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Abstract

Background: The important property of the quantitative traits of model organisms is time-dependent. However,
the methodology for investigating the genetic interaction network over time is still lacking. Our study aims to
provide insights into the mechanistic basis of epistatic interactions affecting the phenotypes of model organisms.

Results: We performed an exhaustive genome-wide search for significant SNP-SNP interactions associated with
male birds’ body weight (BW) (n = 475) at multiple time points (day of hatch (BW0) and 1, 3, 5, and 7 weeks (BW1,
BW3, BW5, and BW7)). Statistical analysis detected 67, four, and two significant SNP pairs associated with BW0, BW1,
and BW3, respectively, with a significance threshold at 8.67 × 10− 12 (Bonferroni-adjusted: 1%). Meanwhile, no
significant SNP pairs associated with BW5 and BW7 were found. The SNP-SNP interaction networks of BW0, BW1,
and BW3 were built and annotated.

Conclusions: With strong annotated information and a strict significant threshold, SNP-SNP interactions
underpinned the gene-gene interactions that might occur between chromosomes or within the same
chromosome. Comparing and combing the networks, the results indicated that the genetic network for chicken
body weight was dynamic and time-dependent.

Background
Epistatic interactions (non-linear interactions between
segregating loci) are gaining attention in contemporary
biology, yet their role in the genetic architecture of
quantitative traits is still obscure and controversial.
Studies on fruit fly (Drosophila melanogaster), yeast
(Saccharomyces cerevisiae), mouse (Mus musculus), thale
cress (Arabidopsis thaliana), maize (Zea mays), and hu-
man (Homo sapiens) demonstrate that epistasis is perva-
sive and is an important factor in determining the
variation of quantitative phenotypes [1–4]. On the
other hand, in the past 15 years, thousands of
genome-wide association studies have reported nu-
merous single SNP loci that exhibit significant addi-
tive effects; however, especially for quantitative traits
and complex diseases, the results were challenged for
missing heritability. A typical example is human

height, which is a classic quantitative trait with an es-
timated heritability of about 80%, and has been asso-
ciated with more than 700 SNP loci, which, however,
explain only about 20% of heritability [5, 6]. Geneti-
cists have postulated that identifying epistatic interac-
tions between SNP loci would be a reasonable way to
explain heritable variance [7]. Some studies have
clarified this idea, including the study by Zuk et al.
that demonstrated that a large part of the missing
heritability of Crohn’s disease could be due to genetic
interactions [8].
Carlborg et al. revealed that an apparently major

locus for chicken growth belonged to a genetic
network of four interacting loci, which indicates that
epistatic interactions between genes (or quantitative
trait loci) were important for quantitative traits in
chicken [9]. Furthermore, our previous studies also
detected epistatic interactions and demonstrated that
they could affect the variation in chicken phenotypes
[10–12].
In the current study, we focused on the body weight of

chickens whose phenotypic data could be analyzed as a
series of data points (i.e. time series). The chickens’
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lifespan was divided into four equal periods of 2 weeks.
The body weight at five time points was selected as a
phenotypic value. Significant SNP-SNP interactions as-
sociated with the body weights at different weeks (BW0,
BW1, BW3, BW5, and BW7) were detected with an ex-
haustive genome-wide test. Next, the SNP-SNP inter-
action networks were built and annotated. Our results
provide further insight into the genetic network that
controls body weight in chickens.

Results
SNP genotyping and phenotypic values
After quality control, the following was included in this
study: a total of 48,152 SNPs on 28 autosomes, the Z
chromosome, linkage groups, and 672 SNPs not assigned
to any chromosomes in chickens (Table 1). Finally, 48,034
SNPs with chromosome position information were filtered
for the interaction analysis.
Phenotypic descriptive statistics for body weight are

listed in Table 2. The body weights exhibited no signifi-
cant differences between the lean and fat lines, so we
mixed the two lines into one group for the interaction
tests. The correlation coefficients between the different
body weights of different weeks were calculated in the
combined population (Table 3). The correlation coeffi-
cient between BW0-BW7 was near zero (0.015), indicating
that BW0 and BW7 are uncorrelated, which was the mini-
mum in Table 3. The correlation coefficients between
BW0-BW1, BW1-BW3, BW3-BW5, and BW5-BW7

steadily increased and exhibited high values between
0.65–0.69.

