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Abstract

The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and
damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the
Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in
its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved
reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further
degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments
were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that
HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that
PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of
Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.
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the Lawsky Foundation (to XTL) and Umeå University (to CF). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Christiane.Funk@chem.umu.se

¤ Current address: Instituto de Investigaciones en Biociencias Agrı́colas y Ambientales, Universidad de Buenos Aires, Buenos Aires, Argentina

Introduction

Cells have evolved an extensive system of molecular chaperones,

folding catalysts, and proteases; that control protein quality and

prevent protein damage. Biochemical and molecular biological

studies have successfully identified many plastidic protease

families, most of which are homologs of defined bacterial

proteases.

Deg/HtrA proteases were initially identified because of their

essential role in the degradation of abnormal periplasmic proteins

and because they are crucial for the survival of E. coli at high

temperatures [1,2]. They have since been found in nearly all

organisms; including Archae, bacteria and eukaryotes. Deg

proteases are ATP-independent serine endopeptidases, containing

a trypsin/chymotrypsin-like protease domain, followed by zero to

three PDZ or PDZ-like domains [3,4]–PDZ domains being those

that mediate complex assembly, substrate binding, and/or

regulation of proteolytic activity [5–7]. In Arabidopsis thaliana, 16

genes coding for Deg-like proteases have been identified and at

least seven gene products have been predicted to be located in

chloroplasts [8–10]. Based on biochemical data, five Deg proteases

have been shown to be localized in the chloroplast: Deg1, Deg5,

and Deg8 are located in the thylakoid lumen [11,12], and Deg2

[13] and Deg7 [14] are peripherally associated with the stromal

side of the thylakoid membrane. Degradation of the Photosystem

II (PSII) reaction-center protein D1 under photoinhibition has

been linked to the lumen-located Deg1 [15], and to Deg5 and

Deg8 [16]. Additionally, Deg1 seems to assist the assembly of PSII

via interaction with the PSII reaction-center D2 protein [17].

It has been shown in vitro that recombinant Deg1 of Arabidopsis

is able to degrade in vitro–translated plastocyanin and PsbO [18].

So far, no details of the molecular mechanism of Deg function are

known, but recently it has been suggested that some Deg proteases

might be redox regulated. In one study it was found that the

proteolysis of casein by recombinant Deg1 and Deg2 of

Arabidopsis was dependent on the redox potential of the

surrounding medium; and while the activity of Deg1 was maximal

under reducing conditions, the opposite was true for Deg2 [19].

Deg1 and Deg5 have been identified as potential thioredoxin

targets from their ability to form mixed disulfides with Trx A

(thioredoxin A) of the unicellular cyanobacterium Synechocystis sp.

PCC 6803 (hereafter: Synechocystis 6803) [20].

In Synechocystis 6803, three Deg/HtrA proteases have been

identified. Owing to their relationship to E. coli they have been

named DegP/HtrA (slr1204), DegQ/HhoA (sll1679), and DegS/

HhoB (sll1427) [21]. However, they are more closely related to

each other than to the E. coli Deg proteases with the same name

[8,9]; so they are probably not orthologs of the E. coli Deg

proteases. HhoA, HtrA, and HhoB have very high homology with

the lumen-located plant Deg proteases Deg1, Deg5, and Deg8 [8].

Single-deletion mutants of HtrA [22] and HhoA [23] have been

found to be more sensitive than wild type, towards light and heat

stress, respectively. However, these results were controversial

[24,25]. While a triple Deg-deletion mutant displayed a significant

phenotype towards light- and heat-stress and phototaxis, none of

the double mutants did. Therefore it was concluded that the Deg
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proteases of Synechocystis 6803 have at least partially overlapping

functions [25].

PSII, which catalyzes light-dependent water oxidation and

plastoquinone reduction in plants and cyanobacteria, consists of

more than 30 proteins located in the thylakoid membrane. The

catalytic reaction center as well as the chlorophyll (Chl)-binding

proteins are membrane integral, but they are stabilized by several

extrinsic proteins bound to the lumenal surface of PSII [26,27],

called the oxygen-evolving complex (OEC). While the extrinsic

protein PsbO is present in all organisms that perform oxygenic

photosynthesis [28,29], the higher-plant PsbP and PsbQ differ

from the corresponding proteins PsbU and PsbV present in the

cyanobacterial water-oxidizing complex.

Although none of its amino acid residues are likely ligands to the

Mn4Ca cluster, PsbO has been found to play an important role in

the stabilization of the oxygen-evolving complex; and after

removal of PsbO the manganese ions are released. However,

oxygen-evolving activity is maintained in the presence of high

concentrations of Cl2 and Ca2+ [30]. Besides being important for

the stabilization of the manganese cluster, PsbO has also been

shown to be involved in many other aspects of PSII structure and

function [31–34].

PsbO has not yet been crystallized owing to its natively unfolded

nature [35]. The only experimental three-dimensional structure of

PsbO was derived from cyanobacterial PsbO bound to PSII

[26,36] and has served as a template for the construction of

homologous models for plant PsbO [29]. It has been found that

pH values of 5.7 and 7.2–which are typical for the light and dark

conditions in the thylakoid lumen–change the conformation of

PsbO [37]. PsbO has two conserved cysteine residues, which

correspond to Cys19 and Cys44 in the cyanobacterium T. elongatus

[28] and to Cys28 and Cys51 in spinach. These cysteines form

a disulfide bridge between the N-terminal loop and the b1 strand

[38]. The role of this disulfide bond is controversial; it has been

observed to be involved in accumulation of PsbO at the thylakoid

membrane [39], and in its rebinding to PSII [40]. However, after

deletion of the disulfide bond, a PsbO Cys28Ala/Cys51Ala double

mutant was still able to assemble PsbO to PSII and to restore

oxygen evolution up to 40% of the control level [41,42].

Unlike unassembled intrinsic subunits of PSII, which are rapidly

degraded; a pool of free, assembly-competent, extrinsic OEC

proteins has been shown to exist in the thylakoid lumen [43,44].

The availability of soluble OEC proteins is thought to be

important for the rapid reassembly of functional oxygen-evolving

PSII complexes during the PSII repair cycle. PsbO has been

shown to have a long lifetime even in its free form [44], but it can

be oxidatively damaged under light stress [45]. Recent in vitro

studies have shown that the PsbO proteins of Arabidopsis and

spinach are targets of thioredoxin [20,46–48]. Notably, the

disulfide bridge of PsbO was not only reduced by thioredoxin,

but the redox state of the disulfide was integral to the degradation

of PsbO1 and PsbO2 of Arabidopsis [20].

