator coated by MIPs can adsorb the template
molecules and ultrahigh sensitivity.
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3.2. Specific Recognition

The microcystin-LR was used to evaluate the specificity of the MIPs coated chip response. As
shown in Figure 5, results indicate that the sensor was only sensitive to testosterone, but not to
microcystin-LR molecular. The results strongly demonstrated that the sensor had a good specific
recognition for testosterone.
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Figure 5. Wavelength shift of MIPs film coated chips, for the detection of different concentration of
testosterone and microcystin-LR.

3.3. Reproducibility

To evaluate the reproducibility of the MIPs, the microring resonator chip was regenerated by
rinsing in an acetic acid-ethanol solution (volume ratio is 1:1) and DI water, dried by nitrogen after
each measurement. The transmission spectrum was re-measured in the same condition and the
comparison of resonant wavelength shift was shown in Figure 6. The fabrication process of MIPs
indicated that the MIPs can be regenerated many times. However, the response of the sensor has a
drift for 1 ng/mL testosterone in the test of the reproducibility as shown in Figure 6 because the MIPs
were damaged a little when testing. This limits the maximal number of the sensor regenerations.
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4. Conclusions

The reported biosensor has achieved a low detection limit of 48.7 pg/mL based on a combination
of microring resonator and self-assembled MIPs. The MIPs can be easily grown on the sensor surface
with simple procedures. Ultrahigh sensitivity, good specificity and reproducibility of the sensor have
been demonstrated. This robust, stable and reproducible assay system is strategically important for
salivary testosterone detection in near real-time clinical diagnostics.
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