Epistatic analysis of body weight
MatrixEpistasis [13] is an ultrafast method that performs
an exhaustive epistatic scanning for quantitative traits with
covariate adjustment, and was applied to the interaction
tests. With the significance threshold of 8.67 × 10− 12

(Bonferroni-adjusted: 1%), 67 (Table 4), four (Table 5),
and two (Table 6) statistically significant SNP pairs associ-
ated with BW0, BW1, and BW3 were detected, respect-
ively, with no replicated significant pairs. There were no
SNP pairs with a p-value smaller than the threshold in
BW5 and BW7.

SNPs’ interaction networks
The SNP-SNP interaction network of BW0 is consti-
tuted of separated subnets, and the subnets containing
more than three nodes are shown in Fig. 1. The SNP
epistatic interaction network is approximatively ‘small
world’ and scale-free, both major topological features of
interaction networks in biology. ‘Small world’ means
shorter paths and independent subnets, resulting in
dense local neighborhoods of genes that interact with
each other [1]. The results of gene-gene interaction will
be inferred in the next step. The scale-free property of
networks implies that Gga_rs14184594 is the hub locus
with the maximum degree.

Table 1 Summary of genome-wide markers

GGA1 SNPs’ number GGA length (Mb) Mean distance (kb) GGA SNPs’ number GGA length (Mb) Mean distance (kb)

1 7538 200.95 26.66 17 922 10.61 11.51

2 5652 154.79 27.39 18 917 10.89 11.87

3 4322 113.65 26.30 19 880 9.90 11.25

4 3518 94.16 26.77 20 1574 13.92 8.84

5 2295 62.23 27.11 21 796 6.95 8.73

6 1814 35.84 19.76 22 327 3.89 11.90

7 1907 38.17 20.01 23 643 6.02 9.37

8 1486 30.62 20.61 24 758 6.37 8.40

9 1240 24.02 19.37 25 181 2.02 11.17

10 1379 22.42 16.26 26 670 5.03 7.51

11 1312 21.87 16.67 27 506 4.84 9.56

12 1425 20.46 14.36 28 607 4.47 7.37

13 1204 18.32 15.21 LGE22 115 0.88 7.67

14 1062 15.76 14.84 LEG64 3 0.02 6.80

15 1082 12.93 11.95 Z 2001 74.59 37.28

16 16 0.42 26.12 UNa 672 / /

1GGA is an abbreviation for Gallus gallus
aThese SNPs were not assigned to any chromosomes
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Annotation of SNP loci and SNP-SNP interaction networks
In total, 401 genes and 41 microRNAs were anno-
tated to the BW0 network. Furthermore, 25 genes
and one microRNA were annotated to the BW1 net-
work and 19 genes and one microRNA to the BW3
network (Additional file 1: Table S1, Additional file 2:
Table S2 and Additional file 3: Table S3).
The interaction network feature analysis was applied

to the BW0 network, because the interaction network
size and topology structure of BW1 and BW3 were small
and apparent. The significant interaction SNP-SNP pairs
contain 80 single SNPs in which 30 SNPs are located in
the Z chromosome. Observing the annotation informa-
tion indicated something interesting. Many SNPs from
the same subnet are neighbors, concentrating in the
same region. Therefore, we adjusted the spatial position
of SNPs in Fig. 1, placing SNPs closer together if they
were in the same region. All the subnets include SNPs
from the same region, except SubNet_8 and SubNet_9.
The phenomenon enhanced the reliability to infer that
SNP-SNP interactions would be the result of gene-gene
interactions in the correspond regions. For example, the
cross lines in Subnet_1 accounted for the interactions
between chr19: (3,823,581, 5,935,922) and chrz: (65,912,
281, 67,063,604) and chr19: (1,728,331, 3,504,813) and
chrz: (65,912,281, 67,063,604), which would be the signal
of the gene set (INIP, GNG10, SMC2, PTGR1, TXN,
MUSK, LPAR1) on the Z chromosome interacting with
the gene set on the chromosome 19 (CUX1, PRKRIP1,
ORAI3 et al.). Furthermore, SubNet_2 claimed the gene
set (GLDC, TYRP1, MPDZ, NFIB, ZDHHC21, CER1,
PSIP1) on the Z chromosome interacting with the gene
set (IGFBP1, IGFBP3, TNS3, SLC12A7) near the hub
SNP on the chromosome 2. All the inferred gene set in-
teractions are shown in Table 7. However, the