The protease activities responsible for the redox-dependent

proteolysis have not yet been identified. Here we demonstrate that

recombinant HhoA of the cyanobacterium Synechocystis 6803 is

able to degrade PsbO from spinach in a redox-dependent manner,

and we present the corresponding cleavage sites. In agreement

with earlier observations in Arabidopsis [20], we observed that

PsbO degradation was induced after reduction of the disulfide

bond in both spinach and Synechocystis 6803. We provide evidence

that the redox-dependent degradation of PsbO in cyanobacterial

thylakoid membranes is performed by Deg proteases. Finally, we

demonstrate the subcellular localization of the three Deg proteases

to be at the thylakoid membrane and/or in the periplasmic space.

Results

rHhoA is able to degrade cyanobacterial PsbO in a redox-
dependent manner

It was recently shown by means of proteomics that the redox

state of the cysteine thiols is important for the stability of both

PsbO1 and PsbO2 in Arabidopsis [20]. The proteases known to be

located in the plant chloroplast lumen are the D1-processing

proteases and the Deg proteases Deg1, Deg5, and Deg8. Deg1 is

the most abundant protease in the soluble lumen content and it is

therefore a reasonable assumption that it would be involved in the

redox-dependent degradation of PsbO. However, Deg1 of

Arabidopsis was recently reported to be redox regulated itself

[19]. In addition, Deg1 and Deg5 of Arabidopsis have been shown

to form mixed disulfides with TrxA of Synechocystis 6803 [20],

suggesting that the lumenal Deg proteases of green plants might be

redox regulated. To unambiguously investigate the redox-de-

pendent degradation of the substrate PsbO–and not of the

protease itself–we designed in vitro degradation experiments using

cyanobacterial recombinant Deg proteases. All three Synechocystis

6803 Deg proteases are highly homologous to the three lumen-

located Deg proteases of Arabidopsis, but not to the other Deg

proteases of this plant [8]. While HhoA and HhoB are free of

cysteines, HtrA contains one N-terminal cysteine, which, however,

is not conserved among HtrA of other organisms, suggesting that

HtrA is not regulated via redox-active thiols. In addition, no Deg

protease was detected among the thioredoxin targets of Synechocystis

6803 [49]. Therefore, the activities of HtrA and the other Deg

proteases of Synechocystis 6803 are not controlled by thioredoxin.

Activity of the three purified recombinant Deg proteases of

Synechocystis 6803–rHhoA, rHhoB, and rHtrA–was confirmed

using b-casein as a substrate (Figure 1A). All three recombinant

proteases exhibited proteolytic activity, as had previously been

demonstrated [50]. To investigate if redox-dependent degradation

of PsbO could be observed in Synechocystis, we performed an in vitro

proteolytic assay using a PSII-enriched fraction isolated from the

HT3 strain as the source of PsbO. The Synechocystis HT3 strain

expresses a His-tagged CP47 protein; which allows purification of

a highly enriched PSII fraction by nickel-affinity chromatography

[51,52]. In agreement with previous reports [52], mass spectro-

metric analysis of major bands in this fraction allowed identifica-

tion of several PSII subunits (Figure 1B). The isolated PSII-

enriched fraction was incubated with each of the three

recombinant Deg proteases for 5 h under reduced conditions.

The reduced conditions were conferred using the complete E. coli

thioredoxin system, consisting of thioredoxin (Trx), thioredoxin

reductase (TrxR), and b-NADPH. Figure 1B shows the CBB R-

250 stained gels and Figure 1C shows the immunoblots using an

anti-PsbO antibody. As seen in Figures 1B and C, PsbO in the

PSII complex was moderately degraded in the presence of reduced

thioredoxin (PSIIred), while no degradation was detected when

reduced thioredoxin was absent (panel 1). Quantification analysis

of the signals shows that 63% of PsbO initial amount remained

after 5 h (PSIIred). We believe that this degradation can be

attributed to low amounts of Synechocystis proteases co-isolating

with the PSII-containing membrane fractions. Nonetheless,

addition of recombinant HhoA clearly increased the degradation

of PsbO in the presence of thioredoxin, as can be observed both in

the CBB-stained gels (Figure 1B) and in the immunoblots

(Figure 1C) where about 30 and 35% of the initial amount of

PsbO remained after 5 h, respectively. On the other hand,

addition of rHhoB or rHtrA did not enhance the degradation of

reduced PsbO bound to PSII. It is noteworthy that no additional

PsbO fragments were observed in the CBB-stained gels or in the
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immunoblots (Figure 1C), therefore either the antibody did not

recognize the degradation products, or PsbO degradation in this

experiment was complete.

Subcellular location of the Deg proteases of
Synechocystis 6803

To investigate if the internal degradation of reduced PsbO

observed in the PSII-enriched fraction (Figure 1B and 1C, panel 1)

could be attributed to native cyanobacterial Deg proteases, PSII-

enriched membranes were isolated from the HT3 strain. After

SDS-PAGE, the proteins were immunostained with antibodies

directed against HhoA, HhoB, or HtrA. As shown in Figure 2A, all

three Deg proteases were detected in the PSII-enriched fraction.

However, it is important to note that the PSII-enriched fraction

had to be concentrated 10–50 times to achieve immune signals of

the same intensity as for the total cell extract. These data suggest

that even though all three Deg proteases can be found in the

membrane fraction in proximity to PSII, they are present in

substoichiometric amounts.

Earlier proteomic studies have identified HtrA in the outer

membrane of Synechocystis 6803 [53]; and HhoA has been detected

in the periplasm, where it has been found both in a soluble form

[54] and in a plasma membrane–bound form [55]; while the

subcellular location of HhoB is still unknown. To further

investigate the subcellular location of the Deg proteases within

the membrane system of Synechocystis 6803, the different membrane

fractions were isolated in a two-dimensional manner using density-

gradient centrifugation and two-phase partitioning [56]. As shown

in Figure 2B, all three Deg proteases were immuno-localized in the

plasma membrane of Synechocystis 6803. Additionally, HhoA and to

a lesser extent HtrA were detected in the thylakoid membrane.

The purity of the membrane fractions was controlled immuno-

logically by using antibodies directed against the PSII core protein

CP47, which is known to be localized in the thylakoid membrane,

and against NrtA–a component of the nitrate transporter–, which

is localized in the plasma membrane.

Native PsbO is degraded in a redox-dependent manner
in the thylakoid lumen of spinach

To further study the redox-dependent degradation, a pure

PsbO fraction was needed that was free of contaminating proteases

(native Deg/HtrA, or other proteases within the cell). To our

knowledge, no method has been reported that allows the

purification of large quantities of PsbO from Synechocystis cells. In

addition, an attempt to express recombinant Synechocystis PsbO in

two different E. coli strains resulted in the production of insoluble

aggregates and a low fraction of apparently misfolded protein,

highly prone to precipitation (data not shown). Analysis of the

redox state of soluble recombinant PsbO showed that the protein

is synthesized mostly in its reduced form, suggesting that E. coli is

not able to correctly form the disulfide bridge (Figure S1). As

a consequence, studies using purified PsbO from Synechocystis as

substrate were not possible, and hence the usefulness of using

PsbO purified from other sources was evaluated.

