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Abstract

Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat popula-

tions. Despite this, the genetic characteristics of SD rats have not been clearly described,

and SD rats are rarely used for experiments aimed at exploring genotype-phenotype rela-

tionships. In order to use SD rats to perform a genome-wide association study (GWAS), we

collected behavioral data from 4,625 SD rats that were predominantly obtained from two

commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using

double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality geno-

types at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the

variation present in Charles River vs. Harlan SD rats. We found that the two populations are

highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor,

there was strong population structure across breeding facilities and even between rooms at

the same facility. We performed multiple separate GWAS by fitting a linear mixed model that

accounted for population structure and using meta-analysis to jointly analyze all cohorts.

Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses

the propensity for rats to attribute incentive salience to reward-associated cues. We identi-

fied 46 significant associations for the various metrics used to define PavCA. The surprising

degree of population structure among SD rats from different sources has important implica-

tions for their use in both genetic and non-genetic studies.
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Author summary

Outbred Sprague Dawley rats are among the most commonly used rats for neuroscience,

physiology and pharmacological research; in the year 2020, 4,188 publications contained

the keyword “Sprague Dawley”. Rats identified as “Sprague Dawley” are sold by several

commercial vendors, including Charles River Laboratories and Harlan Sprague Dawley

Inc. (now Envigo). Despite their widespread use, little is known about the genetic diversity

of SD. We genotyped more than 4,000 SD rats, which we used for a genome-wide associa-

tion study (GWAS) and to characterize genetic differences between SD rats from Charles

River Laboratories and Harlan. Our analysis revealed extensive population structure both

between and within vendors. The GWAS for Pavlovian conditioned approach (PavCA)

identified a number of genome-wide significant loci for that complex behavioral trait.

Our results demonstrate that, despite sharing an identical name, SD rats that are obtained

from different vendors are very different. Future studies should carefully define the exact

source of SD rats being used and may exploit their genetic diversity for genetic studies of

complex traits.

Introduction

Rats are among the most commonly used organisms for experimental psychology and biomed-

ical research. Whereas research using mice makes extensive use of inbred strains, research con-

ducted in rats typically uses commercially available outbred rats. Sprague Dawley (SD) rats are

very commonly used; we identified 4,188 publications in the year 2020 that contained the key

word “Sprague Dawley”. Rats identified as “Sprague Dawley” are distributed by several ven-

dors. Each vendor has multiple breeding locations, and each breeding location has one or

more rooms or “barriers facilities” which may represent population isolates. Prior studies have

identified numerous physiological differences between SD rats obtained from different ven-

dors [1–5]. Despite these observations, many researchers may assume that SD rats obtained

from different vendors, breeding facilities or barrier facilities are largely interchangeable.

There has been little research into the genetic diversity and population structure that exists

among commercially available outbred rats [6]. Prior rat genetic studies have used F2 and

more complex, multi-parental crosses of inbred strains for quantitative trait loci (QTL) map-

ping [7–9] and GWAS [10–13]; however, we are unaware of any such studies that have

employed commercially available outbred rats. We and others have demonstrated the potential

benefits and challenges associated with the use of other species of commercially available out-

bred rodents for GWAS [14–18], suggesting that similar studies in one of the most frequently

used outbred rat strains may also be of value.

SD rats originated in 1925 at the Sprague-Dawley Animal Company (Madison, WI), where

they were created from a cross between a hooded male hybrid of unknown origin and an

albino Wistar female [19]. In 1950, Charles River Inc. began to distribute SD rats commer-

cially. In 1980, Harlan Inc. (now Envigo, Inc.) also began to distribute SD rats after their acqui-

sition of Sprague-Dawley, Inc. [20]. In 1992, Charles River reestablished a foundation colony

of SD rats, using 100 breeder pairs from various existing colonies [21]. The resulting litters

were used to populate SD colonies globally and have since been bred using a mating system

that minimizes inbreeding. Every 3 years, Charles River replaces 25% of their male breeders in

each production colony with rats from a single foundation colony. Charles River also replaces

5% of their foundation colony breeding pairs with rats from the production colonies on a

yearly basis. These practices are intended to reduce genetic drift between the production

PLOS GENETICS Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010234 May 31, 2022 2 / 29

addition, FASTQ files from the original ddGBS and

light WGS sequencing runs were submitted to the

NCBI Sequence Read Archive (SRA) under

BioProject identifier PRJNA779552 (https://www.

ncbi.nlm.nih.gov/sra/PRJNA779552). Instructions

on how to download the data can be found here:

https://www.ncbi.nlm.nih.gov/sra/docs/

sradownload/#download-metadata-associated-wit.

Funding: This work was funded by the National

Institute of Drug Addiction (NIDA; https://www.

drugabuse.gov/) through R21 DA036672 (AAP;

TER; SBF), P50 DA037844 (AAP; TER; SBF), and

F31 DA039638-02 (AFG), as well as training grant

T32 GM007197 (AFG) from the National Institute

of General Medical Sciences (NIGMS; https://www.

nigms.nih.gov/). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1010234
https://www.ncbi.nlm.nih.gov/sra/PRJNA779552
https://www.ncbi.nlm.nih.gov/sra/PRJNA779552
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/#download-metadata-associated-wit
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/#download-metadata-associated-wit
https://www.drugabuse.gov/
https://www.drugabuse.gov/
https://www.nigms.nih.gov/
https://www.nigms.nih.gov/


colonies [22]. Harlan also reported using a rotational breeding system to limit inbreeding [23];

however, more detailed information was not publicly available. Since Harlan’s acquisition by

Envigo, the process has become more transparent [24]. Envigo follows a Poiley rotational

breeding scheme [25], whereby animals are cycled through different sections of the colony

with each generation, reducing genetic drift and inbreeding.

We used SD rats from multiple vendors, breeding locations, and barrier facilities to eluci-

date the genetic background of SD and to perform a GWAS of a complex behavior associated

with drug addiction. DNA samples and phenotypic information were obtained from rats used

in multiple studies as part of an unrelated Program Project grant (P01DA031656) concerned

with individual variation in the propensity to attribute incentive value to food and drug cues

[26,27]. The ‘Incentive-Sensitization Theory’ of drug addiction posits that repeated drug use

causes persistent neuroadaptations in the brain’s reward circuitry, rendering the neural system

hypersensitive to the attribution of motivational value to a reward-predictive cue through Pav-

lovian learning [28]. The property acquired by the cue, which allows it to attract attention and

reinforce appetitive behaviors, is known as “incentive salience” [26]. There is significant inter-

individual variability in the degree to which salient stimuli command attentional resources in

humans [29–33]. It is also known that certain genetic factors can increase an individual’s risk

for developing drug abuse [34,35]. It is hypothesized that individuals who are genetically pre-

disposed to attribute greater incentive salience to drug-associated cues are experiencing ampli-

fied craving and cue-approach, increasing their risk for developing addictive behaviors.

Pavlovian conditioned approach (PavCA) is a rodent testing paradigm for assessing the

degree of attribution of incentive salience to a reward-associated cues [26]. Similar to in

humans, there are significant individual differences in the tendency of rats to attribute incen-

tive value to reward-predictive stimuli in PavCA and multiple lines of evidence showing that

the observed variation is also heritable [6,26,36]. All rats in this study were screened for perfor-

mance in PavCA. Although the genetic analyses reported here were not part of the original

design, our study took advantage of the opportunities afforded by that large, behavioral study.

We extracted genomic DNA from available tissue samples and then applied double digest gen-

otyping-by-sequencing (ddGBS) to obtain dense genotypes for 4,625 SD rats. We used these

genotypes to genetically characterize different populations of SD. Next, we used those geno-

type data and behavioral phenotypic data to perform what we believe is the largest rodent

GWAS ever undertaken. Our results provide insights about the population structure and suit-

ability of SD for GWAS, as well as the genetic underpinnings of the attribution of incentive

salience, an endophenotype for the fundamentally human disorder of addiction.

Results

Phenotype

The final quality controlled dataset consisted of 4,061 genotyped male SD rats that were also

phenotyped for Pavlovian conditioned approach; 2,281 from Harlan and 1,780 from Charles

River, from 5 and 4 different breeding locations, respectively. As noted previously [37], we

found that the metrics used to describe performance in PavCA are highly correlated (S1 Fig).

