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Transcriptomic evidence that von Economo
neurons are regionally specialized
extratelencephalic-projecting excitatory neurons
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von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of

human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to

neuropsychiatric and neurodegenerative diseases, although little is known about other VEN

cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a

transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of

pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse

classification shows strong homology to extratelencephalic (ET) excitatory neurons that

project to subcerebral targets. This cluster also shows strong homology to a putative ET

cluster in human temporal cortex, but with a strikingly specific regional signature. Together

these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally,

we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue

that show distinctive intrinsic membrane properties relative to neighboring pyramidal

neurons.
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von Economo neurons (VENs) are a morphologically-defined
neuron type with a characteristic large, spindle-shaped cell
body. They possess thick bipolar dendrites with limited

branching and a moderate density of spines, and often have an
axon initial segment that emanates from the side of the cell
body1–3. VENs have been described in several large-brained
mammals, such as humans, great apes, macaques, cetaceans,
cows, and elephants, but not in rodents1,4–11. In humans, they are
restricted to the anterior cingulate (ACC), frontoinsular (FI), and
medial frontopolar regions of cerebral cortex12, while in some
other species they are also found in the frontal and occipital
poles13 and may not be restricted to layer 5. Fork cells, another
distinctive morphologically-defined neuron type, are often found
in the same brain regions as VENs and are similarly characterized
by a single large basal dendrite, but differ from VENs by having
a divided apical dendrite1,14. VENs and fork cells appear to be
selectively vulnerable neuron types, as loss of these cells has
been observed in behavioral variant frontotemporal dementia
(bvFTD)15–17. Loss of VENs has also been observed in several
neuropsychiatric disorders, including schizophrenia18 and suici-
dal psychosis19, as well as in autism20, agenesis of the corpus
callosum21, and possibly Alzheimer’s disease22,23.

Very little is known about VEN cellular phenotypes beyond
their hallmark morphology, especially in human cortex. Human FI
and ACC neurosurgical resections are extremely rare for functional
studies, and VEN sparsity without some form of genetically-based
labeling makes their analysis difficult. Molecular analyses of
human VENs have been more fruitful since these techniques can
be applied to postmortem human tissues. For example, a recent
study using in situ hybridization (ISH) data from the Allen Human
Brain Atlas identified ADRA1A, GABRQ, and VMAT2 as VEN
marker genes24, and a study using laser microdissection of VENs
followed by RNA-sequencing identified additional potential VEN
marker genes25. VENs have also been reported to express ser-
otonin receptor 2B (HTR2B)26, dopamine receptor D3 (DRD3)26,
and the Schizophrenia-associated protein DISC14,27. Additionally,
they express transcription factors FEZF2 and CTIP228, which are
required for generating subcortical projection neurons in mice29,
and this has been used as evidence that VENs are subcortically-
projecting neurons. However, Fezf2 is not specific for ET neurons
but is also expressed in near-projecting pyramidal neurons in adult
mouse30, and expression of many cellular marker genes is not
conserved between mouse and human31,32. Here we refer to
subcortically-projecting neurons as extratelencephalic-projecting
excitatory neurons (ET)33, which are also sometimes referred to as
pyramidal tract neurons and subcerebral projection neurons34,35.
Importantly, we acknowledge that ET neurons may not strictly
project to subcortical structures and may have telencephalic col-
laterals. In rhesus monkey, tract-tracing studies suggest that VENs
might project to ipsilateral ACC and contralateral anterior
insula4,36, as well as to more distant subcortical targets in the pons
and midbrain27,28. Furthermore, many of the reported markers of
VENs are not exclusive to these cells but are also expressed in fork
cells and pyramidal-shaped neurons. This highly incomplete
characterization leaves unresolved many questions about whether
morphologically-defined VENs represent a molecularly-distinct
cell type and what their other properties are.

Single cell RNA-sequencing (scRNA-seq) has emerged as an
effective strategy for classifying and characterizing cell types in
complex brain tissues, and single nucleus (sn) RNA-seq can be
used on frozen postmortem human brain specimens37,38. Applied
to cortex, this approach reveals a high degree of cellular diversity,
with upwards of 100 transcriptomically-defined cell types in
any cortical area30,32,39,40. Furthermore, these data enable quan-
titative alignment of cell types across brain regions and between
species to predict identity by transcriptional similarity using new

computational strategies for mapping of transcriptomic types
between datasets41–43. Such alignment enables prediction of cel-
lular properties and projection targets in human based on
properties described in well-studied mouse cell types32.

To reveal the transcriptomic signature and predict properties
of VENs, we performed snRNA-seq on nuclei from layer 5 of FI
and compared to similar data from human temporal cortex
and two cortical areas in mouse. We find a single transcriptomic
cluster expressing several known markers for VENs that aligns
with ET neurons in mouse cortex, as well as a putative
transcriptomically-defined ET cluster in human temporal cortex
that has a distinctive regional signature compared to FI. We
identify many novel markers for this cluster and demonstrate
that they are co-expressed in a combination of pyramidal neu-
rons, VENs, and fork cells. Finally, we present a case study with
the first electrophysiological recordings of putative VENs, and
show that they have distinctive intrinsic membrane properties
from neighboring layer 5 pyramidal neurons.