annotation would generate a gene set in each region,
thus we could conclude the interaction existing between
gene sets, whereas the point-to-point interactive rela-
tionship could not be provided.
The interaction effects could be detected in the same or

different chromosomes. SubNet_3 and SubNet_4 indi-
cated that the interaction effect could happen within the
same chromosome. Furthermore, SNPs in SubNet_4 were
all in the same region, neighborhood genes interacting
with each other. Other SubNets all illustrated that the
interaction effects were present in different chromosomes.
Eight gene ontology terms were significantly enriched,

including chromosome, nucleus, phosphoprotein, acetyl-
ation, DNA-binding, nucleosome, nucleosome core, and
histone H5 (Additional file 4: Table S4). Five pathways
were significantly enriched, including the calcium signal-
ing pathway, focal adhesion, ECM-receptor interaction,
melanogenesis, and oocyte meiosis (Additional file 5:
Table S5).

Discussion
To our knowledge, this study used a novel approach by
detecting the interaction effects that affect the quantita-
tive traits of phenotype variation at multiple time points
with SNP data. Based on the recognition that phenotypic
data continuously changes, which is a key feature of
quantitative traits, we assessed the similarity of the gen-
etic network of quantitative traits at different periods.
Many studies have evaluated interaction effects; how-
ever, no studies have assessed whether the genetic net-
works are time-dependent. Our study has demonstrated
that genetic networks are time-dependent, contributing
to our understanding of this field.
Chicken (Gallus gallus) is a vertebrate, a model organ-

ism, and agricultural species, and its body weight is a
typical quantitative trait that can be easily measured.
Broiler body weight’s heritability in males ranges from
0.29 to 0.37 [14, 15], a medium to high level. In the ex-
perimental population of this study, body weight’s herit-
ability in males ranged from 0.28 to 0.53. Thus, broiler
body weight is a suitable quantitative trait for detecting
interaction effects and determining the features of gen-
etic networks.
The male body weight data used in the study were de-

rived from NEAUHLF, a broiler line. Although the

Table 2 The Mean ± Standard deviation (SD) of the body weight in lean and fat lines, respectively, and in the combined population

Traits Combined population (475 birds) Lean line (203 birds) Fat line (272 birds)

BW0 (g) 44.76 ± 3.39 44.83 ± 2.79 44.70 ± 3.78

BW1 (g) 121.97 ± 12.34 121.05 ± 12.80 122.68 ± 11.95

BW3 (g) 615.22 ± 65.97 617.35 ± 71.98 613.65 ± 61.23

BW5 (g) 1491.19 ± 142.53 1487.53 ± 159.13 1493.91 ± 129.10

BW7 (g) 2400.97 ± 221.65 2419.53 ± 246.45 2387.11 ± 200.51

Table 3 The correlation coefficient between body weights in
the combined population

BW 0 BW 1 BW 3 BW 5 BW 7

BW 0 1 0.357 1 0.037 0.015

BW 1 1 0.590 0.363 0.283

BW 3 1 0.694 0.436

BW 5 1 0.646

BW 7 1
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resource population contains both the lean and fat lines,
we decided to use all the samples in the current study.
The decision was based on the selection of population,
birds breeding, and phenotypic value’s statistical charac-
ter. To be specific, the two lines had to come from the
same grandsire line and be raised under the same envir-
onmental conditions. Body weights of male birds in the
second hatch were considered. As a result, body weights
did not exhibit significant differences between the lean