Additionally, several of the base and composite PavCA metrics had tail-heavy distributions

due to biased responding in sign- and goal-tracking from the animals during the testing time

periods (S2 Fig). For this reason, we chose to quantile normalize all measurements prior to

mapping. The PavCA index score [37] is the composite measure used to categorize rats into

sign-trackers, goal-trackers, and intermediate responders based on their performance in the

paradigm. It has previously been shown that the behavior, and therefore the PavCA index

score for a given animal, will stabilize after 4–5 days of training, allowing rats to be binned into
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these groups based on their performance [38]. We observed the previously reported divergence

and stabilization for sign-trackers and goal-trackers over the five days of testing (Fig 1A) [37].

Charles River and Harlan rats had significantly different average PavCA index score distri-

butions (Fig 1B; two-sample Kolmogorov-Smirnov test, p-value< 2.2x10-16), with Charles

River rats biased towards goal-tracking and Harlan rats biased towards sign-tracking. We

divided the samples further into the breeding locations that the rats originated from to investi-

gate intra-vendor behavioral variance (S1 Table). The differences in PavCA index score

between breeding locations within vendor were smaller, but still significant (S3 Fig) [6].

Genotyping and genetic characterization of SD rats

Variant calling was performed on the full sample of genotyped SD rats. Subsequent quality

and minor allele frequency filtering of the variants was initially completed for each vendor sep-

arately, under the notion that the observed differences in PavCA performance between ven-

dors may reflect underlying genetic variation. We identified more single nucleotide

polymorphisms (SNPs) for the rats from Charles River compared to Harlan (214,309 vs

114,568). Fig 1C compares the distribution of SNPs across each chromosome for each vendor.

Fewer SNPs discovered in Harlan resulted in a larger number of ‘SNP deserts,’ which can be

seen by the increase in the number and breadth of the troughs in Harlan’s distribution as com-

pared to Charles River (e.g., the end of chromosome 11, beginning of 13, and middle of 14).

The observed jaggedness of the distribution is likely due in part to the use of ddGBS (S1 Text),

which only samples loci adjacent to specific restriction cut sites. However, the peaks and

troughs may also represent meaningful variability in the density of polymorphism across the

genome and regions of identity-by-descent due to population bottlenecks, or the technical lim-

itations of assaying low-complexity regions via ddGBS and Illumina sequencing.

After combining the two SNP sets, we identified a total of 234,887 unique, high-quality, bi-

allelic SNPs. Using 381 samples with two replicates of library preparation and sequencing, we

were able to evaluate our genotyping accuracy by looking at the discordance between calls

made in the replicates. The discordance rate between replicates was calculated to be ~1.7%.

However, since discordance putatively reflects random errors in either replicate, it is expected

to be approximately twice the true error rate, suggesting that our genotypes were>99% accu-

rate (0.85% error rate; although we cannot exclude the possibility that certain errors were con-

sistent across samples).

To further investigate potential genetic divergence between Charles River and Harlan, we

performed principal component analysis (PCA) on a set of 4,502 LD-pruned (r2 < 0.5) SNPs

with minor allele frequency (MAF) > 0.05 across both vendor populations (Fig 2B). The first

PC corresponded to vendor (Charles River or Harlan) and accounted for ~33.7% of the vari-

ance. The second PC accounted for just ~0.9% of the variance and reflected population struc-

ture within Harlan SD rats. To investigate the within-vendor structure further (Fig 2A), we

performed PCA on the samples from each vendor separately using the same set of SNPs. Fig

2C and 2D show evidence of substructure at both the level of breeding location (i.e. the city)

and barrier facility (i.e., the segregated breeding areas within the building). Interestingly, rats

from some barrier facilities showed greater divergence from barrier facilities within the same

breeding location than barriers at other locations.

Due to the stark clustering of samples within and across certain barriers (Fig 2C and 2D),

we opted to divide the sample set up based on PCA clustering for all subsequent analyses,

including the GWAS for PavCA. This heuristic sample division resulted in seven subgroups,

each containing genetically-similar samples: SD rats originating from Harlan 202A/202C/

208A, Harlan 206, Harlan 217, Charles River R09/P03/P07/P10/C71/K92, Charles River R04,
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Fig 1. PavCA index score progression across days and distribution between Charles River and Harlan. (A) Samples were classified as

sign-tracker, goal-tracker, or intermediate responder based on their average day 4 and 5 PavCA index score. PavCA index scores for each

day of training (1–5) were averaged across all sign-trackers, goal-trackers, and intermediate responders. Bars around the points represent

the standard deviation of the averages. (B) Density curves of average day 4 and 5 PavCA index score in Harlan (n = 2,281) vs. Charles

River (n = 1,780) SD rats. (C) Filtered SNP density per 1Mb window in Charles River vs. Harlan samples for all 20 autosomes.

https://doi.org/10.1371/journal.pgen.1010234.g001
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Charles River P09, and Charles River C72. Variant filtering steps were reapplied to each sub-

group individually to reach final sets of SNPs (S3 Table). A more lenient MAF threshold was

applied to permit more variants to pass filtering.

We observed a large difference in the MAF distributions for subgroups of Charles River vs

Harlan origin (Fig 3A), with Charles River rats harboring more variation and a far greater pro-

portion of SNPs with high MAF (>0.05). This observation could reflect the fact that Charles

River has adhered to their International Genetics Standardization Protocol for 25+ years,

whereas Harlan appears to have focused on maintaining diversity within breeding colonies

and may have allowed for a moderate degree of drift between them. Because our ddGBS

approach focused on the subset of SNPs that are near to particular restriction sites, we are not

able to accurately quantify the total number of variants nor nucleotide diversity in these

Fig 2. Genetic architecture of SD rats from Charles River vs. Harlan. (A) Map of the nine vendor breeding locations and the number of SD rats obtained from each

location. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. (B) A summary of the genetic data from all 4,061 SD rats based on

principal components 1 and 2 from PCA. Each point represents a sample. The left cluster is composed of samples from Charles River and the right clusters are composed

of samples from Harlan. (C-D) Repeated PCA analyses on subsets of the samples from Harlan and Charles River, colored by barrier facility of origin.

https://doi.org/10.1371/journal.pgen.1010234.g002
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populations [39]. We went on to examine the levels of linkage disequilibrium (LD) in the sub-

groups by constructing LD decay curves (Fig 3B). These curves show the rate at which LD

between two genetic loci dissipates as a function of the distance between the loci. Harlan rats

had more extensive LD compared to Charles River. For contrast, we included the decay curve

for Swiss Webster (CFW) mice, a commercially available outbred mouse population that has

been successfully used for GWAS in the past [15,16].

The fixation index (FST) is a statistic widely employed by population geneticists to measure

the level of structure in populations [40]. It is calculated using the variance in allele frequencies

among populations; values closer to 0 indicate genetic homogeneity, and values closer to 1

indicate genetic differentiation. We calculated the pairwise FST between all seven subgroups

(Table 1). FST values between vendors were ~0.423, which is over 2-fold greater than corre-

sponding estimates for major human lineages [41], whereas the values for different subgroups

within a vendor were substantially lower.

We speculated that some of the rats in our sample might also share close genetic relation-

ships with one another. We used plink 1.9 [42,43] to estimate the pairwise proportions of iden-

tity-by-descent (IBD; S4A and S4C Fig), which showed that while most rats were only distantly

related, a subset shared closer familial relationships. We removed several rats that showed high

Fig 3. SNP MAF distributions and comparison of linkage disequilibrium decay rates. (A) Density curves of minor allele frequencies for

214,309 SNPs in Charles River and 114,568 SNPs in Harlan, after removing SNPs with MAF< 0.01. (B) Linkage disequilibrium decay rates in SD

rats from both vendors and outbred Swiss Webster (CFW) mice.

https://doi.org/10.1371/journal.pgen.1010234.g003

Table 1. Pairwise FST statistics for Harlan and Charles River breeding locations.

