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Abstract. The aim of the present study was to examine the 
protective effects and mechanism of sika deer (Cervus nippon 
Temminck) velvet antler polypeptides (VAPs) against MPP+ 
exposure in the SH-SY5Y human neuroblastoma cell line. 
MPP+ cytotoxicity and the protective effects of VAPs on 
the SH-SY5Y cells were determined using an MTT assay. 
Cell apoptosis and mitochondrial membrane potential were 
detected using Hoechst 33342 and Rhodamine123 staining, 
respectively. Endoplasmic reticulum (ER) stress-related 
reactive oxygen species (ROS) production in the SH-SY5Y 
cells was detected using 2',7'-dichlorodihydrofluorescein 
diacetate fluorescent probes. The expression levels of proteins, 
including caspase-12, glucose regulated protein 78 (GRP78), 
CCAAT/enhancer binding protein homologous protein 
(CHOP) and phosphorylated c-Jun N-terminal kinase (p-JNK) 
were detected using western blot analysis. The results showed 
that the half inhibitory concentration of MPP+ at 72 h was 
120.9 µmol/l, and that 62.5, 125, and 250 µg/ml concentra-
tions of VAPs protected the SH-SY5Y cells under MPP+ 
exposure. When exposed to 120.9 µmol/l MPP+, changes in 
cell nucleus morphology, mitochondrial membrane potential 
and intracellular ROS were observed. VAPs at concentrations 
of 62.5, 125, 250 µg/ml reduced this damage. Western blot 
analysis showed that protein expression levels of caspase-12, 
GRP78 and p-JNK were upregulated in the SH-SY5Y cells 

exposed to 120.9 µmol/l MPP+ for 72 h. In addition, 62.5, 125, 
and 250 µg/ml VAPs downregulated the expression levels of 
caspase-12 and p-JNK in a concentration- dependent manner, 
particularly the p-JNK pathway. The effects of VAPs on 
GRP78 and CHOP were weak. In conclusion, MPP+-induced 
SH-SY5Y cell death may be linked to ER stress. VAPs 
prevented MPP+-induced SH-SY5Y cell death by affecting 
the p-JNK pathway and caspase-12-mediated apoptosis. These 
findings assist in understanding the mechanism underlying the 
protective effect of VAPs on neurons.

Introduction

Velvet ant ler polypept ides (VAPs) of sika deer 
(Cervus nippon Temminck) are extracts obtained from the 
traditional Chinese medicine, sika deer velvet antler. VAPs 
have several biological benefits, including the perfect regene­
ration of neurons, blood vessels, connective tissue, cartilage 
and bones (1-3), in addition to immunomodulatory effects (4). 
However, their neuroprotective effects in neurodegenerative 
diseases remain to be reported.

Parkinson's disease (PD) is a general neurodegenerative 
disease affecting the aged population worldwide. The patholog-
ical features of PD involve the loss of dopaminergic neurons in 
the substantial nigra (5,6), causing decreased dopamine levels 
in the striata. Until now, the mechanism underlying the onset 
of PD remained to be fully elucidated. Studies have revealed 
the types of mechanisms involved in the pathogenesis of PD, 
including mitochondrial dysfunction, oxidative stress and the 
ubiquitin-proteasomal pathway (7-10). Misfolded proteins 
associated with endoplasmic reticulum (ER) stress have been 
investigated in detail for their actions in PD-associated neuronal 
cell death (11,12). Accumulated misfolded proteins cause 
dysregulation of ER homeostasis, triggering ER stress. ER 
stress initiates the conserved cellular process of the unfolded 
protein response (UPR) to maintain a stable intracellular 
environment (13,14). In this process, a molecular chaperone, 
glucose-regulated protein 78 (GRP78), enables misfolded 
proteins to restore their naive structures and functions. If UPR 
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protracts or fails to repair misfolded proteins, programmed ER 
stress-associated cell death occurs. The cell death pathways 
include the downstream PKR-like endoplasmic reticulum 
kinase (PERK), activating transcription factor 6 (ATF6) and 
type I transmembrane protein kinase/endoribonuclease (IRE-1) 
signaling pathways (15,16). In addition, ER stress-associated 
cell apoptosis involves changes in mitochondrial membrane 
potential at the initial stage of apoptosis.