Table 4 Genome-wide significant pairwise epistatic interactive
SNP pairs for BW0

GGAFa SNP1 name GGASa SNP2 name P-value

chr1 Gga_rs10727935 chr13 GgaluGA096558 8.36E-12

chr1 GgaluGA010224 chr4 Gga_rs14493884 3.35E-12

chr1 GgaluGA016211 chr6 Gga_rs14588369 5.14E-12

chr1 GgaluGA016211 chr7 Gga_rs14614638 8.22E-12

chr1 Gga_rs13982417 chrz Gga_rs15249625 9.59E-14

chr11 GGaluGA078115 chrz Gga_rs14759127 3.84E-12

chr12 Gga_rs14031249 chr19 GgaluGA124944 2.99E-12

chr12 GgaluGA081258 chr19 GgaluGA125308 3.89E-12

chr14 Gga_rs15719971 chr20 Gga_rs14277625 3.21E-12

chr19 Gga_rs10730456 chrz Gga_rs16774940 3.15E-14

chr19 Gga_rs10730456 chrz Gga_rs16774954 3.15E-14

chr19 Gga_rs10730456 chrz Gga_rs14775753 1.06E-12

chr19 Gga_rs14118327 chrz Gga_rs16774940 1.68E-13

chr19 Gga_rs14118327 chrz Gga_rs16774954 1.68E-13

chr19 Gga_rs14118327 chrz Gga_rs14775753 6.41E-12

chr19 Gga_rs15045504 chrz Gga_rs16774954 6.81E-12

chr19 Gga_rs15045504 chrz Gga_rs16774940 6.81E-12

chr19 Gga_rs15045732 chrz Gga_rs16774940 7.62E-14

chr19 Gga_rs15045732 chrz Gga_rs16774954 7.62E-14

chr19 Gga_rs15045732 chrz Gga_rs14775753 3.04E-12

chr19 Gga_rs15048206 chrz Gga_rs16774954 2.53E-13

chr19 Gga_rs15048206 chrz Gga_rs16774940 2.53E-13

chr19 Gga_rs15048206 chrz Gga_rs14775753 7.33E-12

chr19 Gga_rs15048223 chrz Gga_rs16774940 5.90E-13

chr19 Gga_rs15048223 chrz Gga_rs16774954 5.90E-13

chr19 GgaluGA126270 chrz Gga_rs16774954 5.78E-12

chr19 GgaluGA126270 chrz Gga_rs16774940 5.78E-12

chr2 GgaluGA160608 chr6 GgaluGA295929 7.73E-12

chr2 Gga_rs14135538 chrz Gga_rs14755141 2.94E-12

chr2 Gga_rs14135538 chrz Gga_rs16101791 4.79E-12

chr2 Gga_rs14184594 chrz Gga_rs16106712 6.80E-13

chr2 Gga_rs14184594 chrz Gga_rs16065879 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16091913 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16106257 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs14738375 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16071074 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16091907 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16106786 7.44E-13

chr2 Gga_rs14184594 chrz Gga_rs16776264 1.58E-12

chr24 GgaluGA193154 chrz Gga_rs14753903 2.79E-12

chr27 Gga_rs16208036 chrz Gga_rs14762941 3.30E-13

chr27 Gga_rs16208036 chrz Gga_rs16108466 6.00E-13

chr27 GgaluGA199670 chrz GgaluGA349792 7.85E-13

Table 4 Genome-wide significant pairwise epistatic interactive
SNP pairs for BW0 (Continued)