Charles River Harlan

Subgroups R04 R09 + P09 C72 202A + 206 217

R04 0 0.019 0.028 0.024 0.422 0.426 0.419

R09 + 0 0.011 0.013 0.419 0.423 0.416

P09 0 0.022 0.422 0.426 0.419

C72 0 0.426 0.431 0.423

202A + 0 0.024 0.013

206 0 0.028

217 0

https://doi.org/10.1371/journal.pgen.1010234.t001
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levels of relatedness with many other samples (presumably due to technical error), as well as

any with unreasonably high levels of IBD (S4 Table and S4B and S4D Fig).

SNP heritability and genome-wide association analyses

Although evidence from selective breeding studies has suggested that behavior in the Pavlov-

ian conditioned approach procedure is heritable [36], we are not aware of any specific herita-

bility estimates for PavCA. We used GCTA to calculate the proportion of the variance in the

base and composite PavCA metrics that could be explained by the set of SNPs unique to each

subgroup and the within-vendor SNP sets (S5 Table). Due to the low subgroup sample sizes,

the heritability estimates generally only reached significance when considering the vendor as a

whole. The SNP heritability estimates for all PavCA metrics in Harlan ranged from ~4–11%,

whereas they were ~4–21% for Charles River; on average the estimated heritability was about

~1.9-fold greater in Charles River. Importantly, some of the highest heritabilities were for met-

rics used to designate sign-trackers vs. goal-trackers, such as the average of day 4 and day 5

response bias, probability difference, and PavCA index score. However, even the heritability

estimates from Charles River were lower than SNP heritability estimates for many other behav-

ioral traits [12,15,16,44].

Next, we performed GWAS for various metrics derived from Pavlovian conditioned

approach by using GEMMA to fit a linear mixed model that allowed us to account for popula-

tion structure with a relatedness matrix. Initially, we planned on performing the GWAS sepa-

rately for rats from Charles River vs. Harlan to maximize sample size; however, we observed

marked inflation in our Q-Q plots for a number of PavCA metrics (S5 Fig). This pattern of

inflation could reflect true signal that is amplified by the large LD-blocks characteristic of

small breeding populations--if a locus shows significant association with a trait, all SNPs co-

occurring in the same LD-block will have inflated test statistics, thereby artificially enriching

the Q-Q plot with mid-range p-values. However, inflation in a Q-Q plot might also reflect a

failure to account for population structure. Given the degree of the observed inflation, we sus-

pected that the LMM might have been insufficient to account for the residual subgroup struc-

ture within each vendor. Therefore, we chose to perform individual GWAS on each subgroup

followed by meta-analysis of the results.

For each of the seven subgroups, all 11 PavCA metrics were examined for all five days of

training. Although PavCA data are often analyzed such that rats are categorized as sign-

trackers, goal-trackers, and intermediate responders based on their PavCA performance on

days 4 and 5 [37], we chose to analyze behavior on all 5 days since those results could yield

insights into loci involved in learning this complex behavior. Significance thresholds were

determined using MultiTrans, a parametric bootstrapping resampling approach [45].

Genome-wide significant results from the individual subgroup GWAS are available in S1

File, and the Manhattan plots for each analysis can be viewed in S2 File. The sample sizes

for the subgroup analyses were small and the GWAS yielded a marginal number of genome-

wide significant results. In total, we discovered six independent genome-wide significant

hits across five of the seven subgroups, representing PavCA metrics from days 3, 4, and 5 of

training. All six significant hits were unique to the subgroup they were identified in. This

could be due to incomplete power, highly variable allele frequencies between the groups, or

the existence of unique modifier loci. Alternatively, these hits may be artifactual and

occurred by chance due to the number of analyses that were run. Importantly though, we

did not observe any significant inflation in the Q-Q plots for the GWAS in these 7 sub-

groups (S3 File). To further assess how well we controlled population structure, we used LD

score regression [46]. We found that the average deviation from the expected intercept was
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only 0.027 for the subgroups (S6 Table), indicating that dividing the samples into seven sub-

groups was sufficient to control population structure.

To increase our power and improve our ability to identify true signals of association, we

meta-analyzed the results for all seven subgroups together, as well as in smaller sets of sub-

groups derived from either Charles River or Harlan. The meta-analyses were run with

MR-MEGA [47], a program originally designed to accomplish trans-ethnic meta-analyses in

populations with potentially heterogeneous allelic effects, which is conceptually similar to this

dataset. Genome-wide significant results from the meta-analyses are presented in S1 File,

Manhattan plots in S4 File, and Q-Q plots in S5 File. There were five genome-wide significant

loci identified in the Harlan-specific meta-analyses, two in the Charles River-specific meta-

analyses, and five in the Harlan plus Charles River meta-analyses. Due to the sparsity of SNP

genotypes assayed by the ddGBS approach, these loci are generally composed of only a handful

of SNPs and their boundaries are not well defined. Notably, of the seven loci identified in the

vendor-specific meta-analyses, three were replicated in the Harlan plus Charles River meta-

analyses. The four loci that did not replicate were composed of SNPs that were unique to either

Charles River or Harlan and therefore could not have been replicated in the Harlan plus

Charles River meta-analyses.

One noteworthy finding was a locus identified in both the Charles River-specific and

all-subgroup meta-analyses. The two significant SNPs are located on chromosome 9 and

are associated with the training day 5 PavCA index score (Fig 4), which measures a rat’s

overall propensity of a rat to attribute motivational value to a conditioned stimulus, and

the day 5 probability difference, which directly measures the observed skew in responding

to a conditioned stimulus vs. a reward delivery cup (S4 File, page 35). Interestingly, the

directions of effect for the associated alleles were contrasting between the two vendors. In

Charles River subgroups, the associated allele had a negative effect on the trait, whereas in

Harlan subgroups, the effect was positive. This observation emphasizes the necessity of

using a meta-analysis approach that accounts for heterogenous allelic effects, as the associ-

ation likely would not have replicated in the broader subgroup meta-analysis with stan-

dard meta-analysis approaches. Presumably the effects are opposite because the

relationship between the SNP and the causal allele is reversed in SD rats from Harlan rela-

tive to Charles River.

The chromosome 9 associated SNPs were within a broader peak of elevated association

(< 1x10-3) that spanned approximately 3Mb. Although this association is of uncertain signifi-

cance given the number of tests performed in our study, and gene nearest the most associated

SNP is not necessarily the causal gene, Efna5 is the only RefSeq annotated gene within this

3Mb region, located ~500kb from the genome-wide significant SNPs. The gene Efna5 codes

for an ephrin-A ligand for EphA receptor tyrosine kinases and is expressed in the brain.

Ephrin-A5 has long been appreciated for its role in guidance of retinal, cortical, and hippo-

campal axons during development [48–50], synaptic plasticity of the mature hippocampus,

and long-term potentiation [49].

In addition to Efna5, another late-stage PavCA training day association was identified on

chromosome 1 and was linked to the average latency to a lever contact (S4 File). The associated

SNP falls within a 2.2Mb peak containing 4 genes (Park2, Parcg, Cahm, & Qk) and is located in

an intron of Park2, a large 1.4Mb gene. Park2 rat knockout lines show reduced expression of

dopaminergic receptors, such as trace-amine receptor TAAR-1 and post-synaptic dopamine

D2 receptor, in the striatum [51]. Dopaminergic signaling is paramount in the establishment

of incentive salience in the Pavlovian conditioned approach paradigm [38,52], making this

association an attractive target for further investigation.
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Fig 4. Manhattan plots for the GWAS on PavCA Index Score on day 5 in each subgroup and the meta-analysis. The titles above each of the

eight Manhattan plots indicate the population, number of SNPs, and sample size for each depicted GWAS. The y-axis is the -log10 of the p-value

from the likelihood-ratio test performed by GEMMA. The x-axis is the genomic coordinate of the variants within each chromosome, in

ascending order of chromosome.

https://doi.org/10.1371/journal.pgen.1010234.g004
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Discussion

Numerous behavioral and physiological studies use outbred Sprague Dawley rats obtained

from commercial breeders [53]. The vast majority of these studies are not designed with genet-

ics in mind. While SD and other outbred rats have been used for genetic selection [54–56],

ours is the first to explore the use of SD for GWAS. We adapted our genotyping methods to

SD and used them to densely genotype more than 4,000 SD rats. These data allowed us to char-

acterize the genetic background of SD rats and to perform GWAS for Pavlovian conditioned

approach behavior. This represents the largest rodent GWAS ever undertaken, and the first

performed using a commercially available outbred rat population.

