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Abstract

Objectives: Microarray produces a large amount of gene expression data, containing various biological implications. The
challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification
model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using
multiple sclerosis as an example.

Materials and methods: Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a
total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were
analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver
Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with
multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified
genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was
determined.

Results: An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two
phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor
interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established
based on the featured genes and gave a practical accuracy of ,86%. This binary classification model also outperformed the
other models in terms of Sensitivity, Specificity and F1 score.

Conclusions: The combined analytical framework integrating feature ranking algorithms and Support Vector Machine
model could be used for selecting genes for other diseases.
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Introduction

As powerful tools for facilitating the discovery of totally novel

and unexpected functional roles of genes, gene expression

microarrays have been applied to a range of applications in

biomedical research and produce a large number of databanks

containing various amounts of hidden biological information [1].

The key resides in the ability to analyze large amounts of data to

detect a panel of genes capable of discriminating diseases. This

study proposed a modeling framework for establishing a robust

classification model, for identification of disease-related genes. We

utilized the proposed modeling approach for identification of

genes involved in multiple sclerosis.

Multiple sclerosis is characterized as an inflammatory disorder

of the central nervous system in which focal lymphocytic

infiltration leads to damage of myelin and axons [2]. The trigger

for multiple sclerosis is unclear so far, although it is generally

evaluated as an autoimmune disease [3]. At present the diagnosis

of multiple sclerosis usually involves the tests of lumbar puncture

or magnetic resonance imaging scan of the brain function. The

diagnostic ways are either clinically invasive or expensive for

multiple sclerosis patients. High throughput technique of micro-

array has been applied to measure gene expression patterns of

multiple sclerosis, and the challenge is to develop more effective

approaches to identify a panel of genes that go beyond over-or-

under expressing genes from the big data. In this study we

reanalyzed the microarray dataset of multiple sclerosis from

Brynedal et al. [4] using data mining methods, and selected

discriminative genes. The computationally intensive methods of

data mining provide us an effective way to rank features, allowing

a careful selection of feature sets for optimal classification fitting.

Therefore, we were able to investigate some genes with potential

biological implications from microarray data. The aim of this

study was to build a robust classification model with characteristics

of feature selection and sample prediction.

Prior studies showed that combinatorial gene selection methods

could be effectively applied to identify the gene signature for

disease [5]. Zhou et al. [6] conducted a union method combining

two feature selection algorithms, and identified significant risk
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factors for osteoporosis from a very large amount of candidates.

This work introduced a combinational strategy to predict multiple

sclerosis samples using microarray data. In the initial stage, a

feature selection algorithm was used to extract the biologically-

interpretable genes. A combined approach integrating three

feature selection algorithms including Support Vector Machine

based on Recursive Feature Elimination (SVM-RFE) [7], Receiver

Operating Characteristic (ROC) Curve [8], and Boruta [9] was

performed to rank genes, and order genes based on their

importance. Then, an overlapping set of genes was selected. The

SVM-RFE algorithm can eliminate gene redundancy automati-

cally, retain a better and more compact gene subset, and yield a

better classification performance. The ROC algorithm is to

characterize a best separation between the distributions for two

groups, and is easy to implement. The Boruta algorithm measures

the importance of each feature. These three feature selection

algorithms had high performance in learning, and their outputs

were easy to understand.

We constructed six classical models including SVM, Random

Forests, naı̈ve Bayes, Artificial Neural Network, Logistic Regres-

sion and k-Nearest Neighbor to predict samples based on the

feature subset. These models are widely employed in gene

classification and have practical predicting performance. We

introduced these techniques to classify the samples, evaluated them

using cross-validation methods, and then utilized the optimal

model to construct a gene selection model. As evaluated by several

statistical metrics, an optimal SVM model was proposed, and it

has shown to be useful for selecting disease-related genes in

multiple sclerosis.

Materials and Methods

The process of data collection and analysis is illustrated in

Figure 1, and the details of each step can be found in the following

subsections.