The amino acid sequence and structure of PsbO from

prokaryotic and eukaryotic organisms are highly conserved [29].

The PsbO protein of Synechocystis has 43% sequence identity with

its spinach and Arabidopsis counterparts (Figure S2), mostly within

highly conserved regions [29]. Critical for similarity of protein

structures is conservation of the amino acid residues that stabilize

the hydrophobic core of a protein [57]. For PsbO from spinach,

the molecular interactions of the individual amino acid residues

that stabilize the protein core have been calculated [38]. PsbO

from spinach has 107 amino acid residues that contribute with ten

or more molecular interactions to the stability of the protein fold

[38], and 56 of these amino acid residues (52%) are directly

conserved in the sequence of PsbO from Synechocystis. In addition,

both PsbO from spinach and from Synechocystis can without

Figure 1. Cyanobacterial PsbO is degraded by rHhoA in a redox-dependent manner. (A) Proteolytic activity of recombinant Synechocystis
6803 Deg/HtrA proteases against naturally unfolded b-casein. Small arrows indicate b-casein degradation fragments. (B) A PSII-enriched fraction was
isolated from Synechocystis 6803 using the HT3 mutant with His-tagged CP47. The PSII-enriched fraction was incubated for 5 h in the absence (PSII) or
the presence (PSIIred) of the thioredoxin system, either with no protease (panel 1) or with rHhoA (panel 2), rHhoB (panel 3), or rHtrA (panel 4). The
proteins (15 mg) were separated by SDS-PAGE and analyzed with CBB staining. Identity of the named bands was confirmed using mass spectrometry.
(C) After SDS-PAGE proteins were transferred to PVDF membranes and immunostained using an antibody directed against PsbO. Bars below the gels
and blots show the integrated density values of the corresponding bands as quantified by Image J software. The asterisk marks an nonspecific cross-
reacting band.
doi:10.1371/journal.pone.0045713.g001

Figure 2. Subcellular localization of the Synechocystis Deg
proteases. (A) Total wild-type cell extract and a PSII-enriched fraction
isolated from the HT3 strain of Synechocystis 6803 were analyzed by
SDS-PAGE, and by immunostaining using antibodies directed against
recombinant HhoA, HhoB, or HtrA. Of the total cell extract, samples
corresponding to 0.1 mg of chlorophyll were loaded for immunostain-
ing with anti-HhoA and samples corresponding to 0.5 mg were loaded
for anti-HhoB and anti-HtrA. Of the PSII-enriched fraction, samples
corresponding to 5 mg of chlorophyll were loaded in each lane. (B)
Outer membrane (OM), plasma membrane (PM), thylakoid membrane
(TM), and soluble protein fraction (S) were isolated from Synechocystis
6803 by gradient centrifugation and two-phase partitioning, separated
by SDS-PAGE, and immunostained using antibodies directed against
recombinant HhoA, HhoB, or HtrA. Purity of the membranes was
determined by using antibodies directed against the PSII protein CP47
and against NrtA, a component of the nitrate transporter; 15 mg of
protein was loaded in each lane.
doi:10.1371/journal.pone.0045713.g002
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difficulty be aligned to the sequences of PsbO from Thermo-

synechococcus, for which experimental structures are available (PDB

IDs: 1FE1, 1LX, and 1IZL). The sequence identity between these

proteins is 35% or higher. This high degree of similarity of the

sequences of cyanobacterial PsbO and spinach PsbO indicates that

the folds of these proteins are most likely very similar and that

spinach PsbO is a useful model for the proteolytic cleavage of

cyanobacterial PsbO by Deg proteases.

For purification of PsbO, spinach has the advantage that it has

a simpler arrangement of PSII that allows isolation of a homoge-

neous PsbO fraction. Multi-gene families coding for PsbO

isoforms have been reported in Arabidopsis [11,12,58], pea [59],

tomato [60], and tobacco [61]. Genomic sequencing of other plant

species, such as rice and wheat, has also revealed multiple PSBO

genes, coding for highly similar PsbO proteins. However, spinach

has only one known PsbO gene product, and there is no evidence

for the presence of other PsbO proteins in this plant [11].

The extrinsic PsbO protein binds to the lumen side of PSII, and

it is also present as soluble unassembled protein in the thylakoid

lumen [44]. It is well known that the intrinsic proteolytic activity in

the thylakoid lumen is low under non-reducing conditions, and

most proteins of this compartment are not significantly degraded in

vitro [62]. The recently reported observation that both PsbO

subunits are degraded in Arabidopsis lumen samples in the

presence of reduced thioredoxin [20] points to a potential

participation of lumenal proteases in this process. To investigate

if redox-dependent degradation of PsbO could also be observed in

the thylakoid lumen of spinach, lumenal proteins were isolated

from both spinach and Arabidopsis, and incubated in the presence

of the complete thioredoxin system (Figure 3A). Control assays

were performed using the thioredoxin system without the electron

donor b-NADPH or vice versa. Even when some basal level of

proteolysis was detected in the controls, PsbO degradation was

clearly enhanced in the presence of reduced thioredoxin.

However, redox-dependent degradation of PsbO was slower in

the fraction of lumenal proteins from spinach than in that from

Arabidopsis. Densitometric analysis of the corresponding bands

revealed that about 61% of the initial PsbO amount remained in

the spinach sample after 3 h of incubation in the presence of the

complete thioredoxin system while for PsbO1 and PsbO2 from

Arabidopsis 46 and 41% remained, respectively. As previously

reported, redox-dependent (TL17) and -independent (Cyp38)

protein degradation has been observed in the lumen of

Arabidopsis [20] and redox-dependent degradation of TL17 is

also clearly detectable in the lumenal fraction from spinach. The

ability of reduced thioredoxin to reduce the disulfide of PsbO was

confirmed using monobromobimane (mBBr), which allows specific

fluorescence labeling of sulfhydryl groups (Figure 3B).

rHhoA is able to degrade spinach PsbO in a redox-
dependent manner

In order to test the susceptibility of spinach PsbO to Synechocystis

Deg proteases, PsbO isolated from spinach leaves was incubated

for 5 h at 37uC in the presence of the recombinant proteases

rHhoA, rHhoB, and rHtrA (Figure 4A). No degradation was

observed after 5 h in non-reducing conditions (panel 1, lanes 1

and 2); the weak bands visible in these lanes were not

immunostained by the antibody directed against PsbO nor did

mass spectrometric analysis identify any PsbO fragments (not

shown). In the presence of the thioredoxin system (PsbOred) some

residual degradation was observed that might be caused by low

amounts of cross-contamination by spinach proteases (panel 1,

lane 3). Longer incubation times were tested up to 10 h, and the

time course degradation of PsbO was quantified from the CBB

stained gels using the Image J software (Figure S3). Results showed

that the fastest PsbO degradation was achieved in the presence of

reduced thioredoxin and rHhoA in a ratio of 1:10 enzyme to

substrate (56). In this case, about 38% of the initial PsbO

remained after 5 h of incubation and less than 7% after 10 h.