We found dramatic genetic differences between SD rats obtained from Harlan versus

Charles River. FST estimates show that SD rats from Harlan and Charles River are more

diverged than the major human ancestry groups [41] and nearly as diverged as some sub-

species of mice [57]. There was also strong evidence of population structure among the vari-

ous breeding locations and barrier facilities for each vendor. We found that SD rats from

both Harlan and Charles River both showed a rapid decay in LD. However, at the time this

study was performed, SD from Charles River appear to have more polymorphisms and

more favorable MAF and LD profiles, suggesting that they would be preferable for future

GWAS.

Although this study is the first to carefully document population structure within SD rats, it

is not the first to highlight phenotypic differences among SD from different vendors. In 1973,

Prejean et al. reported that the incidence of endocrine tumors varied among SD rats from dif-

ferent vendors [1]. Then Clark et al. (1991) [58] reported differences in noradrenergic neural

projections among SD rats from different vendors. Subsequently, Turnbull & Rivier (1999) [4]

reported vendor-specific differences in the response to inflammatory stimuli. Then Fuller et al.

(2001) [59] reported vendor-specific differences in hypoxic response among SD rats. Even

more recently, there have been additional publications reporting differences for a variety of

traits among SD rats obtained from different vendors [2,5,60,61], and even suggesting that

these phenotypic differences may extend to differences among a single vendor’s breeding facil-

ity [3]. Our own studies have previously reported both behavioral and genetic differences

among SD rats obtained from different sources [6], observations that are much more compre-

hensively explored in the present dataset. Specifically, in addition to wide-spread genetic dif-

ferences, we have also shown that the SD rats obtained from Harlan for these studies show a

much higher proclivity to become sign-trackers compared to SD rats from Charles River.

However, neither these prior publications nor the current one can differentiate between two

possibilities: that the observed behavioral differences are the result of the different environ-

ment in which these animals are raised versus the genetic difference that we have clearly dem-

onstrated. This question could be addressed by future studies in which SD rats are bred in the

same facility and the offspring tested in the same manner.

Using genome-wide genotype data, we have provided the first quantitative estimates of the

SNP heritability of the component measurements of PavCA. The highest heritabilities (16–

20% in Charles River) were seen for measures typically used to assess the propensity to attri-

bute incentive salience to reward cues, including the averages of the day 4 and day 5 PavCA

index score, response bias, and latency score. Previous work had shown that SD rats selectively

bred for ~15 generations for high or low responses to a novel environment were also highly

divergent for behaviors in PavCA [36]. Those selection studies demonstrate that SD rats have

alleles that influence PavCA. The present results are consistent with this conclusion. We

obtained lower heritability estimates for SD rats from Harlan compared to Charles River, fur-

ther emphasizing the differences between SD rats from the two vendors.
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As this was the first genome-wide association study to examine PavCA, we had to choose

from among many possible ways of summarizing the phenotype. Ultimately, we decided that

the analyses should be comprehensive. Therefore, we ran GWAS for all possible quantile nor-

malized PavCA component metrics since it was unclear which had the most predictive power

with regard to the overarching behavioral paradigm. We also considered applying a case-con-

trol approach to a number of the metrics, where sign- and goal-trackers would be the condi-

tions; however, the artificial subdivision of a continuous trait did not prove productive. In the

individual subgroup GWAS, which had limited power due to sample size, we identified only

six genome-wide significant loci (alpha = 0.05) despite performing 385 total tests (5 training

days x 11 PavCA metrics x 7 groups). While 385 tests clearly creates a large multiple testing

problem, the primary goal of performing these component GWAS was to use them for a meta-

analysis of the 7 groups, meaning that 55 meta-analyses were the primary focus of our study. If

we applied a Bonferroni correction for the 55 meta-analyses, none of these results would reach

significance. However, a Bonferroni correction is overly conservative because of the strong

correlations between the 55 tested PavCA metrics (S1 Fig). Interestingly, despite these strong

correlations, some of the loci we detected were not found for any other PavCA metric or train-

ing day. Furthermore, nearly half of the QTL identified in the subgroup and meta-analysis

GWAS occurred on earlier training days (days 1–3), while the literature surrounding PavCA

focuses on behavior after training (days 4, 5). Fortunately, we did observe replication of several

associations in the meta-analyses across multiple PavCA metrics (S1 File).

Because ddGBS is inexpensive, we were able to genotype thousands of SD rats. ddGBS relies

on the large LD blocks that are found in commercially-available outbred rodent populations

(Fig 3B). Due to the uneven distribution of SNPs obtained from ddGBS (Fig 1C), it was some-

times difficult to exactly localize the loci we discovered. Thus, we identified loci that were typi-

cally>1 Mb, which are consistent with the linkage disequilibrium analyses presented in Fig

3B. One question that would be important for designing future GWAS using SD rats is the

number of markers that are needed to perform GWAS. While we would always advocate for

methods that obtain as many SNPs as possible, our data allow us to estimate the minimum

number of markers needed. First, we considered the number of SNPs remaining after pruning

at various pairwise r2 thresholds (S6 Fig) along with the size of the rat genome (~2.87Gb).

Assuming loci are considered unlinked at an r2 < 0.2, we estimate that a minimum of 11,500

SNPs would be needed for Charles River and 7,000 for Harlan (MAF> 0.01). This is an under-

estimate because having only unlinked markers would provide poor detection and resolution

of QTLs, and because SNPs obtained are seldom uniformly distributed. Therefore, we recom-

mend future studies to obtain as many markers as possible, with 100K to 1M or more SNPs

providing good insurance that even difficult regions will be adequately covered.

Although the majority of identified variants do not have clear functional implications, it is

possible that these loci are tightly linked to variants that influence the expression or function

of nearby protein-coding genes. Among the 46 significant associations from the full sample set

meta-analyses (S1 File), we have highlighted two loci. The first locus was discovered on chro-

mosome 9 and was associated with the PavCA index score on the final day of testing, when the

rats’ behaviors have typically plateaued (Fig 1A). The only gene within the associated genomic

interval was Efna5, which codes for an ephrin-A ligand for EphA receptor tyrosine kinases and

has known ties learning and memory through its effects on hippocampal development and

synaptic plasticity [48–50]. The second was an intronic variant in Park2. In rats, knocking out

this gene has been shown to reduce expression of dopaminergic receptors, notably TAAR-1, a

post-synaptic dopamine D2 receptor. Seeing as dopamine is essential for the attribution incen-

tive salience to reward-associated cues [38,52,62], this result is an enticing one for future fol-

low-up studies.
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Because our project used samples from an ongoing, non-genetically focused project, we

inherited a design that used Sprague Dawley from many different sources. The full impact of

this was not clear until we completed genotyping the rats. The population structure that we

encountered was similar to human genetic studies that include individuals from multiple

ancestries, and we sought to address it by analyzing each group separately (with an LMM) and

then combining the results using meta-analysis (e.g. [63]). In humans, different ancestry

groups (e.g. East Asian vs. European) often do not share the same causal variants. Similarly,

our power was likely reduced because causal variants were not shared between the subgroups.

Modifiers of causal variants might also be dissimilar between the various subgroups, further

hindering our meta-analyses [64].

Regardless of whether differences in SD rats obtained from different vendors are due to

genetic or environmental differences, our results demonstrate the need for much greater care

in the use of SD rats. Even when the primary research question is non-genetic, researchers

should carefully consider whether to use rats from a single vendor and/or breeding facility.