GGAFa SNP1 name GGASa SNP2 name P-value

chr3 Gga_rs14082553 chr19 GgaluGA126270 9.81E-14

chr3 GgaluGA210739 chr19 Gga_rs14119969 5.99E-12

chr3 Gga_rs14323198 chr3 Gga_rs14394679 4.13E-12

chr3 Gga_rs14323198 chr3 Gga_rs14395789 4.25E-12

chr3 Gga_rs15426103 chr3 Gga_rs14323198 7.57E-12

chr3 Gga_rs16320563 chr3 Gga_rs14323198 1.25E-12

chr3 Gga_rs14385387 chrz GgaluGA349792 1.91E-12

chr4 GgaluGA267201 chr13 GgaluGA093775 3.69E-12

chr4 GgaluGA268612 chr4 Gga_rs16424343 4.73E-13

chr4 Gga_rs14490998 chr5 GgaluGA289789 4.32E-12

chr4 Gga_rs13665914 chr9 Gga_rs13608349 1.59E-12

chr4 Gga_rs15474576 chrz Gga_rs16108466 2.69E-13

chr5 Gga_rs15736571 chrz Gga_rs14767978 7.14E-12

chr7 Gga_rs10728585 chrz Gga_rs14759127 2.29E-12

chr7 Gga_rs15871969 chrz Gga_rs14759127 1.08E-13

chr7 Gga_rs15871969 chrz Gga_rs14759170 2.49E-12

chrz Gga_rs13816749 chrz GgaluGA350520 2.63E-12

chrz Gga_rs14691748 chrz GgaluGA350520 7.93E-13

chrz Gga_rs14762941 chrz Gga_rs16763798 8.37E-12

chrz Gga_rs16080645 chrz GgaluGA350520 2.63E-12

chrz Gga_rs16685135 chrz GgaluGA350520 2.63E-12

chrz Gga_rs16763798 chrz Gga_rs16108466 1.92E-12

chrz Gga_rs16764173 chrz Gga_rs16763798 7.77E-12

chrz Gga_rs16764637 chrz Gga_rs16764173 1.60E-12
aGGAF = The first chromosome in the pairwise epistasis analysis; GGAS = The
second chromosome in the pairwise epistasis analysis; P-value = P-value of the
effect being tested

Table 5 Genome-wide significant pairwise epistatic interactive
SNP pairs for BW1

GGAFa SNP1 name GGASa SNP2 name P-value

chr1 GgaluGA061615 chr4 Gga_rs14491923 2.39E-12

chr2 GgaluGA136764 chr3 GgaluGA211595 3.79E-13

chr2 GgaluGA133839 chr5 Gga_rs13756660 2.41E-12

chr2 GgaluGA133839 chr5 Gga_rs14515483 8.44E-12
aGGAF = The first chromosome in the pairwise epistasis analysis; GGAS = The
second chromosome in the pairwise epistasis analysis; P-value = P-value of the
effect being tested
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and fat lines (Table 2). More importantly, larger sample
numbers improve the interaction test power. We per-
formed the test in the lean and fat lines separately, yet
no significant SNP pairs were detected. Thus, the pheno-
typic values were not divided according to the line.
In the previous study, pair-wise interaction effects as-

sociated with important traits in chickens have been
identified by the EPISNP3 module in epiSNP_v4.2_Win-
dows software package [12, 16]. However, no significant
epistatic interactions affecting body weight (BW1, BW3,
BW5, and BW7) were detected. In the current study, we
focused on bird’s body weight. From day of hatch to 7
weeks, the phenotypic data contained five time points,
which were treated as time series data. Furthermore, the
new method MatrixEpistasis, which can remove con-
founding bias through covariate adjustment, was used
[13]. Population genomic stratification might occur in

the long-term artificially selected population due to se-
lection pressure. MatrixEpistasis can handle this bias
and offers another advantage of ultra-computational
speed, the critical factor for SNP-SNP interaction map-
ping at the genome-wide level. With the new method,
we found some interesting results.
Testing multiple hypotheses caused that the signifi-

cance threshold p-value (8.67 × 10− 12, Bonferroni-
adjusted: 1%) was far smaller than 1%. The significant
test results heavily depended on the arbitrary signifi-
cance threshold. Although some effects were thus ig-
nored, the strict threshold enhanced the confidence of
our results. With the strict threshold, the detection
results showed that the interaction effect was com-
pletely different at different time points. This suggests
that the time point is an important factor in the
quantitative trait interaction test. It is easy to deter-
mine the interaction effect on the day of hatch,
whereas it is difficulty at 5 and 7 weeks. This demon-
strates that the cooperation between genes is closer
in the early weeks than later weeks. From the per-
spective of data driving, the correlations between the
body weight at BW0 and other weeks were relatively
small, which can partially explain the different results.
Furthermore, the results indicate that the genetic
regulation networks are different at different time

Table 6 Genome-wide significant pairwise epistatic interactive
SNP pairs for BW3

GGAFa SNP1 name GGASa SNP2 name P-value

chr5 GgaluGA273676 chr11 Gga_rs14965049 2.80E-13

chr7 Gga_rs13598324 chr12 Gga_rs14045047 3.88E-12
aGGAF = The first chromosome in the pairwise epistasis analysis; GGAS = The
second chromosome in the pairwise epistasis analysis; P-value = P-value of the
effect being tested