Concomitant with the decrease of the PsbO band at 33 kDa, an

additional band with a molecular mass of 29 kDa was observed in

the CBB-stained gel. Addition of recombinant HhoA to reduced

PsbO using an enzyme to substrate ratio of 1:50 resulted in

further, strong degradation of the PsbO protein (panel 2, lane 2).

Four degradation products were observed with apparent molec-

ular masses of around 32 kDa (F1), 29 kDa (F2), 27 kDa (F3), and

24 kDa (F4). At higher rHhoA concentration (56) the 24-kDa

band accumulated, while the 29-kDa band disappeared (panel 2,

lane 3). It is important to note that addition of recombinant HhoB

or HtrA did not lead to any redox-dependent degradation of

PsbO, apart from the residual degradation that was observed as

background activity when no protease was added (panels 1, 3, and

4). This background activity was always around 20% of

degradation (80% of initial PsbO remaining) even in the presence

of recombinant HhoB and HtrA both at standard or high protease

concentrations (56) and after 10 h of incubation (Figure S3). Also

addition of CaCl2 to the buffer to stimulate the activity of these

proteases did not lead to higher degradation rates (not shown)

[50].

Of the four fragments detected, F1 and F4 were specific bands,

which only appeared in the presence of the thioredoxin system and

rHhoA. F3 already was visible in unreduced PsbO preparations,

but accumulated over time in the presence of the thioredoxin

system and rHhoA (Figure 4A, panel 2, lane 3). In contrast, F2

was produced in the presence of the thioredoxin system without

addition of recombinant proteases, and most likely it was the

product of background protease activity. Interestingly fragment F3

was further degraded by rHhoA; its intensity in the CBB-stained

gel was reduced over time and totally disappeared at higher

rHhoA concentrations (Figure 4A, panel 2, lane 3). The pro-

teolytic fragments of the redox-dependent PsbO degradation by

recombinant HhoA were N-terminally sequenced using the

Edman degradation method (Figure 4B). The cleavage sites in

spinach PsbO were identified as Val19–Lys20 (F1), Lys48–Lys49

(F2), Lys60–Ala61 (F3), and Met78–Thr79 (F4) (Figure 4B). The

rHhoA-specific cleavage sites in fragments F1 (Tyr-Leu-Glu-

ValQLys-Gly-Thr-Gly) and F4 (Thr-Lys-Leu-MetQThr-Arg-

Leu-Thr) are not in the Merops peptidase database, indicating

that HhoA belongs to a subfamily of the chymotrypsin family of

peptidases that has its own unique substrate specificity. The

identified cleavage sites are located near to the N-terminus of the

protein (Figure 4B) and large fragments (32 to 24 kDa) remain

after rHhoA action. Currently, we cannot exclude the need for

additional factors/proteases to enhance or continue with the

redox-dependent degradation of PsbO. However, addition of

different combinations of recombinant Deg proteases (rHtrA or

rHhoB with rHhoA) to reduced PsbO did not lead to a faster or

further degradation of the protein in spinach (Figure S4).

To test the substrate specificity of the redox-dependent

degradation performed by rHhoA, another extrinsic protein of

the manganese-stabilizing complex of PSII, the PsbQ protein was

isolated from PSII membrane fragments and incubated for 5 h at

37uC in the presence or absence of the thioredoxin system

(denoted PsbQred and PsbQ, respectively). As shown in Figure 5,

no degradation was observed, either on the CBB-stained gel

(upper panels) or in the immunoblot using antibodies directed

against PsbQ (lower panels); the additional band with molecular

mass of 12 kDa in the PsbQred fractions corresponded to

Redox-Dependent Degradation by HhoA
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thioredoxin. Addition of recombinant HhoA, HhoB, or HtrA did

not result in any degradation of PsbQ, neither in the presence nor

in the absence of the thioredoxin system (panels 2–4). As spinach

PsbQ lacks any cysteine residue, a thiol-dependent conformational

change that facilitates degradation of this protein would not be

expected, and the absence of any redox-effect in the control assay

using PsbQ supports our hypothesis that the activities of rHhoA,

rHhoB, and rHtrA are not regulated by thioredoxin.

PsbO bound to PSII is protected against degradation in
reducing conditions

PsbO is assembled into PSII. However, a pool of free PsbO has

been shown to exist in the thylakoid lumen [43]. Under reducing

conditions, unassembled PsbO was degraded without addition of

recombinant proteases (Figure 3A), which is consistent with the

presence of Deg proteases in the thylakoid lumen. To investigate if

PsbO attached to PSII can also be degraded, PSII membrane

fragments were isolated from spinach leaves and incubated for 5 h

in the presence or absence of reduced thioredoxin. After

separation of the proteins by SDS-PAGE, PsbO was immunos-

tained (Figure 6). No degradation of PsbO was observed in the

PSII fraction of spinach; neither in the absence nor in the presence

of reduced thioredoxin (Figure 6). Addition of recombinant rHhoB

or rHtrA to non-reduced or reduced PSII did not lead to any

degradation. However, addition of rHhoA resulted in slight,

redox-dependent degradation of PsbO; evidenced by the appear-

ance of the previously described fragments after 5 h of incubation

(Figure 6). However, this degradation was slower and weaker than

for isolated PsbO (Figure 4A), suggesting that the protein is

protected against degradation when it is bound to PSII. We

believe that the PSII preparation contained some unassembled

PsbO that served as a substrate for rHhoA.

Discussion

Degradation of PsbO is thioredoxin-dependent
The PsbO protein of plants [29] and cyanobacteria [63] is

a protein of elongated shape containing two major domains: The

very stable domain I is composed of eight antiparallel b strands

which form a cylinder with hydrophobic amino acid residues in its

central part. Domain II mainly consists of random coils and turns

and a distinct a helix. The hydrophilic loops are stabilized by

interaction with other PSII proteins and are flexible in the non-

assembled protein. PsbO contains two conserved cysteine residues,

Cys28 and Cys51 in spinach [38], that form an S-S bridge

between the N-terminal loop and the b1 strand. While the

function of these two cysteins is controversial, it was recently found

that they are redox sensitive and might be relevant for the function

of PsbO [20,46–48].