Data Collection and Processing
Gene expression profiles for a total 44 subjects were obtained

from the ArrayExpress Database under accession number of E-

MTAB-69. Accordingly, global gene expression in peripheral

blood mononuclear cells samples was assessed in 26 multiple

sclerosis patients. For the control, a population consisting of 18

individuals with other neurological diseases was also examined to

assess their specific expression profiles of multiple sclerosis. The

transcripts of peripheral blood lymphocyte were hybridized

individually to the Human Genome 133 plus 2.0 arrays

(Affymetrix, Santa Clara, CA) platform according to standard

operating protocols. A full description of experimental protocols

and processes can be viewed in the study conducted by Brynedal et

al. [4].

The raw fluorescence intensity data were converted to gene

expression values using the Robust Multichip Analysis algorithm

[10] in Expression ConsoleTM Software. Each expression profile

containing 54, 675 probe sets was preprocessed including

background correction, normalization and summation of the

intensities for each sample [10]. Probes with less discriminative

power were removed according to the measurement of overall

variance, which was implemented with the varFilter function using

the genefilter package from the Bioconductor project [11] within

R software [12]. After the preprocessing, a total of 27, 336 probe

sets from each sample were used for further analysis.

Feature Selection
SVM-RFE algorithm. The idea of the SVM-RFE algorithm

is to use the weight magnitude of the SVM classifier as a feature

ranking criterion to produce a feature ranked list [7]. The SVM-

RFE algorithm is defined as the iterative three steps:

a) Train the SVM;

b) Compute the ranking criterion (wi)
2 for all features based on

the weight vector w;

c) Remove the feature with smallest ranking criterion.

When all the iterative procedures have finished, a feature

ranked list r~½f1,f2,:::,fh,:::,fn� is obtained according to the

evaluations for features.

ROC algorithm. The ROC curve is a particularly suitable

and effective method to rank genes in regards to differential

expression between tissues [8]. Suppose that Y p
g and Y c

g

respectively represent the distributions of two phenotype groups

for gene g. The idea of the ROC algorithm is to characterize

separations and find a best one between the distributions for Y p
g

and Y c
g .

Then, the partial area under the curve pAUC(t0) and the area

under the entire curve AUC are commonly used to rank genes for

differential expression in tissue samples. These two statistical

measures are defined as equation (1) and (2):

pAUC(t0)~

ðt0

0

ROC(t)dt ð1Þ

AUC~

ð1

0

ROC(t)dt ð2Þ

where t0 is some small false positive rate. Differentially expressed

genes can be ranked based on the results of pAUC(t0) and AUC.

Boruta algorithm. The Boruta algorithm is designed to

iteratively remove the features which are proven to be less relevant

than random probes [9]. The random forest classification

algorithm runs fast without usually tuning parameters and it gives

an estimate of feature importance [13]. Briefly, it is an ensemble of

Figure 1. Flow chart of data analysis. The four major steps of this
study: data preprocessing, feature selection, model building, and
performance validation.
doi:10.1371/journal.pone.0100052.g001
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tree predictors in which each tree depends on the independent

identically distributed random vectors in the forest.

In the Boruta algorithm, shadow attributes for the original

attributes are created by shuffling values of the original attributes

across objects, and thus the importance of shadow attributes is

estimated and used as a reference for deciding truly important

attributes. By adding randomness into the model system and

correcting for the random fluctuations based on the ensemble of

extra randomness, the Boruta algorithm aims to determine which

attributes are truly important. The Boruta algorithm was

implemented using the Boruta package [9] within R.

Data Encoding and Feature Selecting
To encode microarray data to be fed into the feature selection

step, the gene expression values were used to construct a gene

expression matrix M, which was composed of 27,336 rows

representing probe sets in each gene expression profile and 44

columns representing samples. A Y vector was generated to

represent grouped statuses of each sample with 000 denoting the

‘‘control group’’ and 010 denoting the ‘‘multiple sclerosis group’’.