Fig. 1 Epistatic SNP-SNP interaction network of birthday body weight (BW0) in NEAUHLF. One node represents one SNP whose name and
chromosome number are shown in the rectangle. Significant SNP-SNP interactions were connected by the edge
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points. Carlborg et al. [17] have found a similar con-
clusion in chicken.
Many SNP positions on the chromosome are neigh-

boring in the SNP-SNP interaction network. We suggest
it should be the signal of gene-gene interactions in the
corresponding regions.
In this study, we detected 55 regions on 17 chro-

mosomes. Based on the literature, some genes are as-
sociated with body weight; for example, IGFBP1 is
associated with body weight in the Jinghai Yellow
chicken [18]. MuSK was abundantly expressed in the
muscle of early-stage fowl embryos [19]. ADCY5 is
related to obesity in men and mice [20]. PHKG1 is
important in pig skeletal muscle [21]. We identified

five pathways related to body weight. The focal adhe-
sion signal pathway plays an important role in the de-
velopment of chicken muscle [22]. The focal adhesion
and ECM-receptor interaction signal pathways are re-
lated to intramuscular fat content [23]. In addition,
numerous genes are associated with human complex
diseases, such as ATP2A3 [24], ITGA1 [25], and
THBS4 [26].
Linkage disequilibrium and quantitative trait locus in-

formation were not introduced in this study, because
linkage disequilibrium testing is not correlated with epi-
static interaction tests and gene-gene results are usually
more accurate than quantitative trait locus interactions.
In fact, gene-gene interaction results were based on the

Table 7 Gene sets interaction inferred from the network of BW0

SubNet Gene set A Gene set B

1 CUX1, PRKRIP1, ORAI3, RASA4, YWHAG, HSPB1, POR, RAD51D, RFFL, LIG3,
CCLI5, CCL1, CCAH221, MRPS17, NIPSNAP2, PSPH, CCT6A, PHKG1, CHCHD2,
VKORC1L1, GUSB, ASL2, ASL1, CRCP, KCTD7, NCBP3, CRK, YWHAE, MYO1C,
INPP5K, SERPINF1, SMYD4, RPA1, DPH1, HIC1, POLDIP2, VTN, SLC46A1,
ALDOC, TLCD1, FAM222B, ERAL1, FLOT2

INIP, GNG10, SMC2, PTGR1, TXN, MuSK, LPAR1

1 CUX1, PRKRIP1, ORAI3, RASA4, YWHAG, HSPB1, POR, RAD51D, RFFL, LIG3,
CCLI5, CCL1, CCAH221, MRPS17, NIPSNAP2, PSPH, CCT6A, PHKG1, CHCHD2,
VKORC1L1, GUSB, ASL2, ASL1, CRCP, KCTD7, NCBP3, CRK, YWHAE, MYO1C,
INPP5K, SERPINF1, SMYD4, RPA1, DPH1, HIC1, POLDIP2, VTN, SLC46A1,
ALDOC, TLCD1, FAM222B, ERAL1, FLOT2

DTD1, SEC23B, DZANK1, BIRC5, POLR3F, KAT14, MGME1, SNX5, RRBP1,
DSTN, CST3, CST7, APMAP, TTBK1, SLC22A7, TTL, VSX1, ENTPD6, MAL,
MRPS5, SLC8A1

1 CASTOR2, RCC1L, NCF1, RFC2, LAT2, EIF4H, UBE2G1, ATP2A3, P2RX1, MIS12,
RABEP1

INIP, GNG10, SMC2, PTGR1, TXN, MuSK, LPAR1

2 GLDC, TYRP1, MPDZ, NFIB, ZDHHC21, CER1, PSIP1 IGFBP1, IGFBP3, TNS3, SLC12A7

3 MYOM2, CLN8, ERICH1, ACP1, TMEM18 GPATCH2, ESRRG

4 GLDC, TYRP1, MPDZ, NFIB, ZDHHC21, CER1, PSIP1 GLDC, TYRP1, MPDZ, NFIB, ZDHHC21, CER1, PSIP1

5 INSIG1, EN2, SHH, LMBR1, MNX1, UBE3C, DNAJB6 SLC30A5, CENPH, THBS4, MTX3

6 S100Z, F2RL1, IQGAP2, POLK, HMGCR, NSA2, UTP15, ANKRA2, FOXD1 ITGA1, PELO, FST

6 ITGA1, PELO, FST NFIB, ZDHHC21, CER1, PSIP1

6 MRPL45, CBX1, NFE2L1, CDK5RAP3, LOC107055293, PCGF2, RPL23, LASP1,
RPL19, ERBB2, IKZF3, ZPBP2, GSDMA, PSMD3, CSF3, MED24, THRA, RARA,
TOP2A, IGFBP4, CCR7, SMARCE1, KRT222, KRT20