The PsbO protein has been found to be remarkably stable when

exposed to different temperatures and pHs [44,64]. However, in

Arabidopsis both PsbO proteins–PsbO1 and PsbO2–become

unstable after reduction by thioredoxin, and are degraded [20].

In this study, we have confirmed the previous results for

Arabidopsis and shown that also the PsbO of spinach and of the

cyanobacterium Synechocystis 6803 are redox-dependently degrad-

Figure 3. PsbO degradation in the thylakoid lumen of spinach and Arabidopsis is redox dependent. (A) Thylakoid lumen of spinach and
Arabidopsis was isolated and incubated for 3 h in the presence of the complete thioredoxin system. Controls lacked either b-NADPH or thioredoxin
(Trx) and thioredoxin-reductase (TrxR). After SDS-PAGE, the proteins (20 mg) were stained with CBB. Arrows indicate the position of the PsbO protein
band in spinach, and the positions of PsbO1 and PsbO2 in Arabidopsis samples and of other prominent proteins identified by mass spectrometry. The
remaining PsbO amount after 3 h of incubation was quantified using Image J software and was as it follows: 61, 46 and 41% in the presence of the
complete thioredoxin system; 84, 81 and 98% in the controls lacking Trx and TrxR; and 82, 76 and 83% in the controls lacking b-NADPH for spinach
PsbO, PsbO1 and PsbO2, respectively. (B) Thylakoid lumen of spinach was isolated and incubated with the complete thioredoxin system (Trx/TrxR/b-
NADPH) or with thioredoxin and thioredoxin reductase (Trx/TrxR) as a control. Sulfhydryl groups of the lumenal proteins were labeled with mBBr.
After SDS-PAGE, proteins were visualized with UV. Identity of the named bands was confirmed using mass spectrometry.
doi:10.1371/journal.pone.0045713.g003
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ed. The relevance of these observations for the turnover of PsbO

under physiological conditions is supported by the recent finding

that PsbO levels in the lto1 mutant of Arabidopsis are clearly lower

than in wild-type plants [65]. The lto1 gene encodes for a lumen

thiol oxidoreductase (LTO1) that catalyzes disulfide formation of

thylakoid proteins on the lumen side of the thylakoid membrane.

In the lto1 mutant, oxidation of reduced PsbO is inhibited, which

would facilitate degradation of this protein and explain the lower

levels of PsbO in this mutant than in the wild type [65].

Recombinant HhoA from Synechocystis 6803 cleaves PsbO from

spinach in the N-terminal region specifically before (F1) and after

(F4) the disulfide bridge, which is consistent with the redox-

dependence of this process. This degradation is very specific, and

other extrinsic PSII proteins such as PsbQ are not degraded. The

cleavage sites of the HhoA-specific fragments F1 (YLEV-KGTG)

and F4 (TKLM-TRLT) are new and not in the Merops peptidase

database. This suggests that HhoA belongs to a subfamily of the

chymotrypsin family of peptidases that have their own unique

substrate specificity.

Degradation kinetics
In purified chloroplast lumen of Arabidopsis, degradation of

PsbO has been shown to be complete within 5 h of the onset of

reduction by thioredoxin [20]. Similar results were obtained for

PsbO from spinach, but the rate of the degradation was slower

than for the PsbO proteins from Arabidopsis. This might be due to

a more negative redox potential of PsbO in spinach than in

Figure 4. PsbO degradation in the presence of recombinant Deg proteases of Synechocystis sp. PCC 6803. (A) PsbO from spinach was
isolated and incubated in the absence or the presence (PsbOred) of the thioredoxin system for 5 h either without addition of recombinant proteases
(panel 1) or after addition of rHhoA (panel 2), rHhoB (panel 3), or rHtrA (panel 4) at two different enzyme-to-substrate ratios, 1:50 and 1:10 (56). After
SDS-PAGE, the proteins (9 mg) were stained with CBB. Arrows indicate the position of PsbO degradation fragments (F1 to F4). (B) The degradation
fragments of reduced spinach PsbO produced by recombinant HhoA were transferred onto PVDF membrane, stained using CBB, and analyzed by
Edman sequencing. The cutting sites are indicated by dashed lines in the mature PsbO sequence.
doi:10.1371/journal.pone.0045713.g004
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Arabidopsis. In addition, the native protease activity responsible

for PsbO degradation might need additional factors/proteases to

enhance the redox-dependent degradation.

PsbO degradation by Deg proteases
Various chloroplast-located Deg proteases are known to be

involved in the degradation of photosynthetic proteins under stress

conditions, and the main target seems to be the reaction-center

protein D1 [13–17]. Recombinant Arabidopsis Deg1 was also to

some extent able to degrade recombinant PsbO [18]. These results

appear to be contradictory to ours, as unreduced PsbO was

degraded by Deg1. However, recombinant PsbO is, at least

partially, produced in its reduced form. We observed degradation

of recombinant PsbO from spinach and Synechocystis 6803 without

addition of the thioredoxin system (not shown). However, a control

using thiol labeling with monobromobimane showed that

recombinant PsbO from Synechocystis 6803 mainly contained

reduced cysteine thiols (Figure S1), which indicated that E. coli is

not able to correctly form the disulfide bridge of PsbO. Consistent

with these observations, a recent study in Arabidopsis showed that

Deg1 is not responsible for degradation of mature PsbO in vivo, but

acts downstream by degrading its fragments [66].

Is PsbO degraded in its free form or bound to PSII?
The conformations of PsbO in solution differ from those when it

is bound to PSII [42,67,68]. Conformational changes of PsbO

under different light conditions and heat treatments affect its

binding ability [37], which might trigger its degradation. It has

been shown that the disulfide bridge is important for folding and

rebinding of PsbO to PSII [40]; and binding of PsbO to PSII

seems to protect it from degradation in spinach (Figure 6). In PSII

isolated from Synechocystis 6803, a moderate degradation of PsbO

was visible, which was probably due to co-isolated HhoA or other

proteases (Figure 1B and 1C). We believe that by degrading free

PsbO present in the PSII fractions, the equilibrium between bound

and free PsbO is changed, so that more PsbO dissociates from

PSII and therefore more PsbO can be degraded by the

(recombinant or native) Deg proteases. Free, unassembled PsbO

appears to be destabilized after reduction of its disulfide bridge and

becomes accessible to proteolysis. While rHhoA was able to

degrade PsbO from spinach in a redox-dependent manner, it is

still unclear what roles the lumenal Deg proteases Deg1, Deg5,

and Deg 8 play in the degradation of PsbO. However, Deg1 does

not appear to be involved in the primary cleavage of PsbO [66].