Based on the above understanding, the 1-methyl-4-phe-
nylpyridinium (MPP+), a neurotoxin most commonly used 
for establishment of PD models in vitro, has been utilized to 
establish a PD model in SH-SY5Y human neuroblastoma 
cells (17-19). In the present study, SH-SY5Y cells exposed to 
MPP+ were selected for comparison of the features of ER 
stress-mediated cell death. The neuroprotective effect of sika 
deer velvet antler polypeptides (VAPs) was evaluated to develop 
a potential therapeutic agent for the treatment of PD.

Materials and methods

VAPs. The VAPs of sika deer (Cervus nippon Temminck) were 
extracted according to the method described previously (20). 
Briefly, 100 g fresh sika deer velvet antler (Institute of Special 
Animal and Plant Sciences of CAAS, Changchun, China) were 
cut into 0.5 cm-thick sections, washed with cold distilled water 
to remove blood, and then homogenized in ice-cold acetic acid 
solution (pH 3.5) using a colloid mill (Shanghai Nuoni Light 
Industrial Machinery Co., Ltd., Shanghai, China). The collected 
homogenates were centrifuged at 4,000 x g for 10 min at 4˚C 
and the supernatants were collected. Following ammonium 
sulfate precipitation, dialysis was performed in a Spectra/Por 
dialysis membrane 1000 Da (Spectrum Laboratories, Inc., 
Rancho Dominguez, CA, USA). Gel filtration was performed 
on a Sephadex G-50 column (Sigma-Aldrich; Merck KGaA, 
Darmstadt, Germany) to remove salts in the VAP extracts. The 
VAPs were lyophilized and these VAPs consisted of a single 
chain of 32 amino-acid residues: VLSAT DKTNV LAAWG 
KVGGN APAFG AEALE RM (20).

Cell culture. The SH-SY5Y human neuroblastoma cells 
were donated by the Second Hospital of Jilin University 
(Changchun, China) and cultured in Dulbecco's modified 
Eagle's medium (Thermo Fisher Scientific Inc., Waltham, 
MA, USA) containing 10% fetal calf serum (Thermo Fisher 
Scientific Inc.), 100 U/ml penicillin and 100 µg/ml strepto-
mycin at 37˚C in a 5% CO2 atmosphere. The present study 
was approved by the Experimental Animal Management 
Committee of Jilin University (Changchun, China) and the 
Experimental Animal Welfare and Ethics Committee of Jilin 
University. All animal care and experimental procedures were 
in accordance with the Administration of Affairs Concerning 
Experimental Animals of the State Science and Technology 
Commission of the People's Republic of China (1988) (21,22).

MTT assay. Cell viability was measured using an MTT assay. 
Briefly, the SH­SY5Y cells were seeded into a 96­well plate with 
5,000 cells per well. The half inhibitory concentration (IC50) 
of MPP+ in the SH-SY5Y cell lines was measured, which was 
120.9 µmol/l. The cells were subsequently exposed to VAPs at 
concentrations of 0, 15.6, 31.2, 62.5, 125, 250, 500, 1,000 and 

2,000 µg/ml, respectively, together with 120.9 µmol/l MPP+ 
for 72 h at 37˚C. Subsequently 10 µl MTT solution (5 mg/ml; 
Sigma-Aldrich; Merck KGaA) was added into each well for 
a further 4 h. Finally, the medium was discarded and 200 µl 
DMSO was added into each well to dissolve the formazan. The 
absorbance was measured at 490 nm using a microplate reader 
(Tecan Austria GmbH, Grödig, Austria) and cellular viability 
was determined.

Hoechst 33342 staining. Hoechst 33342 is a fluorescent probe, 
which binds to the nucleus. The normal nuclei and condensed 
nuclei of apoptotic cells are distinguishable using Hoechst 
33342 staining. In the present study, the SH-SY5Y cells were 
plated in a 24-well plate at a density of 105 cells per well. 
Following incubation overnight, the cells were exposed to 0, 
62.5, 125 and 250 µg/ml VAPs, with or without 120.9 µmol/l 
MPP+ for 72 h. The cells were then incubated with 10 µg/ml 
Hoechst 33342 in the dark for 15 min at 37˚C, following which 
they were washed 3 times with PBS and fixed in 1% para-
formaldehyde. Images were captured with a fluorescent 
microscope (Olympus Corporation, Tokyo, Japan). A total 