NFIB, ZDHHC21, CER1, PSIP1

6 BTK, TIMM8A, TAF7L, CENPI, DKC1, MPP1, RHOGL, NONO, GJB1, NLGN3,
IL2RG, SNX12, LOC422214, HTR2C, IL13RA2, PLS3

NFIB, ZDHHC21, CER1, PSIP1

7 S100Z, F2RL1, IQGAP2, POLK, HMGCR, NSA2 SEC22A, ADCY5, HACD2, MYLK

7 METTL21A, CREB1, KLF7, ADAM23, EEF1B2, NDUFS1, NRP2 S100Z, F2RL1, IQGAP2, POLK, HMGCR, NSA2

7 S100Z, F2RL1, IQGAP2, POLK, HMGCR, NSA2 NUDT7

8 ACE, KCNH6, DCAF7, LIMD2, RNF113A, STRADA, DDX42, MYL4, CDC27,
MAPT, ITGA3, DLX3, KAT7, SLC35B1, NGFR, MEOX1, PHB

POLK, HMGCR, NSA2, UTP15, ANKRA2, FOXD1

8 TMEM30A, COX7A2, COL12A1, SLC17A5, EEF1A1, MTO1 POLK, HMGCR, NSA2, UTP15, ANKRA2, FOXD1

9 ARL1, CNOT4, WDR91, PDE6H, ARHGDIB, MGP, OC3, ART4, HIST1H2B7,
HIST1H46L2, HISTH2A4L1, HIST2H4B, HIST1H46, HIST1H2B7, HIST1H110,
HIST1H46L2, HIST1H2B8, HIST2H3L, H2AFJ, HIST1H103, HIST1H2A4,
HIST1H101, HIST1H111L, HIST1H2A4L3, HIST1H2B5, HIST1H3H, HIST1H111R,
DDX47, HEBP1, FAM234B, EMP1

IFIH1, FAP, GCG, DPP4

9 ARL1, CNOT4, WDR91, PDE6H, ARHGDIB, MGP, OC3, ART4, HIST1H2B7,
HIST1H46L2, HISTH2A4L1, HIST2H4B, HIST1H46, HIST1H2B7, HIST1H110,
HIST1H46L2, HIST1H2B8, HIST2H3L, H2AFJ, HIST1H103, HIST1H2A4,
HIST1H101, HIST1H111L, HIST1H2A4L3, HIST1H2B5, HIST1H3H, HIST1H111R,
DDX47, HEBP1, FAM234B, EMP1

TECTB, ACSL5, VTI1A, TCF7L2, HABP2, DCLRE1A, NHLRC2
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gene sets, and the actual gene-gene interactions could be
verified by biological experiments.
In the future, more research will be needed to better

understand the genetic network of quantitative traits.

Conclusions
The interaction effect is most active on the day of hatch,
after which the effects decline, and by 5–7 weeks the ef-
fects are hardly detected. No significant SNP pairs re-
curred at different time points. Our study demonstrated
that the genetic interaction network of chicken body
weight is time-dependent and the epistatic interaction
effect is dynamic. For the first three time points, the
interaction networks indicated that SNP-SNP interac-
tions were concentrated in some special regions on the
chromosomes, which were the results of gene-gene in-
teractions. To our knowledge, we are the first to describe
and summarize the significant interaction effects that
affect chicken body weight variation.