Figure 5. PsbQ is not degraded by the recombinant Deg proteases. PsbQ was isolated from spinach and incubated for 5 h in the absence or
the presence (PsbQred) of the thioredoxin system, either with no protease (panel 1) or with rHhoA (panel 2), rHhoB (panel 3), or rHtrA (panel 4). After
SDS-PAGE, the gel was either stained with CBB (upper panels, 6 mg of protein loaded) or blotted and immunostained using an antibody directed
against PsbQ (lower panels, 1.5 mg of protein loaded).
doi:10.1371/journal.pone.0045713.g005
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For PsbO from Synechocystis 6803, Figure 1B shows that PsbO in

PSII-enriched membrane fragments is essentially stable, but

becomes degraded under reducing conditions. The presence of

externally added recombinant HhoA clearly enhances the

degradation of PsbO under reducing conditions, while for

externally added rHhoB and rHtrA no effect was observed. These

observations suggest that PsbO of Synechocystis 6803 is a substrate

for rHhoA, but not for rHhoB and rHtrA.

Subcellular location of the Deg proteases in Synechocystis
6803

The location of the three Deg proteases in Synechocystis 6803 has

not previously been determined. In contrast to green plants,

protein sorting in cyanobacteria is poorly understood, and reliable

methods for separating the periplasm and the thylakoid lumen do

not yet exist [69]. Our immunological studies have identified all

three proteases attached to the plasma membrane, although HhoA

and HtrA also seem to be associated with the thylakoid membrane

(Figure 2B). It has been shown previously that all three Deg

proteases have overlapping functions [25], which is supported by

a common sub-localization within the cell. Components of the

reaction centres of PSI and PSII as well as PsbO have previously

been identified in the plasma membrane of Synechocystis 6803

[53,70]. Additionally, convergence sites between the thylakoid

membranes and the plasma membrane have been observed [71],

which allow the Deg proteases located at the plasma membrane

access to PSII in vivo. A co-localization of the cyanobacterial Deg

proteases within the plasma membrane and the thylakoid

membrane (partly close to PSII) is therefore possible, although

a localization within PSII is not likely, as the levels of the Deg

proteases in the PSII-enriched fraction were very low. In

Arabidopsis however, Deg1 has been co-isolated with PSII and

has been shown to interact specifically with the reaction-centre

protein D2 [17].

In summary, it had been proposed that the cyanobacterial Deg

proteases were involved in response to heat- and light-stress

[22,24,25,72], but physiological substrates of cyanobacterial Deg/

HtrA proteases had not been identified. Here, we were able to

show biochemically that PsbO from spinach and from Synechocystis

6803 could be substrates for the cyanobacterial Deg protease

HhoA, and that the degradation of PsbO by rHhoA is likely redox-

dependent. Further research is needed to determine whether

redox-dependent proteolysis of PsbO by Deg proteases plays a role

in PSII assembly and repair. Genetic evidence supporting our

finding is currently lacking. Our efforts to investigate the possible

accumulation of PsbO in a triple knockout mutant (hhoA-, hhoB-

and htrA-) in Synechocystis both under high light or high

temperature stress were not successful. Further experiments in

a suitable homologous system in plants will be needed to address

this question.

Materials and Methods

Lumen, PSII, PsbO, and PsbQ purification from spinach
and leaves

Spinach leaves were bought on the local market. Arabidopsis

plants were grown as described previously [20]. Thylakoid

membranes and PSII membrane fragments were isolated from

spinach leaves essentially as described previously [73,74]. Chlo-

roplast lumen from spinach and Arabidopsis leaves was prepared

as described previously [62]. PsbO was released from the PSII

membrane fragments by salt-wash treatment after removal of

PsbQ and PsbP [75]. PsbQ was purified from this fraction, and

obtained in 1 M NaCl, 10 mM MES, pH 6.5. The buffer was

switched to 50 mM Tris-HCl, pH 7.5 and loaded onto a Q-

Sepharose column equilibrated in the same buffer. PsbQ was

recovered in the flow through; the buffer was switched to 50 mM

CAPS, pH 10 and loaded onto a second Q-Sepharose column

equilibrated in the same buffer. After washing with five bed

volumes of starting buffer, the proteins were eluted with 600 mM

NaCl, 50 mM CAPS, pH 10. The PsbO fraction obtained in

0.8 M Tris-HCl buffer, pH 8.4 was diluted with Milli-Q water to

50 mM Tris-HCl and concentrated by binding to a small Q-

Sepharose column (0.561 cm) equilibrated with 50 mM Tris-HCl

buffer, pH 8.4. Bound proteins were eluted with 600 mM NaCl in

the same buffer. Fractions were analyzed by SDS-PAGE [76], and

those containing PsbQ or PsbO were pooled before concentration

and desalting by ultrafiltration with 3-kDa and 10-kDa cutoffs,

respectively (Amicon Ultra-15, Millipore).

Membrane and PSII purification from Synechocystis 6803
cells

Soluble and membrane fractions of Synechocystis 6803 were

separated by a combination of sucrose-density centrifugation and

aqueous two-phase partitioning [56]. PSII containing His-tagged

CP47 was isolated from the HT3 strain of Synechocystis 6803 [51].

Cells were grown in liquid BG-11 medium in the presence of

25 mg ml21 kanamycin under 50 mmol photons m22 s21, with air

bubbling at 30uC. His-tagged PSII was purified as described

previously [52] except that imidazole was used instead of histidine

to elute the proteins bound to the Ni-NTA column. After two

washing steps with 15 and 35 mM imidazole in buffer A [50 mM

MES-NaOH, pH 6.0; 10 mM MgCl2; 5 mM CaCl2; and 25% (v/

v) glycerol] with 0.04% (w/v) dodecyl maltoside, proteins were

eluted with 100 mM imidazole in buffer A with 0.04% (w/v)

dodecyl maltoside. The eluted fractions were pooled and the

sample was concentrated and equilibrated with buffer A by

ultrafiltration (50-kDa cutoff, Amicon Ultra-15, Millipore).