Figure 1. Protective effects of VAPs against MPP+-induced cytotoxicity 
in SH-SY5Y human neuroblast cells. (A) Half inhibitory concentration of 
MPP+ was 120.9 µmol/l at 72 h. (B) SH-SY5Y cells were treated with 0, 
15.6, 31.2, 62.5, 125, 250, 500, 1,000 and 2,000 µg/ml VAPs together with 
120.9 µmol/l MPP+. VAPs concentrations of 125, 250 and 500 µg/ml signifi-
cantly increased cell viability. Data are presented as the mean ± standard 
deviation (n=3). *P<0.05, compared with MPP+-treated SH-SY5Y cells. 
MPP+, 1-methyl-4-phenylpyridinium; VAPs, velvet antler polypeptides.
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of 200 cells were counted in each image and the numbers of 
apoptotic cells were calculated using Image-Pro Plus software 
version 6.0 (Media Cybernetics, Inc, Rockville, MD, USA) in 
each image for measurement of apoptotic rate.

Rhodamine123 staining. Rhodamine123 is a fluorescent probe, 
which is used in the determination of mitochondrial membrane 
potential. The procedure for the Rhodamine123 staining was 
similar to that of the Hoechst 33342 staining section, although 
the cells were incubated with 0.1 µg/ml Rhodamine123. 
Images were captured with a fluorescent microscope (Olympus 
Corporation). The fluorescent intensity of each image was 
measured using ImageJ software version 1.37 (National 
Institutes of Health, Bethesda, MA, USA).

2',7'‑dichlorodihydrofluorescein diacetate (H2DCFDA) 
staining. H2DCFDA is a fluorescent probe used to detect the 
production of ROS. The procedure used for the H2DCFDA 
staining in the present study was similar to that described 
above for the Hoechst 33342 staining section, however, the 
cells were incubated with 10 µmol/l H2DCFDA in the dark for 
30 min at 37˚C. The fluorescence intensity of the images was 
analyzed, as described for the Rhodamine123 staining above.

Western blot analysis. The SH-SY5Y cells were plated in a 6-well 
plate at a density of 2x105 cells/well. The cells were exposed to 0, 
62.5, 125 and 250 µg/ml VAPs with 120.9 µmol/l MPP+ for 72 h. 
The expression of ER stress-related proteins was then detected 
using western blot analysis. Briefly, the cells were precipitated 
and suspended in ice-cold radioimmunoprecipitation assay 
lysis buffer containing 1 mmol/l phenylmethanesulfonyl fluo-
ride (Sangon Biotech Co., Ltd., Shanghai, China). Following 
centrifugation at 12,000 x g for 30 min at 4˚C, the supernatants 
were collected. The protein concentration was determined 
using the Bradford assay. The proteins were denatured at 
100˚C for 5 min. Equal amounts of extracted protein samples 
(40 µg) were separated by 10% SDS-PAGE and transferred 
onto polyvinylidene difluoride membranes. The membranes 
were then incubated with the following primary antibodies 
(Thermo Fisher Scientific Inc., Rockford, IL, USA) at 4˚C 
overnight: Anti-phosphorylated (p)-JNK/SAPK chicken 
polyclonal antibody (1:1,000; cat no. PA1-9594), anti-CHOP 
mouse monoclonal antibody (1:1,000; cat no. MA1-250), 
anti-Glucose regulated protein rabbit polyclonal antibody 
(1:100; cat no. PA5-40336), anti-caspase-12 rat monoclonal 
antibody (1:1,000; cat no. MA1-24704) or anti-β-actin antibody 
(1:5,000; cat no. bs-0061R; Beijing Biosynthesis Biotechnology 

Figure 2. VAPs inhibit MPP+-induced apoptosis in SH-SY5Y cells. (Aa) No apoptosis was observed in normal cells. (Ab) Following exposure to 120.9 µmol/l 
MPP+, cells exhibited nuclear condensation and nuclear fragmentation. Exposure to VAPs concentrations of (Ac) 62.5, (Ad) 125 and (Ae) 250 µg/ml with 
120.9 µmol/l MPP+ reduced the apoptotic rates to 40.2±6.9, 25.7±7.4 and 9.0±1.4%, respectively. The white arrow indicates apoptotic cells. (B) Apoptotic rate 
of the cells following exposure to 120.9 µmol/l MPP+ was 55.7±11.4%. #P<0.05, compared with the normal control; ΔP<0.05, compared with the MPP+-treated 
SH-SY5Y cells. Scale bar, 20 nm. MPP+, 1-methyl-4-phenylpyridinium; VAPs, velvet antler polypeptides.
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Co., Ltd., Beijing, China). The membranes were then incubated 
with horseradish peroxidase-conjugated anti- mouse/rabbit 
immunoglobulin G (1:100; cat no. PV-6000; Beijing Zhong 
Shan-Golden Bridge Biological Technology Co. Ltd, Beijing, 
China) at room temperature for 2 h. Protein bands were visual-
ized using SuperSignal West Pico Chemiluminescent Substrate 
(Thermo Fisher Scientific Inc.). Blots were semi­quantified 
by densitometry using Image-Pro Plus software version 6.0. 
β-actin was used as the loading control.