Methods
Experimental population
A total of 475 male chickens derived from the 11th gen-
eration population of the Northeast Agricultural Univer-
sity broiler lines divergently selected for abdominal fat
content (NEAUHLF) were used in the study.
The G0 generation was selected in 1996 and came

from the same grandsire line, which originated from the
Arbor Acres broiler. According to their plasma very
low-density lipoprotein (VLDL) concentration at 7 weeks
of age, the G0 birds were divided into two lines, the lean
line and the fat line. For each line, 25 half-sib families,
with an average of 70 G1 offspring per family in two
hatches, were produced by mating the G0 birds (one
sire: four dams). From G1 to G11, the birds were raised
in two hatches. Abdominal fat percentage (AFP = ab-
dominal fat weight/body weight, measured at 7 weeks of
age) of the male birds in the first hatch was used as the
artificial selection criterion for NEAUHLF. The families’
sib birds, with lower (lean line) or higher (fat line) AFP
than the population’s average value, were selected as
candidates for breeding, taking into consideration the
plasma VLDL concentration, the body weights of male
birds in the second hatch, and the egg production of fe-
male birds in both hatches. G11 contained 203 chickens
in the lean line and 272 chickens in the fat line.
All the birds were fed with a corn-soybean-based

diet that met all National Research Council (NRC) re-
quirements and were raised under the same environ-
mental conditions with free access to feed and water.
From hatch to 3 weeks of age, the birds received a
starter feed (3000 kal ME = kg and 210 g = kg CP).
From 4 weeks of age to slaughter, the birds were fed
a grower diet (3100 kal ME = kg and 190 g = kg CP).

The birds were weighed at day of hatch and at 1, 3,
5, and 7 weeks of age [11, 12].

SNP genotyping and phenotypic values
Genotyping was carried out using chicken 60 K SNP
chip (57,636 SNPs) manufactured by the Illumina Inc.
(San Diego, CA). Monomorphic or minor allele frequen-
cies (< 5%) loci were filtered out. Individuals whose
missing SNP genotypes were ≥ 5% were removed. After
quality control, SNPs with chromosome position infor-
mation were selected for the interaction analysis.
Phenotypic values were analyzed with descriptive statis-
tics. The correlation coefficients of body weight among
different weeks age were calculated in the combined
population.

Genome-wide pairwise interaction analysis
The method for detecting the interaction effect was im-
plemented in R and is available at https://github.com/
fanglab/MatrixEpistasis. The statistical model was:

p ¼ αþ β1G:s þ β2G:t þ β3G:sG:t þ
X

v
γvC:v þ ε

Where α is the overall mean of the quantitative pheno-
type; β1 / β2, β3 and γv are the regression coefficients for
the main genetic additive effect, interaction effect, and
covariates, respectively, and ε is a normal variable with
zero mean and ξ2 variance [13]. In this model, the
phenotype has both main genetic additive effects and co-
variates adjusted, and the size of the interaction effect is
the regression coefficient β3. Therefore, the hypotheses
are H0: β3 = 0 and H1: β3 ≠ 0; the tests of interaction cor-
respond to testing whether the regression coefficient β3
equals zero or not.
MatrixEpistasis [13] was used to identify pairwise

(two-dimension, SNP-SNP) significant epistatic inter-
action effects affecting body weight variation. The sig-
nificance threshold was set at 8.67 × 10− 12 (Bonferroni-
adjusted: 1%).

SNP-SNP interaction network
The plots illustrating the SNP-SNP interaction networks
with the significant epistatic effects for chicken body
weight were drawn with the Cytoscape 3.7.0 software
package [14]. The detailed network analysis was mainly
applied to the BW0 network, and the BW1 and BW3
networks were sketched, because they were obvious and
apparent.

Annotation of the SNP-SNP interaction networks
For annotating genes to the interaction networks, a 1
Mb length region was designated for each SNP, 0.5Mb
upstream and 0.5 Mb downstream. The regions were
merged if the distance between SNPs was < 1Mb. Genes
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overlapping the regions were retrieved from UCSC
(https://genome.ucsc.edu/) (Galgal5). Genes in the same
region were put together (the so-called “gene set”). Gene
interactions in gene sets were deduced if the significant
SNP pairs were located in the corresponding regions.
Functional annotation of genes was performed by DA-

VID bioinformatics resources 6.8 (https://david.ncifcrf.
gov/home.jsp) for gene ontology terms. KOBAS2.0 [27]
was used for Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. The significance threshold
was set to the corrected p-value < 0.05.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6132-0.

Additional file 1: Table S1. Annotation information of BW0.

Additional file 2: Table S2. Annotation information of BW1.

Additional file 3: Table S3. Annotation information of BW3.

Additional file 4: Table S4. Functional annotation of genes.

Additional file 5: Table S5. KEGG pathway analysis.
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