Figure 6. PsbO bound to PSII is protected against degradation
by native proteases. PSII membrane fragments from spinach were
isolated and incubated for 5 h in the absence (PSII) or the presence
(PSIIred) of reduced thioredoxin, either with no protease or with rHhoA,
rHhoB, or rHtrA. After SDS-PAGE, the proteins were blotted and
immunostained using an antibody directed against PsbO. Small arrows
indicate PsbO degradation fragments (F1 to F4).
doi:10.1371/journal.pone.0045713.g006
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Overexpression and purification of recombinant Deg
proteases from Synechocystis 6803

The construct overexpressing Synechocystis rHhoA protease and

lacking the predicted signal peptide at the N-terminal end was

developed by Huesgen et al. [72]. Cloning and purification of

recombinant HtrA and HhoB proteases followed a similar strategy

[50]. Transformed E. coli cells were grown in LB liquid medium

containing 100 mg ml21 ampicillin at 19uC for 10 h, and

expression of recombinant proteases was induced by the addition

of 0.1 mM isopropyl-1-thio-D-galactoside (IPTG). Cultures were

further grown overnight at 19uC, then harvested by centrifugation

(5 000 g for 10 min at 4uC). Cell pellets were resuspended in 10 to

20 ml of binding buffer (50 mM HEPES-NaOH, pH 8.0 and

300 mM NaCl) and stored at 220uC. Cells were lyzed on ice by

10 to 15 repeats of 10-s sonication with 20-s cooling interval and

centrifuged (26 000 g, 1 h, 4uC). Recombinant proteases were

purified at 5uC from filtered soluble cell lysates (0.2-mm filters)

using His GraviTrap affinity columns (GE Healthcare) according

to manufacturer’s instructions. Application in binding buffer was

followed by a washing step with 10 ml of binding buffer containing

60 mM imidazole and an elution step with 5 ml of elution buffer

(50 mM HEPES-NaOH, pH 8.0; 300 mM NaCl; and 500 mM

imidazole). Protein concentrations were determined by Bradford

protein assay (Biorad) with BSA solutions as standard.

Proteolytic activity of recombinant Deg proteases
Purified recombinant proteases were incubated with an excess

of b-casein in 250 mM buffer Tris-HCl, pH 7.0, supplemented

with 20 mM CaCl2 for 30 min at 40uC. After reaction, proteins

were analyzed by SDS-PAGE, as described below.

Overexpression and purification of recombinant PsbO
from Synechocystis 6803

Specific primers (59 CGCGCGGCAGCCATATGGTTGA-

TAAGAGCCAGCTTAC 39and 59 GGATCCTCGAGCA-

TATGTTAAACATCGGTGTCCAC 39) were designed to am-

plify the psbO gene (sll0427) lacking the signal peptide from

genomic DNA isolated from Synechocystis 6803. The PCR product

was cloned into a pET-15b vector (Novagen) to produce a fusion

protein containing an N-terminal His-tag using the In-Fusion

Advantage PCR cloning kit (Clontech), following the manufac-

turer’s instructions. Chemo-competent cells of the expression

strains Rosetta 2 (DE3) or Rosetta-Gami 2 (DE3) (Novagen) were

transformed with the plasmid and selected on LB agar containing

50 mg ml21 carbenicillin and 34 mg ml21 chloramphenicol [for

Rosetta 2 (DE3) cells] or 50 mg ml21 carbenicillin, 34 mg ml21

chloramphenicol, 12.5 mg ml21 tetracyclin, and 50 mg ml21

streptomycin [for Rosetta-Gami 2 (DE3) cells]. 2–l cultures of

selected colonies from each strain [7S from Rosetta 2 (DE3) cells

and 2RG from Rosetta-Gami 2 (DE3) cells] were grown in LB

supplemented with the corresponding antibiotics, at 30uC until

OD600 = 0.5–0.6, at which point expression was induced by

addition of 1 mM IPTG. Five hours after induction, cells were

harvested by centrifugation at 10 000 g for 10 min at 4uC and

resuspended in 30 ml of 20 mM sodium phosphate buffer, pH 8.0

containing 300 mM NaCl (buffer B). For the purification of the

His-tagged PsbO, cells were broken on ice by 10 cycles of 10-s

sonication with 20-s intervals of cooling, and centrifuged at 26

000 g, 1 h, 4uC. Supernatant was filtered through 0.2-mm filters

and loaded onto a His GraviTrap affinity column (GE Healthcare)

equilibrated in buffer B. After washing with 10 column volumes of

buffer B containing 60 mM imidazole, bound proteins were eluted

in 1-ml fractions with 10 column volumes of 500 mM imidazole

prepared in buffer B. Fractions were analyzed by SDS-PAGE and

those containing the PsbO peak were pooled. The sample was

concentrated and the buffer switched to 50 mM Tris-HCl, pH 7.5

by ultrafiltration (10-kDa cutoff, Amicon Ultra-15, Millipore).

PsbO and PsbQ degradation assay
The activity of Synechocystis rHhoA, rHhoB, and rHtrA proteases

against reduced PsbO or PsbQ was assayed in vitro by incubating

different samples isolated from spinach leaves (150 mg of purified

PsbO or 100 mg of purified PsbQ) or from Synechocystis 6803

(125 mg of protein of PSII-enriched fraction isolated from the HT3

strain).

The reaction mixture, with a final volume of 250 ml, contained

50 mM Tris-HCl buffer, pH 7.5; 4 mg of E. coli thioredoxin

(Sigma); 3.5 mg of E. coli thioredoxin reductase (Sigma); and

1.6 mM b-NADPH (Sigma) [77]. After a pre-incubation period of

15 min at 37uC, 3 mg (16; 1:50 enzyme to substrate ratio) or

15 mg (56; 1:10) of purified recombinant HhoA, HhoB, or HtrA

protease were added (0 h) and incubation proceeded at the same

temperature. Samples of 45 ml were taken at 0 and 5 h, mixed

with 15 ml of 46 sample buffer and heated at 95uC for 5 min.

PsbO degradation in isolated PSII membrane fragments of

spinach (400 mg Chl) was assessed in the absence or the presence

of the reducing system as described above in a final volume of

200 ml. For the lumen fractions of spinach and Arabidopsis, the

assay was performed as described in Hall et al. [20].

Polyacrylamide gel electrophoresis and immunoblotting
Proteins were separated on 14% SDS-PAGE [76] and

visualized by CBB staining. For immunoblotting, electrophoreti-

cally separated proteins were transferred to PVDF membranes

[78]. After electroblotting, the membranes were blocked using

10% (w/v) milk in PBS and incubated overnight at 4uC with

a dilution of 1:10 000 (Synechocystis 6803 samples) or 1:20 000

(spinach samples) of primary anti-PsbO antibody (Agrisera,

Sweden) or 1:5 000 of anti-PsbQ antibody (Agrisera, Sweden).

For detection of Deg proteases, a 1:10 000 dilution of polyclonal

antisera prepared in rabbits (Agrisera, Sweden) against recombi-

nant HhoA, HhoB, or HtrA, purified as described above, was used

for 2 h at room temperature. Antibodies directed against CP47

and NrtA were used as described previously [70]. In all cases, the

membranes were probed with a 1:150 000 dilution of goat anti-

rabbit secondary antibody conjugated to horseradish peroxidase

(Biorad) and developed using the ECL Advance Western blotting

reagents from GE Healthcare.