Then, the matrix M and the vector Y were input into the feature

selection algorithms, which iteratively evaluated a candidate

subset of features using the grouping information of samples, and

generated a satisfactory feature subset. Due to two different kinds

of feature selection algorithms (i.e., SVM-RFE and ROC

algorithms rank genes in order, but Boruta algorithm directly

generates a subset of genes with the label of ‘‘important’’) used in

this study, we selected the top 1,000 results from each SVM-RFE

and ROC algorithms, and the output genes with the label of

‘‘important’’ were chosen for the Boruta algorithm. In fact, the

Boruta algorithm only generated a subset of significant genes

Figure 2. Analysis results of gene expression of the top 1000 genes selected from SVM-RFE (red symbol of star) and ROC (black
symbol of star) algorithms. Genes with log fold change (FC) of expression .2 and adjuste P-value ,0.01 were in the upper right area.
doi:10.1371/journal.pone.0100052.g002

Figure 3. Overlapping features based on the ranked feature
sets generated by three algorithms. Model 1: Support Vector
Machine based on Recursive Feature Elimination (SVM-RFE) algorithm;
Model 2: Receiver Operating Characteristic (ROC) Curve algorithm;
Model 3: Boruta algorithm. In this procedure, an overlapping set,
including 8 features, was identified and used for gene matching.
doi:10.1371/journal.pone.0100052.g003
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Figure 4. Receiver operating characteristic (ROC) curves for evaluating identified features. AUC (area under the curve) and pAUC (partial
area under the curve) indicators were computed to assess the performance for each feature.
doi:10.1371/journal.pone.0100052.g004
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from a pool of candidates. To determine the significant category

of genes in the SVM-RFE and ROC algorithms as done by

Boruta algorithm, the moderated t-test was applied to test the

statistical significance of the top percentage of genes in the two

algorithms.

Gene Function Analysis
Initially, each probe set from feature selection algorithms was

mapped to an annotation of Entrez Gene ID and full gene name

using the GeneCards Human Gene Database (http://www.

genecards.org/). It is an integrated system that provides concise

genomic related information, on all known and predicted human

genes. GeneCards also gives out the counts of already reported

studies as strength indicator of association between genes and

potential diseases. We submitted gene symbols into GeneCards,

and attempted to evaluate the associations. In the next phase, the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment of the identified genes was assessed using the

database of Gene Annotation Tool to Help Explain Relationships

(GATHER) (http://gather.genome.duke.edu/). GATHER is a

proposed bioinformatics tool that can integrate various available

data to extract the full value from molecular signatures produced

from high-throughput assays [14]. We also performed a Gene

Ontology enrichment analysis of genes based on GATHER. The

GATHER system annotates genes with functional descriptors

from Gene Ontology, and quantifies the significance of functional

associations with a group of genes. The significance of association

between a gene group and an annotation was assessed using a

Bayes factor. The larger magnitude represents the stronger the

functional association [14]. The P-values were statistically

corrected for multiple testing using the Bonferroni method in

this study. The limma package in R software was used to perform

the moderated t-test to investigate the differential expression of

the selected probes between multiple sclerosis patients and

controls.

Classification Models Building and Assessing
Three feature selection algorithms were conducted to rank

genes according to the algorithms’ scorings. Each gene was ranked

based on its prediction performance in each algorithm. After that

three ranked gene sets were generated respectively, and an

overlapped gene set was finally determined. Multiple classification

models including SVM, Random Forests, naı̈ve Bayes, Artificial

Neural Network, Logistic Regression and k-Nearest Neighbor

were established using the MLInterfaces package in the R

software. The 10-fold cross validation method was performed to

assess the prediction accuracy of each classifier. The 10-fold cross-

validation is an effective method to evaluate the performance

classification models [15]. The principle of this approach is to

randomly partition the original sample into ten subsamples. Of

these subsamples, one single subsample is retained as the

validation dataset for testing the model, and the remaining

subsamples are used for training data. The process is repeated 10

times, and the results are averaged to produce a final estimation of

performance.