Ignoring the genetic background of test subjects can easily confound experimental results. The

exact sources (vendor, breeding facility, barrier within each breeding facility) should also be

carefully documented and clearly reporting in the results section. Failure to do so can lead to

problems with replication, since observations made in SD rats from one source may not extend

to SD rats from other sources. In addition to non-replication, a more subtle consequence of

using SD rats from multiple vendors or breeding facilities is that spurious correlations can

occur. For example, if SD rats from Charles River were higher for traits A and B, compared to

SD rats from Harlan, a heterogeneous cohort of SD rats from both vendors would show a sig-

nificant positive correlation between traits A and B. Such a correlation may not be due to any

shared biological mechanisms but could instead be the result of either genetic population

structure or environmental differences between SD rats from the two vendors. Thus, even

studies that are not intended to address genetics questions could lead to incorrect inferences

because of genetic differences among SD rats obtained from different sources.

Our study is the first to use SD rats for GWAS of a complex trait and is the largest rodent

GWAS ever undertaken. We have exposed extensive population structure among SD rats that has

important implications for genetic and non-genetic uses of SD rats. Although our GWAS was

hampered by population structure, our results have identified several genome-wide significant loci

that provide the first insights into the genetic basis for PavCA, a trait that is relevant to understat-

ing motivational processes, especially in the context of substance abuse. Our data also suggest that

Charles River SD rats have greater genetic diversity, finer scale LD and more favorable MAFs than

those from Harlan. More important perhaps is that our ddGBS approach was able to accurately

genotype 291,438 SNPs from an in silico approximated 3.31% of the genome [65]. If we extrapolate

this to the whole genome, it would imply that over 8.8 million SNPs may exist within Sprague

Dawleys from these two vendors. This estimate exceeds the empirically observed 7.2 million SNPs

in the rat heterogeneous stock and the 3.6 million in the HXB/BXH recombinant inbred panel

and is on par with the 9.18 million SNPs present across over 40 rat inbred lines [12,66,67]. Further

validation of this claim will require much denser genotypes of SD rats with deep, whole-genome

sequencing; however, with the appropriate study design, this high level of genetic diversity make

the SDan attractive choice for future GWAS using outbred, commercially available rats.

Methods

Sprague Dawley samples

Tissue samples from 5,206 male Sprague Dawley rats were obtained, predominantly from

Charles River and Harlan, with a few samples from Taconic. A subset of 4,625 of these rats
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went on to be genotyped by ddGBS and/or WGS. After sample filtering, a final set of 4,061

genotyped SD rats were used for the population genetic and association analyses. S1 Table lists

the number of samples that came from each vendor, breeding location, and barrier facility.

Detailed information about these 4,061 rats is available in S6 File. Behavioral testing was per-

formed between February 2012 and August 2015 as part of work for multiple studies [27,68–

80]. All experiments were approved by The University of Michigan Committee on Use and

Care of Animals (UCUCA; Approval Number PRO00006685). Housing, feeding, lighting and

other relevant environmental conditions have been previously described. Following sacrifice at

the University of Michigan, tissue samples were shipped to the University of Chicago; subse-

quent processing of those samples is described in the following sections.

Pavlovian conditioned approach

Pavlovian conditioned approach procedures have been thoroughly described previously

[81,82] as a means to assess the tendency to attribute incentive motivational value or incentive

salience to a cue that has been repeatedly paired with a noncontingent reward. Briefly, rats are

placed into a testing chamber in which an illuminated lever (conditioned stimulus; CS) enters

the chamber and after 8 seconds the lever-CS retracts and a food pellet (unconditioned stimu-

lus; US) is immediately delivered into an adjacent food cup. Rats are scored for their three pos-

sible responses to the lever-CS entering the cage: approach and interact with the lever,

approach and interact with the food receptacle (magazine), or make neither approach. Condi-

tioned responses are captured during the 8-second period during which the lever-CS has

entered the chamber, but before the food reward enters the magazine. The following measures

are obtained in automated fashion: the number of lever contacts as measured by lever depres-

sions, number of magazine entries as measured by infrared sensor in the food receptacle, and

the latency to both during the 8-second lever-CS presentation. The rats are tested in this man-

ner with 25 trials per session, and one session is conducted per day for 5 consecutive days. For

the purposes of this project, the number of lever contacts and magazine entries are summed

across all 25 trials within a given session, and the latencies are averaged across 25 trials within

a session.

Along with response counts and latencies, three additional measurements are recorded: 1)

the proportion of trials in a session during which a rat made a lever contact (“probability” of

lever press), 2) the proportion of trials during which they made a magazine entry (“probability”

of magazine entry), and 3) the number of non-CS (NCS) magazine entries that occurred out-

side of the 8 second trials (when the cue was not present during the intertrial interval). We also

calculated composite scores to categorize rats as sign-trackers (ST; defined as rats that prefer-

entially interacted with the lever-CS), goal-trackers (GT; defined as rats that preferentially

interacted with the food magazine), and intermediate responders (IR; rats that vacillated

between sign- and goal-tracking behavior) [37]. These scores include: response bias ([lever

presses–magazine entries]/[lever presses + magazine entries]), latency score ([average maga-

zine entry latency–average lever press latency]/8), and probability difference ([lever press

probability–magazine entry probability]). The PavCA index score is the average of the

response bias, latency score, and probability difference. A value of [-1, -0.5] for the PavCA

index score indicates a goal-tracker, (-0.5, 0.5) indicates an intermediate responder, and [0.5,

1] indicates a sign-tracker. We performed a two-sample Kolmogorov-Smirnov (K-S) test to

show that the PavCA index score distributions differed significantly between Charles River

and Harlan SD rats (D = 0.28418, p-value < 2.2x10-16). In summary, 11 PavCA metrics were

available for analysis, each of which we measured on days 1, 2, 3, 4, and 5 (S7 Table). Pheno-

typic data is available in S6 File.
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Double digest genotype-by-sequencing (ddGBS)

To obtain genotypes, we used ddGBS, a genotyping method that reduces the complexity of the

genome by only sequencing regions proximal to restriction enzyme cut sites [6,83]. We have

recently described the technical aspects of this protocol in detail [65]. The ddGBS protocol

used in this paper is a synthesis of the GBS approach described in Graboski et al. [84] and used

more recently by Parker et al. [15] and Gonzales et al. [44], and an analogous approach known

as double digest restriction associated DNA sequencing (ddRADseq) [85]. The full protocol is

available in S1 Text.

DNA was extracted from rat tails using the PureLink Genomic DNA kit. DNA purity was

assayed using a Nanodrop 8000 (260/280� 1.8) and DNA integrity by gel electrophoresis

(minimal smearing). Genomic DNA was then digested using two restriction enzymes: PstI
(6-bp recognition site) and NlaIII (4-bp recognition site). Adapter oligos were annealed to

overhangs left by Pst1 and NlaIII. The PstI adapters contained 48 unique 4–8 bp in-line

indexes [15,44,84]. A Y-adapter was annealed to the NlaIII cut sites, which controlled the

direction of the first round of PCR amplification and thus ensured that the library was primar-

ily composed of fragments with one of each of the adapters. Post-annealing, sets of 24 individ-

ual sample libraries were quantified and pooled. Pooled libraries were PCR amplified for 12

cycles, size-selected for 300-450bp using the Pippin Prep, and quality checked by Agilent Bioa-

nalyzer (peak range ~ 300-500bp and conc.� 20nM). Sequences for the 48 barcoded adapters,

Y-adapter, and PCR primers are provided in S2 Text.

Sequencing of pooled libraries was performed by Beckman Coulter Genomics (now GENE-

WIZ). Sequencing was carried out on the Illumina HiSeq 2500 using v4 chemistry and 125-bp

single-end reads. Each lane consisted of a pool of 24 samples, resulting in an average of 8.9 mil-

lion reads per sample. A total of 4,608 unique ddGBS sample libraries were sequenced. Of

these samples, 381 were sequenced twice, resulting in two sets of sequencing data for each sam-

ple from the same library prep that were used for to check genotype concordance (S2 Table).