Statistical analysis. Data are presented as the mean ± stan-
dard deviation of 3 independent experiments. SPSS software 
version 13.0 (SPSS, Inc., Chicago, IL, USA) was used for 
statistical analysis. The statistical significance of the differe­
nces between groups was assessed using one-way analysis of 
variance was performed followed by a post hoc Dunn's test 
for multiple comparisons. P<0.05 was considered to indicate a 
statistically significant difference.

Results

VAPs protect SH‑SY5Y cells against MPP+‑induced cyto‑
toxicity. To measure the protective effects of VAPs against 
MPP+-induced cytotoxicity, the viability of SH-SY5Y cells 

were determined using an MTT assay. The IC50 of MPP+ 
reagent in SH-SY5Y cells was 120.9 µmol/l at 72 h. Following 
exposure to 120.9 µmol/l MPP+, SH-SY5Y cell viability was 
markedly decreased. A series of VAP concentrations was 
then used to treat SH-SY5Y cells, together with 120.9 µmol/l 
MPP+. Concentrations in the range of 0-500 µg/ml protected 
the SH-SY5Y cells from MPP+-induced damage, and the 
protective effects of 125, 250 and 500 µg/ml VAPs were 
significant (P<0.05; Fig. 1). High VAP concentrations (1,000 
and 2,000 µg/ml) resulted in poor protection. Therefore, VAP 
concentrations of 62.5, 125 and 250 µg/ml were used in the 
subsequent experiments.

VAPs suppress MPP+‑induced apoptosis. The normal nuclei of 
SH-SY5Y cells are shown in Fig. 2Aa. Following exposure of 
cells to 120.9 µmol/l MPP+, marked nuclear condensation was 
observed in the SH-SY5Y cells (Fig. 2Ab), indicating severe 
apoptosis. VAPs at concentrations of 62.5, 125 and 250 µg/ml 
(Fig. 2Ac-e) relieved cell apoptosis in a concentration-depen-
dent manner, of which 125 and 250 µg/ml VAPs decreased the 
number of apoptotic cells significantly (P<0.05; Fig. 2B).

VAPs decrease MPP+‑induced mitochondrial membrane 
potential dissipation. The normal nuclei presented with bright 

Figure 3. VAPs inhibit MPP+-induced collapse of MMP in SH-SY5Y cells. (Aa) Normal cells served as normal controls. (Ab) 120.9 µmol/l MPP+ induced 
the loss of MMP. VAPs concentrations of (Ac) 62.5, (Ad) 125 and (Ae) 250 µg/ml attenuated MPP+­induced loss of MMP. (B) Rhodamine 123 fluorescence 
was also detected using NIH Image J software. *P<0.05, compared with normal controls; ΔP<0.05, compared with the MPP+-treated SH-SY5Y cells. MPP+, 
1-methyl-4- phenylpyridinium; VAPs, velvet antler polypeptides; MMP, mitochondria membrane potential.
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intracellular fluorescence, as shown in Fig. 3Aa. Following 
exposure to 120.9 µmol/l MPP+, dissipation of mitochondrial 
membrane potential was observed in SH-SY5Y cells, and 
this collapse was identified by a decrease of Rhodamine123 
fluorescent intensity (Fig. 3Ab). Treatment with VAPs at 
concentrations of 62.5, 125 and 250 µg/ml (Fig. 3Ac-e) 
restored the mitochondrial membrane potential, partially or 
completely, in a concentration-dependent manner, of which 
125 and 250 µg/ml restored the mitochondrial membrane 
potential significantly (P<0.05; Fig. 3B).