In a classification model, each sample was predicted into one of

the two groups, i.e. multiple sclerosis subjects and controls. We

applied the statistical measures of Sensitivity, Specificity, Accuracy

and F1 score [16] for performance evaluation. The measures were

defined as follows:

Figure 5. Scatter plot of expression values of eight features.
Each panel in the above plot corresponds to one probe set. The y-axis
represents the logarithmic expression intensity of each probe set, and
the x-axis represents the samples. The red and blue colors respectively
represent the multiple sclerosis and control groups.
doi:10.1371/journal.pone.0100052.g005
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Sensitivity~
TP

TPzFN

Specificity~
TN

TNzFP

Accuracy~
TPzTN

TPzTNzFPzFN

F1score~
2 � (

TP

TPzFP
) � (

TP

TPzFN
)

(
TP

TPzFP
)z(

TP

TPzFN
)

ð3Þ

where TP is the number of true positives, FN is the number of false

negatives, TN is the number of true negatives and FP is the

number of false positives.

Results

Ranking Genes of Multiple Sclerosis
The SVM-RFE, ROC and Boruta algorithms were performed

to rank all 27, 336 probe sets for each participating subject. Due to

the Boruta algorithm outputting a subset of probe sets with the

‘‘important’’ lable, we chose the ‘‘important’’ probe sets and

ordered the probe sets by the Z-score which indicating the

measure of feature importance. However, the SVM-RFE and

ROC algorithms directly ranked the probe sets in a sequence set.

To determine the significant category of genes in the SVM-RFE

and ROC algorithms as done by Boruta algorithm, the moderated

t-test was applied to obtain the significant genes (Figure 2). Based

on the analysis results of the adjusted t-test, both two sets of the top

1,000 genes were all significant, and their expressions of log fold

change between the twop groups were more than 2 (Figure 2).

Hence, three important sets of genes were integrated and their

overlapping genes were investigated. A Venn diagram was used to

similarly represent the intersection of the three sequence sets. The

top significant genes from SVM-RFE and ROC algorithms and

the important ones from Boruta algorithm were used to determine

the overlapping genes (Figure 3). There were a total of 8 genes

indicating the top hits from the three algorithms in the intersection

of the diagram, and the expression values of these genes for each

subject were used as the input variables in the classification

models.

Discriminative Ability of each Gene
We visualized the expression profiles of the 8 genes in all 44

samples using ROC curves to illustrate the discriminative power

between the two classes of samples for each gene (Figure 4). The

indicators including pAUC (partial area under the curve) and

AUC (area under the curve), were computed to assess the

performance for each feature. The variation of AUC of the 8 genes

ranged from 0.711 (probe 217782_s_at) to 0.852 (probe

230214_at), and 6 of them had AUC.0.78. Both the AUC and

pAUC measures suggested the features held good classification

performance.

A scatter plot for the 8 genes was also used to illustrate their

discriminative power between the two classes of samples (Figure 5).

Each panel in the plot corresponds to one feature gene, and

different expression levels of these genes between the two groups

can be observed. According to the scatterplot, these 8 genes clearly

showed differential expression between multiple sclerosis patients

and controls, supporting the ability of these genes to differentiate

between individuals with and without multiple sclerosis.

Gene Ontology and KEGG Pathway Enrichment Analysis
Each selected probe set was mapped to an annotation of Entrez

Gene ID and the full gene name using the GeneCards database

(Table 1). These 8 selected probes showed significantly differential

expression between multiple sclerosis patients and controls (all

adjusted P-values,0.05), and their log fold change were consis-

tently greater than 2 (Table 1). The KEGG enrichment analysis

(Table 2) revealed that the identified genes were closely related to

apoptosis and cytokine-cytokine receptor interaction pathways (all

adjusted P-values,0.05). TNFSF10 were suggested to be poten-

tially associated with multiple sclerosis. In the Gene Ontology

enrichment analysis, differentially expressed genes in multiple

sclerosis subjects versus controls mainly involved protein kinase

cascadse, inactivation of MAPK, regulation of signal transduction

and apoptosis (Table S1 in File S1.). Differentially regulated genes

primarily included TNFSF10, GPS1 and TRPS1. The informa-

tion retrieved from GeneCards showed there were six published

studies reporting on the relationship between TNFSF10 and

multiple sclerosis (Table S2 in File S1.).