Light whole-genome sequencing (WGS)

To discover new variants and support imputation, we performed low-coverage whole-genome

sequencing of 80 SD rats from this same cohort. The rats were selected to represent sign-track-

ers, goal-trackers, and intermediate responders from each of the major barriers within the 6

major subgroups of Harlan and Charles River. Sample libraries were prepared using the Illu-

mina TruSeq PCR-Free Library Prep kit and quality checked using an Agilent Bioanalyzer and

qPCR on an Applied Biosystems StepOne Real-Time PCR System to ensure they met Illumina

quality standards. Sample pooling (10 samples per pool) was performed by Beckman Coulter

Genomics. Each pooled library was sequenced on two lanes of an Illumina 2500 flow cell with

125-bp single-end reads, resulting in an average of 51.6 million reads per sample per two lanes.

Assuming that the rat genome (rn6) is ~2.87Gb, this provided about 180x coverage of the rat

genome, or about 2.25x coverage per rat.

ddGBS Sequence data processing

We have recently described the bioinformatic steps that we use for ddGBS in detail [65]. We fol-

low an analogous approach in this paper, though we deviate at the imputation step due to our

use of SD instead of HS rats. Briefly, raw reads from ddGBS were demultiplexed using FASTX

Barcode Splitter v0.0.13 [86], allowing for 1 mismatch. After demultiplexing, barcodes were

trimmed by cutadapt v1.9.1 [87]. Any reads not matching a sample’s barcode within 1-bp were

filtered out. We removed 316 samples for which there were less than 4 million reads, leaving

4,292 samples with ddGBS data. We also used cutadapt to trim low-quality base pairs (phred
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quality score< 20) at the ends of the reads, and to remove 3’ adapter sequences. Reads trimmed

to less than 25-bp were discarded. Next, all reads were aligned to the rat reference genome

assembly (rn6) using bwa v0.7.5a [88]. All ddGBS reads were realigned at known indel sites by

GATK’s IndelRealigner v3.5 [89]. Because of a lack of SD-specific variant data, we used variant

data from 42 whole-genome sequenced rat strains and substrains [67] as the reference set for

indels. We then used GATK to perform base quality score recalibration (BQSR) on the BAM

files, using data (SNP & indel) from the 42 rat genomes as the “known” set of variants. For the

ddGBS samples that were sequenced twice (381 remaining after filtering for read count), we

performed all quality control and variant calling steps in parallel, since our goal was to compare

calls made in these samples as a means of estimating the genotyping error rate.

Light WGS data processing

Raw reads from WGS were processed in an analogous manner to the ddGBS data (detailed

above) through the alignment step. After alignment, duplicates reads were removed using

picard [90]. Reads were then realigned and underwent BQSR. The final WGS BAM files from

each lane (2 files per sample) were merged. The WGS BAM files for the 63 samples that had

undergone both ddGBS and WGS were then merged.

Variant discovery and imputation–ANGSD/Beagle

We have previously compared GATK’s HaplotypeCaller tool [89] to other approaches and

found that for ddGBS data, the Samtools variant calling model [91] as implemented by

ANGSD v0.911 [92] is a better method for estimating genotype likelihoods from the mapped

ddGBS reads [65]. Genotype likelihoods convey a layer of uncertainty in the called genotype

based on the underlying aligned reads, which can be useful for downstream imputation by

allowing for more accurate probabilistic modeling. This information is typically lost when

strictly using “hard” genotype calls. Likelihoods were obtained in 10Mb chunks of the genome,

which were subsequently concatenated. Major and minor alleles were inferred from the data

based on allele frequency estimates made from the genotype likelihoods. The likelihoods were

only estimated at sites where at least 100 samples had reads. ddGBS data results in low call

rates at many loci. However, we retained these loci because we anticipated they would be useful

for imputation. Next, we used the ANGSD genotype likelihoods to impute missing genotypes

(that is for SNPs where only a portion of the rats had genotyping information) using Beagle 4.1

[93,94], which produced a VCF file containing hard genotype calls (0,1, or 2), dosages ([0,2]),

and posterior probabilities for each genotype ([0,1]) for 2,274,118 biallelic SNPs in 4,309 rats

(ddGBS+WGS). This is the unfiltered set of SNPs and samples we moved forward with for all

subsequent steps. We elected not to pursue variant quality score recalibration using the GATK

VariantRecalibrator algorithm [95], because we did not have the required “truth” SNP set. Due

to the poorly understood population history of SD rats, it was unclear whether the variation

present in the 42 rat genomes would be representative of the variation present in our sample.

Using the 42 genomes as a reference for the VariantRecalibrator may also have negatively

impacted the calling of novel SD variants.

Genotype concordance check

Whereas some of our past projects that used GBS were able to determine the accuracy of GBS

genotypes by comparing them to genotypes obtained from SNP microarrays, we did not have

microarray-based genotypes for this cohort. Instead, we relied on the remaining 381 duplicate

samples whose genotypes were called in parallel. To estimate genotyping accuracy, we com-

pared the rate of concordance of hard genotype calls among the duplicate samples. We first
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filtered variants by dosage r2 (DR2), a measure of the accuracy of the genotype imputation per-

formed by Beagle. We tested three different DR2 thresholds (�0.7,�0.8,�0.9). We then

removed variants with MAFs < 1% or that violated Hardy-Weinberg equilibrium at a thresh-

old of 1x10-7 in either vendor population. Concordance rates were checked by two methods: 1)

by using hard calls in the RAW format from plink 1.9 and dividing the number of times a

genotype call matched between duplicate samples by the total number of SNPs and 2) by tak-

ing the mean Pearson correlation of the dosages of the duplicate samples. The results are pre-

sented in S2 Table. Similar error estimates were obtained by the hard call and dosage

approaches. We chose to move forward with the DR2 threshold of 0.9 for all subsequent analy-

ses, which yielded an error rate of ~0.85%.

Post-genotyping sample filtering

We removed female rats (n = 77) and rats from Taconic Farms (n = 4) since they made up a

very small fraction of the total sample. We also removed rats that showed poor clustering in

the PCA analysis, described below. We filtered out individuals with unusually high or low

rates of heterozygosity and high degrees of relatedness as detailed below. Lastly, we excluded a

small set of duplicate samples (n = 7) and samples missing phenotype data for mapping

(n = 10). All filters and sample numbers are listed in S4 Table. After these steps, 4,061 unique

male SD rats from Charles River (n = 1,780) and Harlan (n = 2,281) remained.

Principal component analysis, identity-by-descent, and heterozygosity

We performed principal component analysis (PCA) on the cohort of 4,228 samples filtered for

low read count, having been received from Taconic, and females. PCA was performed on

genotype calls in R using the prcomp function in R [96] on a set of variants pruned for SNPs

with MAF� 0.05 in the combined sample set, SNPs in pairwise LD with r2 > 0.5, and SNPs

violating HWE at a p-value< 1x10-7 in either Charles River or Harlan. The first PC clearly sep-

arated animals from Harlan and Charles River; however, there was a set of 54 rats that did not

visually cluster as expected at the level of vendor (S7 Fig). These animals were removed from

all subsequent analyses (we assumed they reflected inaccurate records, sample mix-ups, or

some other technical problems).

With this further reduced set of 4,174 rats, we continued on to assess the genetic relation-

ships among the rats in our sample. SD rats were ordered in multiple batches over several

years, and we suspected some of these rats would be closely related (siblings, cousins, etc.). We

reapplied the variant filters used for PCA and utilized the--genome function in plink 1.9 on the

resulting SNP set to estimate p̂ (the proportion of genotypes predicted to be identical by

descent), for all pairs of samples. S4A and S4C Fig show that while most of the animals were

unrelated, there were a significant subset of closely related pairs, as well as some pairs with

exceedingly high IBD1 rates in Harlan.

We used the plink 1.9 function--het to examine possible inflation or deflation of heterozy-

gosity rates in our samples. S8A and S8C Fig show that a handful of samples in both popula-

tions with uncharacteristically high (> 0.25) or low (< 0.25) rates of heterozygosity. We

filtered out 34 such samples, as we found they drove the majority of the anomalous signal in

our pre-filtering plots in S4 Fig. We also removed 12 samples with more than 30 close relations

(defined as p̂ � 0.1875) and 32 samples that had a p̂ � 0.6 with another sample (likely sample

contamination/mix-up). After applying these sample filters, we were left with S4B and S4D

and S8 Figs.