VAPs suppress MPP+‑induced ROS production. Compared 
with normal SH-SY5Y cells (Fig. 4Aa), marked ROS produc-
tion was observed in the MPP+-treated SH-SY5Y cells 
(Fig. 4Ab). VAP concentrations of 62.5, 125 and 250 µg/ml 
(Fig. 4Ac-e) reduced the level of intracellular ROS in a concen-
tration-dependent manner (Fig. 4B).

Expression of proteins. The SH-SY5Y cells were exposed to 
MPP+ at the same time as VAPs were added. The expression 
levels of ER stress-related proteins CHOP, GRP78, caspase-12 
and p-JNK were detected using western blot analysis. The 
results of the western blot analysis are shown in Fig. 5 and 
Table I. Under exposure of MPP+ alone, the expression levels 

of caspase-12, GRP78 and p-JNK in the SH-SY5Y cells were 
upregulated, compared with those in the normal control, 
although no difference was observed in the expression of 
CHOP. VAPs intervention at concentrations of 62.5, 125 
and 250 µg/ml reduced the expression levels of p-JNK in a 
concentration-dependent manner. The levels of GRP78 in the 
62.5, 125 and 250 µg/ml VAP groups were marginally reduced, 
compared with those in the MPP+-only group, in a concentra-
tion- dependent manner, however, they were higher than those 
in the normal control. The levels of caspase-12 in the 62.5, 125 
and 250 µg/ml VAP groups were downregulated, compared 
with in the MPP+-only group in a concentration-dependent 
manner. The level of caspase-12 in the 250 µg/ml VAP group 
was downregulated, compared with that in the MPP+-only 
group control. VAP treatment had no significant effect on the 
expression of CHOP (Fig. 5 and Table I).

Discussion

With the problems associated with an increasingly aging 
population, PD has become a socio-economic burden on 
society. Although certain pathological mechanisms are 
involved in the onset of the sporadic form of PD, dopamine 
replacement therapy (DRT) is the most effective treatment for 

Figure 4. VAPs prevent against MPP+-induced ROS production in SH-SY5Y cells. (Aa) Normal cells were used as normal controls. (Ab) 120.9 µmol/l MPP+ 
induced intracellular ROS production, characterized by increased H2DCFDA metabolites showing DCF fluorescence. VAPs concentrations of (Ac) 62.5, 
(Ad) 125 and (e) 250 µg/ml reduced the levels of ROS in MPP+-treated SH-SY5Y cells. (B) Reduction in ROS occurred in a concentration-dependent manner. 
*P<0.05, compared with the normal controls. MPP+, 1-methyl-4-phenylpyridinium; VAPs, velvet antler polypeptides; ROS, reactive oxygen species.
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PD (23,24). Levodopa (L-dopa) is the primary medicine used 
for the treatment of behavior disorders in patients with PD. The 
molecular mechanism of L-dopa treatment involves supplying 
dopamine to patients with PD suffering dopaminergic neuron 
loss (25-27). However, DRT is unable to prevent the apoptosis of 
dopaminergic neurons, and DRT itself has adverse side-effect 
profiles, including on­off phenomena, resulting in a require-
ment for increased L-dopa dosage (28-30). Therefore, novel 
therapeutic agents with lower adverse effects are required for 
the treatment of PD.

In the present study, VAPs separated from silka deer velvet 
antler were used to protect SH-SY5Y human dopaminergic 
neuroblastoma cells from cytotoxicity induced by MPP+ 
intervention. This was based on the rapid growth feature and 
abundance of growth factors of velvet antler (31-34). Studies 
have shown that VAPs and velvet antler proteins facilitate 
the growth rate of neural stem cells, hippocampal neuronal 
cells and PC12 cells (35-37). VAPs also exhibit neuroprotec-
tive effects against β-amyloid via regulating the expression 
of caspase-3 (38). However, there are no reports regarding 
the potential protective effect of VAPs in a PD model. The 
present study observed a decrease in cell survival, collapse of 
mitochondrial membrane potential and elevated intracellular 
ROS in SH-SY5Y cells in response to MPP+ exposure. The 
VAPs protected the SH-SY5Y cells against MPP+-induced cell 
death, mitochondrial potential collapse and ROS production, in 
a concentration- dependent manner. These data substantia ted 
the protective activity of VAPs in neuronal cells. These results 
are the first, to the best of our knowledge, to show the neuro-
protective effects of VAPs against a neurotoxin-induced PD 
model in vitro. In the present study, the cytotoxic effect of 
MPP+ at 72 h was determined as 120.9 µmol/l and the protec-
tive effects of VAPs were evident at 72 h.