A Robust Gene Expression Profile Classifier
As evaluated with a 10-fold cross-validation method in the

whole dataset, the SVM model had the best discriminative ability

with a predictive accuracy of around 86% (Table 3). The p

predictive accuracy of SVM was higher than the figures of the rest

Table 1. Annotations of gene symbol and full gene name for each selected probe set and the differential expression analysis using
moderated t-test.

Porbeset ID Gene Symbol Gene name logFC t P-value adjusted P-value

1559949_at TRPS1 Trichorhinophalangeal syndrome I 6.2601 18.9200 4.95E-23 5.16E-23

214329_x_at TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 8.7780 26.8322 2.67E-29 3.37E-29

217782_s_at GPS1 G protein pathway suppressor 1 6.5087 27.9268 4.90E-30 6.44E-30

219284_at Hspbap1 HSPB (heat shock 27 kDa) associated protein 1 8.8694 39.2049 2.14E-36 5.23E-36

225823_at C19orf70 Chromosome 19 open reading frame 70 7.5612 27.2640 1.36E-29 1.74E-29

230214_at MRVI1 Murine retrovirus integration site 1 homolog 5.6772 27.4084 1.09E-29 1.40E-29

237588_at SMCHD1 Structural maintenance of chromosomes flexible hinge
domain containing 1

5.8131 26.7462 3.06E-29 3.85E-29

1556735_at Unknown Unknown 6.6352 25.8057 1.39E-28 1.69E-28

doi:10.1371/journal.pone.0100052.t001
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models. In terms of the Sensitivity, Specificity and F1 score, SVM

also outperformed the other models, as has been observed when

compared with bio-inspired algorithms [17–20]. The Sensitivity,

Specificity and F1 score for SVM reached over 92%, 78% and

89%, respectively. The R code for the feature selection algorithms

and classification model building were provided (Table S3 in File

S1.).

Discussion

At present, microarray technology is extensively used in

biomedical research, and the data processing method is the key

part for analyzing gene-chip results. Questions remain as to how to

analytically deal with this type of data. The challenge is to detect a

panel of discriminative genes from a large pool of candidate genes

[21,22]. To analyze the microarray data, this study proposed to

integrate three feature ranking algorithms (SVM-RFE, ROC and

Boruta) as the core into a combined algorithm. The combined

algorithm generated an ordered gene set that consists of genes at a

medium size. This work established a classification model for gene

selection using multiple sclerosis gene expression data. The

distinction between the three feature selection algorithms and

the classification models was that the feature selection algorithms

were used to detect a group of discriminative genes from a large

number of candidates, reducing the dimensionality of data sets,

and the models were built and assessed based on the selected genes

for sample predictions. In evaluating the performance of different

models, four measures including Sensitivity, Specificity, Accuracy

and F1 score were calculated based on the confusion matrix output

by each classifier using total dataset. Sensitivity (the true positive

rate) measures the proportion of true positives which are correctly

identified, and Specificity (the true negative rate) measures the

proportion of negatives which are correctly identified. Accuracy

and F1 score measures a model’s prediction accuracy rate. All the

four statistics reach their best values at 1 and worst score at 0. We

assessed the four statistics, and determined a relative optimal

classifier with highest Sensitivity, Specificity, Accuracy and F1

score.

In this study, 8 genes were identified to be associated with

multiple sclerosis. We built an SVM as the best model for sample

prediction, having a predictive accuracy of around 86%. The

SVM outperformed the other models as assessed by Sensitivity,

Specificity, F1 score and Accuracy. The KEGG enrichment

analysis suggested that the genes selected were statistically related

to pathways involving apoptosis and cytokine-cytokine receptor

interaction. Among the 8 genes, TNFSF10 had a close relationship

with multiple sclerosis. Gene Ontology enrichment analysis

revealed that TNFSF10 involved in the biological processes

including protein kinase cascades, regulation of signal transduction

and apoptosis, and the GPS1 and TRPS1 were primarily enriched

in multiple sclerosis.