After reaching our final set of 4,061 rats, we reapplied the SNP filters on the reduced sample

set, resulting in 4,502 SNPs that were polymorphic in both populations. We ran PCA on these
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SNPs as described above. We then repeated PCA on the samples from Charles River and Har-

lan separately to examine substructure within each vendor population. Using the results from

the vendor-level PCA analysis, new groupings of barrier facilities were determined based on

genetic similarity. Barrier facilities that clustered most highly in the PCA were grouped

together for subsequent analysis.

Final variant filtering and minor allele frequency spectrum

After establishing the final cohort of 4,061 rats, we sought to establish a final set of SNPs to be

used for the association analyses. Starting from the initial full set of 2,274,118 SNPs, we first

removed sites with DR2 < 0.9. Then, based on the PCA results, we separated the samples into

seven subgroups, each containing genetically-similar samples that clustered highly: SD rats

originating from Harlan 202A/202C/208A (Har 202A), Harlan 206, Harlan 217, Charles River

R09/P03/P07/P10/C71/K92 (Charles River R09), Charles River R04, Charles River P09, and

Charles River C72. These seven groupings were used for all subsequent variant filtering per-

formed in plink 1.9, which converts the posterior probabilities we received from Beagle to hard

genotype calls, so long as the probability is� 0.9. In each cluster, we removed SNPs with

MAF < 0.0001 using the–maf option in plink 1.9. Lastly, we used the--hardy function in plink
1.9 [97] to perform tests for SNP Hardy-Weinberg equilibrium and removed all SNPs with an

HWE p-value < 1x10-7 in any of the seven groups. The final counts of samples and SNPs in

each barrier grouping are available in S3 Table. We used the--freq option in plink 1.9 to esti-

mate the MAFs for these final filtered sets SNPs. The distributions are show in (Fig 3A).

Taking the union of these seven sets of SNPs, there were a total of 291,438 polymorphic

sites passing our filters across all subgroups. Our final set of filtered SNPs contained 75,405

novel SNPs that had not be previously reported by Hermsen et al. [67]. We also compared our

final set of SNPs to the most recent dbSNP release for rats (Build 149, November 7, 2016) and

found that 178,545 of the 291,438 SNPs we discovered were not present in the current dbSNP

build. See the Data Availability section for more information on accessing this data.

Fixation Index (FST)

To quantify the population divergence between SD rats from Harlan and Charles River, we

computed FST for each SNP in the union set using smartpca within the EIGENSOFT package

[41,98,99]. Due to the substructure within vendor and vendor location that we saw in our PCA

analyses, we chose to estimate the pairwise FST between all seven sample subgroups defined

above.

Linkage disequilibrium

We plotted the decay of linkage disequilibrium (LD) using the--r2 utility in plink 1.9 and the

procedures described in Parker et. al 2016 [15]. Briefly, each population’s curve included all

SNPs with MAF > 20% and pairwise LD comparisons were restricted to SNPs with allele fre-

quencies within 5% of each other. An average r2 estimate was obtained using 10,000 randomly

selected SNP pairs from each 100kb interval for the distance between two SNPs, starting with

0-100kb and end at 9.9-10Mb. The procedure was repeated for cluster grouping. The CFW

mice curve was downloaded from a repository for Parker et al. (http://datadryad.org/resource/

doi:10.5061/dryad.2rs41) [15] and used for comparison as another commercially available,

outbred rodent stock.
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LMM covariates and phenotype data pre-processing

To select covariates for the GWAS, we performed univariate linear regression for each poten-

tial covariate for each PavCA metric. This was done separately for rats from each genetically-

similar cluster defined previously. Any covariates that accounted for 1% or more of the vari-

ance for at least one PavCA metric were passed into multivariate model selection with the R

package leaps [100]. Model selection with leaps was performed for all metrics for all days of

testing, as well as the average of days 4 and 5. Out of the 66 models, all covariates that had sur-

passed the 1% threshold to reach this step were ultimately selected in at least 40% of the leaps
models. The covariates included in the downstream GWAS analyses were rat’s age at testing,

housing (binary–single or multiple), light cycle (binary–standard or reverse), and a set of

binary ‘indicator’ variables to model the effects of different experimenters/technicians respon-

sible for the phenotypic testing (S8 Table). All covariates were included in the LMMs for asso-

ciation testing by GEMMA, rather than being regressed out prior to GWAS.

Many of the PavCA metrics were exceedingly non-normally distributed. In most cases, this

was expected due to how the behaviors were measured and defined. For example, the rats only

had a window of 8 seconds in each trial during which to contact the lever and/or make a nose

poke into the food magazine. All values for “average latency to lever press” or “average latency

to magazine entry” were therefore necessarily between 0 and 8 seconds. As is typical for latency

traits, many of the values were near 0 or exactly 8. Similarly, the “probability” of lever press or

magazine entry were very skewed towards the limits 0 and 1, especially after conditioned

responding had been established on the later test days of training. Given these unusual distri-

butions, we chose to quantile normalize all metrics within each subgroup prior to association

testing, accepting a possible loss in power since samples with identical values are ranked ran-

domly during the quantile normalization procedure.

SNP-based heritabilities

Heritabilities were estimated separately for each vendor and subgroup using their sets of fil-

tered SNPs. We used the SNP sets to construct genetic relationship matrices (GRMs) for each

cluster using GCTA [101]. We then used the restricted maximum likelihood (REML) approach

within GCTA on the GRMs, covariates, and quantile normalized PavCA data to calculate the

SNP-based heritabilities for each metric on each testing day.

GWAS

We used GEMMA v0.97 [102], which implements an LMM for GWAS analysis. We included

a GRM as a random term to account for relatedness and population structure. Though benefi-

cial for preventing false positive associations, GRMs can also reduce power to detect QTLs in

populations with greater levels of LD; this is due to proximal contamination [103,104]. To

avoid this reduction in power, we used the leave-one-chromosome-out (LOCO) approach

when constructing the GRMs for each cluster of samples [44,105,106]. As described above, we

selected covariates that were included as fixed effects in our model (S8 Table). Any samples

missing measurements for a given metric were removed from that analysis. For all GWAS,

genotypes were represented as dosages (continuous [0,2]) in lieu of ‘hard’ genotype calls [0, 1,

2] to account for uncertainty in the genotype calls. Reported p-values come from the likeli-

hood-ratio test (LRT) performed by GEMMA. Results were plotted using a custom R script.
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GWAS meta-analysis

We performed meta-analyses of the GWAS results across all seven subgroups, across only the

four Charles River subgroups, and across only the three Harlan subgroups. Due to the signifi-

cant genetic differentiation between certain subgroups in this meta-analysis, it is possible that

tested loci would have differing effect sizes and directions of effect. To account for this and

maximize our power, we utilized the software MR-MEGA ver.0.2, originally designed to per-

form trans-ethnic meta-regression in humans [47]. A large number of the SNPs called in each

subgroup were either unique to that singular group or a subset of the groups, making them of

low utility in a meta-analysis of all seven subgroups. Therefore, the seven subgroup meta-anal-

yses were performed on the intersection SNPs set for all seven clusters, amounting to 64,442

SNPs. We repeated the meta-analyses for the only the subgroups derived from Charles River

(R04, R09, P09, C72) and only those from Harlan (202A, 206, 217) to allow for more SNPs to

pass through to the meta-analysis. There were a total of 198,817 shared SNPs between the

Charles River subgroups, but only 83,120 shared between the Harlan subgroups. Genome-

wide significant results from these meta-analyses are presented in S1 File. For all significant

hits, we also report the directionality and strength of effect of the SNPs in all the separate sub-

groups GWAS.