Studies have shown that ER stress has a causative role in 
the pathogenesis of PD (7,39,40). This has been confirmed 
by post-mortem investigations in patients with PD (41,42). A 
mild, early ER stress response is essential for cell defense 
against stimuli and misfolded/unfolded protein processing. 
However, prolonged ER stress leads to the activation of UPR 
and triggers cell death downstream signaling pathways, 
including the PERK, ATF6 and IRE-1 pathways. In turn, 
ER stress-related markers, for example, caspase-12, GRP 
78, CHOP and JNK, are activated (43,44). In the present 
study, SH-SY5Y cells exposed to MPP+ expressed higher 

levels of caspase-12, GRP78 and p-JNK. VAP intervention 
downregulated caspase-12 and p-JNK in a concentration- 
dependent manner, particularly p-JNK, indicating that the 
VAPs had an effect on the p-JNK pathway and prevented 
caspase-12-mediated apoptosis in the SH-SY5Y cells. The 
marginal downregulation of GRP78 in the VAP treatment 
groups, compared with the MPP+-only group was concentra-
tion-dependent, however, the levels of GRP78 in the VAPs 
groups remained higher, compared with that in the normal 
control, suggesting that VAPs had a weak effect on GRP78 
signaling. No changes in the expression levels of CHOP 
were observed in the cells, which may be due to missing the 
optimal detection time point.

MPP+ is an inducing agent of ER stress, which can 
induce a rise in cytosolic Ca2+ and the production of ROS, 

Figure 5. Western blot analysis of the effects of VAPs on ER stress-related 
proteins, (A) caspase­12, (B) GRP78, (C) CHOP, (D) p­JNK and (E) β­actin 
in SH-SY5Y cells exposed to MPP+. Cells were incubated with 62.5, 125 
and 250 µg/ml VAPs together with 120.9 µmol/l MPP+. MPP+ upregulated 
the protein expression levels of caspase-12, GRP78 and p-JNK. VAPs 
downregulated the expression of p-JNK in SH-SY5Y cells in a concentra-
tion-dependent manner. Levels of caspase-12 decreased rapidly up to a VAPs 
concentration of 250 µg/ml. Levels of GRP78 showed no marked reduc-
tion following exposure to VAPs. No changes in the expression of CHOP 
expressions were observed. MPP+, 1-methyl-4-phenylpyridinium; VAPs, 
velvet antler polypeptides; GRP78, glucose regulated protein 78; CHOP, 
CCAAT/enhancer binding protein homologous protein; p-JNK, phosphory-
lated c-Jun N-terminal kinase.

Table I. Results of western blot analysis showing relative grayscales, compared with β-actin.

120.9 µmol/l MPP+ VAPs (µg/ml) Caspase-12a GRP78 CHOP p-JNKa

- - 1.23 0.55 0.87 0.53
+ - 1.62 1.13 0.78 0.63
+ 62.5 1.51 1.09 0.88 0.47
+ 125.0 1.14 0.85 0.71 0.27
+ 250.0 0.61 0.73 0.78 0.23

aP<0.05, vs. cells treated with 120.9 µmol/l MPP+. Significant change in protein levels was observed in VAPs in a concentration­dependent 
manner. MPP+, 1-methyl-4-phenylpyridinium; VAPs, velvet antler polypeptides; GRP78, glucose regulated protein 78; CHOP, CCAAT/enhancer 
binding protein homologous protein; p-JNK, phosphorylated c-Jun N-terminal kinase.
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triggering the activation of calpain (45). There is evidence 
substantiating MPP+-induced calpain activation in dopa-
minergic MN9D neuronal cells, the process of which was 
inhibited by Ca2+ chelator (46). Therefore, it is possible that the 
Ca2+-calpain-caspase-12 pathway is involved in the activation 
of caspase-12 in SH-SY5Y cells exposed to MPP+, and that 
VAPs have protective effects. However, previous evidence also 
suggests that ER Ca2+ leakage-evoked cell apoptosis is indepen-
dent of caspase-12 activation (47). Therefore, the mechanism 
underlying the toxic effects of MPP+ in SH-SY5Y cells and the 
protective role of VAPs require further elucidation.
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