Apoptosis is a common regulatory mechanism for maintaining

normal development and homeostasis of the immune system.

Because the process of eliminating auto-reactive T cells via

apoptosis is impaired in multiple sclerosis, apoptosis signaling-

related genes may be strong candidate genes for involvement in

multiple sclerosis [23]. According to the GeneCards database,

there were six published studies [24–29] referring to the

relationship between TNFSF10 and multiple sclerosis, indicating

TNFSF10 might have an important role in multiple sclerosis. The

increasing expression of TNFSF10 was observed in peripheral

blood mononuclear cells of patients with multiple sclerosis.

TNFSF10 belongs to the tumor necrosis factor/nerve growth

factor superfamily [30], and can induce cell death or apoptosis of
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inflammatory cells. Blockade of TNFSF10 expressed in CD4+
myelin-specific T cells reduces caspase-dependent neuronal cell

death in an experimental animal model for multiple sclerosis [31].

TNFSF10 involves both in cell death and other immunoregulatory

mechanisms. According to Kikuchi et al. [24], the presence of the

CC genotype in the coding region of TNFSF10 at position 1595 in

exon 5 associated with a higher risk of multiple sclerosis in

Japanese patients. Also, more than 80% of the top 30 most

significant genes in multiple sclerosis were categorized into

apoptosis signaling-related genes, and among them TNFSF10

was one of the significantly up-regulated genes [25]. In addition, a

more recent candidate gene case-control study in the Spanish

population finds an association of 3 SNPs in TRAIL, TRAILR-1

and TRAILR-2 genes with susceptibility to multiple sclerosis [32].

Besides TNFSF10, the rest 7 genes showed markedly differential

expression between multiple sclerosis patients and controls,

appearing to be functionally related to apoptosis. TRPS1 executes

multiple functions in proliferating chondrocytes and activates

proliferation in columnar cells according to the function annota-

tions from the GeneCards database. TRPS1 was also suggested to

be an apoptosis-associated gene that acts as a death-signaling gene

to induce the elimination of cells via apoptosis [33]. GPS1 is

known to suppress survival-associated mitogen-activated protein

kinase-mediated signal transduction [34–38]. Hspbap1 is believed

to inhibit the neuroprotective effects of heat shock protein 27, and

is found extensively in the anterior temporal neocortex of patients

with intractable epilepsy [39]. MRVI1 and SMCHD1 are

respectively linked to blood coagulation and chromosome

organization.

Several studies [8,40–42] had explored gene expression patterns

in multiple sclerosis. Brynedal et al. [4] evaluated the association

between transcripts and group specificity using t-tests to detect

differentially expressed genes, and estimated the fold change of

genes between different groups. However, these studies identified a

large amount of differentially regulated transcripts between

different groups. Indeed, it is important to apply more effective

approaches to analyze microarray data, where there are many

thousands of features, and a few tens to hundreds of samples.

Using the existing t-test approach to detect differentially expressed

genes between samples always increases the discovery rate of false

positive. Prior studies [5,6] showed that combinatorial gene

selection methods could be effectively applied to identify disease-

related genes. Inspired by this idea, this work proposed a

combinational strategy to predict multiple sclerosis samples using

microarray data. Gene Ontology analysis in this study showed that

the MAPK and protein kinase cascade signaling pathways were

enriched in patients with multiple sclerosis, which was consistent

with the results from Brynedal et al. [4].

This work performed a combined approach integrating feature

ranking algorithms and an SVM classification model for gene

selection. We can estimate the discriminative ability of each gene

using the proposed approach, allowing an objective and quanti-

tative evaluation of each gene. Due to the limitation that more

gene expression profile datasets of multiple sclerosis cannot be

available at present, other independent datasets are necessary to

an appropriate validation of the algorithm in the future.
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