P-value significance thresholds

In human GWAS, 5x10-8 is widely used as a significance threshold [107]. However, model

organisms have vastly different levels of LD, meaning that the effective number of independent

tests differs between studies. Therefore, many prior studies have used permutation testing

[108,109], where phenotype data is shuffled with respect to fixed genotypes. The computa-

tional load of such methods becomes intractable for studies with large sample sizes and several

traits being mapped [103]. Thus, we used the sequence of SLIDE [110,111] and MultiTrans

[45] to obtain significance thresholds. We used separate thresholds for each subgroup because

the number of SNPs, the LD structure, and the marker-based heritabilities were different, all of

which affect the estimated number of independent tests performed as part of the GWAS. An

advantage of this approach is that only one threshold was needed per cluster for all normalized

metrics. We used a sliding window of 1000 SNPs and sampled from the multivariate normal

10 million times to obtain a 0.05 significance threshold. The subgroup-level -log10(p) thresh-

olds for Charles River R04, R09, P09, and C72 were determined to be 6.14, 6.13, 6.11, and 6.11,

respectively. Similarly, the Harlan 202A, 206, and 217 thresholds were 6.09, 6.00, and 5.89,

respectively. Since there is no clear extension of this approach for a meta-analysis with largely

varying sets of SNPs and LD patterns, we ultimately obtained the meta-analysis thresholds by

taking the subgroup from each vendor with the lowest level of LD (Charles River R04 & Harlan

202A) and filtering their SNP set to contain only the SNPs included in each meta-analysis. We

then reran MultiTrans using these pruned sets of SNPs, providing us with a -log10 threshold of

5.574 for the over-arching meta-analyses, 5.574 for the within-Harlan meta-analyses, and

5.993 for within-Charles River.

Each set of meta-analyses (Charles River, Harlan, or overall) consisted of 55 PavCA metric

x Training Day combinations. A standard Bonferroni correction applied to the meta-analysis

thresholds stated above yields revised thresholds of 7.314 for the over-arching and Harlan

meta-analyses and 7.73 for the Charles River meta-analysis.

LD score regression

We utilized LD score regression to more rigorously test whether after dividing samples up into

seven subgroups, we were still observing inflation of the GWAS test statistics. LDSC is software

PLOS GENETICS Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010234 May 31, 2022 20 / 29

https://doi.org/10.1371/journal.pgen.1010234


designed to determine if observed inflation is due to cryptic relatedness and population strati-

fication or true polygenic signal spread across regions of high LD [46]. Since there is no genetic

map available for Sprague Dawley rats, we used a map created for heterogeneous stock (HS)

rats [112], a similarly outbred population that shares some ancestry with SD. An LD window

size of 5 centimorgans was used, corresponding to the point at which SD LD decayed suffi-

ciently in most subgroups for loci to be considered unlinked. The results of running LDSC for

all GWAS in each subgroup are available in S6 Table.

Supporting information

S1 Fig. Correlation heatmap of PavCA metrics across days 1–5. The heatmap displays the

absolute value of the Pearson correlation coefficient between each pair of PavCA metrics

across all 5 days of testing.

(PDF)

S2 Fig. Distributions of the average of day 4 and day 5 measurements for 10 PavCA met-

rics. Histograms were constructed using measurements from the combined Harlan and

Charles River sample set. Excluded from this plot is the PavCA index score.

(PDF)

S3 Fig. Distributions of the average of day 4 and day 5 PavCA index scores for 6 major

breeding locations. Sample numbers for each breeding location can be found in S1 Table. The

three locations in the left column are from Harlan, and the three locations in the right column

belong to Charles River.

(PDF)

S4 Fig. Heatmaps of pairwise identity-by-descent pre- and post-filtering. Panels A and C

show pre-filtering values of P(IBD) = 0 plotted against P(IBD) = 1 for Harlan and Charles

River. Unrelated samples cluster in the lower right corner. Samples along the diagonal have

2nd and 3rd degree levels of relatedness, while those clustering around (0.5,0.25) are full-sib-

lings. Panels B and D demonstrate that the sample filtering steps removed several spurious

relations from the sample.

(PDF)

S5 Fig. QQ-plot inflation observed in vendor-level GWAS.

(PDF)

S6 Fig. SNP Counts after pruning by pairwise r2 LD estimates. The unfiltered SNP counts

represented in this plot are indicated at the x-tick for 1; ~214k for Charles River and 114k for

Harlan. Only SNPs with MAF > 0.01 were considered. The stringency of the SNP pruning for

the pairwise r2 measurement of LD increases from right to left. For example, 0.95 on the x-axis

would indicate that only SNPs with a pairwise correlation of 0.95 or greater has one of the pair

removed from the SNP set.

(PDF)

S7 Fig. Pre- and post-filtering principal component analysis plots. The top plot shows PCA

results prior to removing individual outliers that fell far outside their expected cluster based on

available metadata. The bottom plot shows the results after visual filtering.

(PDF)

S8 Fig. Pre- and post-filtering distributions of heterozygosity for Harlan and Charles

River. Panels A and C show pre-filtering distributions of heterozygosity in Harlan and Charles

River, as measured by the method-of-moments F coefficient. Panels B and D show the same
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distributions post-filtering. A value above 0 indicates a deflation of heterozygosity, whereas a

value below 0 would be an inflation.

(PDF)

S1 Text. ddGBS protocol used to sequence SD rats.

(DOCX)

S2 Text. Sequences for 48 barcoded adapters, Y-adapter, and PCR primers.

(DOCX)

S1 Table. Sample origins for all 4,061 SD rats in final filtered set.

(PDF)

S2 Table. Concordance and error rates for ANGSD/Beagle genotypes at different dosage r2

thresholds. Rates of concordance and genotyping error were calculated by comparing geno-

types for 381 duplicate samples called in parallel. Each of the two replicates of the sample was

assumed to contribute half the discordant genotypes. Therefore, the per sample genotyping

error rate was calculated as half of the observed rate of discordance.

(PDF)

S3 Table. List of filtered variant counts and sample numbers in subpopulations.

(PDF)

S4 Table. List of sample filtering criteria and number of samples removed.

(PDF)

S5 Table. Heritability estimates in Charles River, Harlan, and their respective subgroups

for 55 mapped PavCA metrics.

(XLSX)

S6 Table. LDSC results for all PavCA metric GWAS in each subgroup.

(XLSX)

S7 Table. List of all PavCA metrics collected on SD rats. There are 11 total metrics across 5

days of training. The first 7 metrics are direct measurements made during the training periods.

The following 3 metrics are calculated from the base measurements. The final metric, PavCA

index score, is a composite score from the previous 3 metrics.

(PDF)

S8 Table. List of covariates used for the GWAS LMMs for Harlan and Charles River. The

first three covariates were used in both Charles River and Harlan analyses. The remaining

covariates were unique to each population.

(PDF)

S1 File. Table of all significant PavCA GWAS hits. For each significant GWAS association,

the table contains the position, allele, allele frequency, PavCA metric, sample size, direction of

effect, meta-analysis p-value, percent variance explained, effect size, and standard error. In

addition, the values for all the independent GWAS that went into the meta-analyses are pro-

vided.

(XLSX)

S2 File. Stacked subgroup Manhattan plots for all analyzed metrics/traits. Each page con-

tains vertically stacked Manhattan plots with the GWAS results for all PavCA metrics in all

seven sample subgroups. The plots are in the following order from top to bottom: Harlan

202A/202C/208A (115k SNPs), Harlan 206 (102k SNPs), Harlan 217 (115k SNPs), Charles
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River R09/P03/P07/P10 (221k SNPs), Charles River R04 (214k SNPs), Charles River P09 (223k

SNPs), and Charles River C72 (222k SNPs).

(PDF)

S3 File. Q-Q plots for all analyzed metrics/traits. Each page contains Q-Q plots for the

GWAS of a given day/metric for the seven subgroups.

(PDF)

S4 File. Stacked meta-analyses Manhattan plots for all analyzed metrics/traits. Each page

contains vertically stacked Manhattan plots with the GWAS results for all PavCA metrics in all

three meta-analyses: Charles River plus Harlan (64k), Charles River only (198k SNPs), and

Harlan only (83k SNPs).

(PDF)

S5 File. Q-Q plots for all metrics/trait meta-analyses. Each page contains Q-Q plots for the

meta-analyses of the GWAS results for a given day/metric across (1) all seven subgroups, (2)

Charles River subgroups, and (3) Harlan subgroups.

(PDF)

S6 File. Spreadsheet with detailed sample sequencing and phenotype information on the

4,061 SD rats used in the GWAS.

(XLSX)
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