Mass spectrometric analysis of PsbO
In the CBB-stained SDS-PAGE of the lumen fraction of

spinach, the identity of the band corresponding to PsbO was

confirmed using mass spectrometry according to Yao et al. [79]

and Jun et al. [80].

N-terminal sequence analysis of the spinach PsbO
fragments

N-terminal sequence analysis of the spinach PsbO fragments

produced by rHhoA was carried out by the Edman degradation

method at the Protein Analysis Center (PAC) (Karolinska Institute,

Stockholm, Sweden). A sample of 50 mg of purified PsbO was

digested with 2 mg of rHhoA in the presence of the reduced E. coli

thioredoxin, as described above, for 5 h at 37uC. After SDS-

PAGE, the proteins were transferred to a PVDF membrane,

stained with 0.1% (w/v) CBB in 50% (v/v) methanol and the

bands corresponding to the fragments were analyzed [81].
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Monobromobimane labeling of sulfhydryl groups in
spinach lumenal proteins and recombinant PsbO from
Synechocystis

Monobromobimane (mBBr) labeling of sulfhydryl groups in

spinach lumenal proteins and recombinant PsbO from Synechocystis

(isolated from strains 7S or 2RG) was performed essentially as

described previously [77]. A sample of 10 mg of protein was

incubated with 5 ml of 20 mM mBBr prepared in acetonitrile, in

50 mM buffer Tris-HCl, pH 8, with a final volume of 55 ml. The

labeling reaction was conducted at room temperature for 15 min

in darkness. To stop the reaction, 10 ml of 100 mM b-

mercaptoethanol was added to the samples. Proteins were

precipitated with five volumes of 100% acetone at 220uC for

2 h and recovered by centrifugation at 16 000 g for 15 min. The

pellet was washed with acetone, air dried, solubilized in sample

buffer, and heated at 80uC for 10 min. After SDS-PAGE, the

fluorescence of the labeled proteins was visualized by UV, and the

gels were stained with CBB. To attempt the total reduction of the

disulfide bonds, PsbO samples were pre-incubated in the presence

of 2.5 mM dithiotreitol (DTT) for 15 min at room temperature

prior to mBBr treatment. To oxidize all the SH groups, samples of

6 mM recombinant PsbO were incubated in the presence of

35 mM CuSO4 for 2 h at room temperature and dialyzed against

two changes of 50 mM Tris-HCl, pH 8, prior to mBBr treatment.

Quantification of gels and blots signals
The integrated density values of the bands was measured using

Image J software, free available at http://rsb.info.nih.gov/ij/

index.html.

Supporting Information

Figure S1 Recombinant PsbO is reduced even in the
absence of reducing agents. Recombinant PsbO of Synecho-

cystis 6803 was isolated from the strains 7S or 2RG and incubated

with monobromobiname (mBBr) to label the sulfhydryl groups. To

reduce or oxidize PsbO, samples were pre-treated with 2.5 mM

DTT or 35 mM CuSO4, respectively, previous to mBBr labeling.

Ten micrograms of protein were loaded per lane. After SDS-

PAGE proteins were visualized by UV (upper panel) and stained

with CBB (lower panel).

(TIF)

Figure S2 Alignment of PsbO sequences. Multiple se-

quence alignment of PsbO1 (ARAB 1, accession number

AED98230.1) and PsbO2 (ARAB 2, accession number

AEE78714.1) from A. thaliana, and PsbO from spinach (accession

number P12359.1) and Synechocystis 6803 (SYNECHO, accession

number NP441796.1). The alignment was generated using

ClustalW2 software. Asterisk indicates fully conserved residues,

colon and period indicate strong and weak conservation, re-

spectively, as defined by ClustalW2.

(TIF)

Figure S3 Time course degradation of PsbO in the
presence of recombinant Deg proteases from Synecho-
cystis sp. PCC 6803. PsbO was isolated from spinach leaves

and incubated in the absence (PsbO) or the presence (PsbOred) of

the complete thioredoxin system for 10 h without addition of

recombinant proteases (A) or after addition of rHhoA (B), rHhoB

(C) or rHtrA (D). Proteases were used at the standard enzyme to

substrate ratio of 1:50 or at a ratio five times higher (1:10) referred

as 5X. After SDS-PAGE the proteins (9 mg) were stained with

CBB, the integrated density of the PsbO band was quantified using

Image J software and represented as the residual amount taking

the 0 h band as 100%.

(TIF)

Figure S4 Redox-dependent degradation of PsbO in the
presence of combinations of recombinant Deg proteases
from Synechocystis sp. PCC 6803. PsbO was isolated from

spinach leaves and incubated in the absence or the presence

(PsbOred) of the complete thioredoxin system together with rHhoA

and rHhoB, rHhoA and rHtrA or rHtrA and rHhoB for 5 h.

Arrowheads indicate PsbO degradation fragments (1 to 4) as

described in the text.

(TIF)
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24. Funk C, Haussühl K, Adamska I. (2001) Family of Deg/Htr proteases in the

cyanobacterium Synechocystis sp. PCC6803: investigations toward their expression

and function. In: Larkum T, Critchley C, editors; CSIRO Publishing, Brisbane,

Autralia. S8–042.

25. Barker M, de Vries R, Nield J, Komenda J, Nixon PJ (2006) The Deg proteases

protect Synechocystis sp. PCC 6803 during heat and light stresses but are not

essential for removal of damaged D1 protein during the photosystem two repair

cycle. J Biol Chem 281: 30347–30355.

26. Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, et al. (2001) Crystal structure

of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409:

739–743.
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48. Marchand C, Le Maréchal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet

E, et al. (2004) New targets of Arabidopsis thioredoxins revealed by proteomic

analysis. Proteomics 4: 2696–2706.

49. Mata-Cabana A, Florencio FJ, Lindahl M (2007) Membrane proteins from the

cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.

Proteomics 7: 3953–3963.

50. Huesgen PF, Miranda H, Tam LX, Perthold M, Schuhmann H, et al. (2011)

Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in

substrate specificity, biochemical characteristics and mechanism. Biochem J 435:

733–742.

51. Bricker TM, Morvant J, Masri N, Sutton HM, Frankel LK (1998) Isolation of

a highly active photosystem II preparation from Synechocystis 6803 using

a histidine-tagged mutant of CP 47. Biochim Biophys Acta Bioenerg 1409:

50–57.

52. Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, et al. (2002)

Proteomic analysis of a highly active photosystem II preparation from the

cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel

polypeptides. Biochemistry 41: 8004–8012.

53. Huang F, Hedman E, Funk C, Kieselbach T, Schröder WP, et al. (2004)
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