Results
Transcriptomic cell types in layer 5 of FI. We employed
snRNA-seq37,38 to profile nuclei from FI of two postmortem
human brain specimens (Fig. 1a) as previously described32,44.
Briefly, layer 5 was microdissected from fluorescent Nissl-stained
vibratome sections of FI and nuclei were liberated from tissue by
Dounce homogenization. NeuN staining and fluorescence-
activated cell sorting (FACS) were used to enrich for neuronal
(NeuN+) and non-neuronal (NeuN−) nuclei (Supplementary
Fig. 1a). RNA-sequencing was carried out using Smart-seq2,
Nextera XT, and HiSeq sequencing. In total 879 nuclei that
passed initial quality control metrics were processed for snRNA-
seq. These nuclei were sequenced to a median of 4 million
mapped reads per nucleus. Median gene detection (expression
>0) was 10,339 genes per nucleus for excitatory neurons, 9,426 for
inhibitory neurons, and 6,146 for non-neuronal cells, consistent
with previous reports30,32,44 (Supplementary Fig. 1b).

Iterative clustering was performed as described in refs. 30,32,44)
to group nuclei by gene expression similarity. Briefly, high variance
genes were identified while accounting for gene dropouts,
expression dimensionality was reduced with principal components
analysis (PCA), and nuclei were clustered using Jaccard-Louvain
community detection. Clusters containing cells from only a single
donor as well as nuclei mapping to low-quality outlier clusters
(n= 318 nuclei; approximately half for each filter) were excluded
from further analysis, leaving a total of 561 high quality nuclei. We
identified a robust set of 22 transcriptomically-defined clusters
(Fig. 1b) that contained cells from both donors at roughly
comparable proportions within broad classes (Supplementary
Fig. 1c, d). Clusters were named by combining the most highly-
expressed broad class marker with the most highly specific marker
for that cluster32. Five inhibitory neuron types spanning all
expected subclasses (two LAMP5 types, VIP, SST, and a LHX6+/
SST− cluster corresponding to PVALB interneurons), 13 excitatory
neuron types, and four major non-neuronal cell types (oligoden-
drocyte precursor cells, oligodendrocytes, astrocytes, and micro-
glia) were identified (Fig. 1c). Given the small sample size in our
study, we predict that deeper sampling inclusive of all layers in FI
would reveal more refined cell type resolution, consistent with
previous studies that deeply sampled mouse30 and human cortex32.

Excitatory clusters in FI expressed broad class markers
previously identified in human middle temporal gyrus (MTG)
(Fig. 1c, d)32. One cluster had high expression of the MTG upper
layer marker LINC00507 and likely represents deep layer 3
pyramidal neurons sampled at the layer 3/5a boundary, since FI is
agranular and does not contain layer 4. Three clusters expressed
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CTGF, a canonical marker for deep layer 6 neurons in mouse that
has more widespread expression in human layer 631, suggesting
these clusters represent cells captured at the layer 5b/6 border.
Two clusters highly expressed THEMIS, which is also expressed
in layer 5 and layer 6 excitatory neuron types in MTG32. Four
clusters expressed RORB, which marks a subset of cells localized
throughout layers 3–5 in MTG32 and has a similar pattern of
expression in FI (Fig. 2). Finally, we found 3 clusters with high
expression of FEZF2, previously shown to be expressed in
VENs28, subcortically-projecting and near-projecting excitatory

neurons in mouse cortex30, and several deep layer excitatory
types in human MTG32.

Identifying a transcriptomic cell type corresponding to VENs.
To characterize each transcriptomic type and determine whether
one might represent VENs, we examined selective marker genes
for each excitatory cluster (the top four markers per cluster are
shown in Fig. 1d). One cluster, Exc FEZF2 GABRQ, specifically
expressed the reported VEN and fork cell markers GABRQ and
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ADRA1A24, suggesting that this cluster, but not the other two
FEZF2+ clusters (Fig. 1c), likely included VENs. Exc FEZF2
GABRQ also had the largest number of expressed genes (Sup-
plementary Fig. 1b), suggesting high RNA content and perhaps
correlated with the reported large size of VENs1,12. To confirm
that Exc FEZF2 GABRQ included VENs, we looked for genes
selective for one or more excitatory cell types in our dataset
that also had existing ISH data in the Allen Human Brain
Atlas (http://human.brain-map.org/)31,45 (Fig. 2a). As previously
reported24 and supporting the identification of Exc FEZF2
GABRQ as the cluster containing VENs, ISH for GABRQ and
ADRA1A showed that a subset of cells in layer 5b expressing these
genes have spindle-shaped cell bodies typical of VENs (Fig. 2b).
However, not all cells labeled with GABRQ and ADRA1A had
spindle-shaped cell bodies, indicating that these genes do not
exclusively mark VENs. In contrast, ISH for genes expressed in
other excitatory neuron types did not label cells with obviously
spindle-shaped cell bodies even though Nissl-stained sections
nearest to those used for ISH confirmed that cells with VEN
morphology were present in the region examined with ISH
(Fig. 2c; a subset of VENs in the Nissl images are labeled with an
arrow for reference). In particular, both HTR2C and ALDH1A1,
which were expressed in the other two FEZF2+ cell types that we
found, did not label any spindle-shaped cells.

To further validate and explore the morphological cell types
comprising the Exc FEZF2 GABRQ cluster, we performed
multiplex fluorescent (mFISH) and double chromogenic (dISH)
ISH for cluster-specific marker genes (Fig. 2a, d). Consistent
with single gene ISH for GABRQ and ADRA1A, we find that
pyramidal-shaped neurons, fork cells, and VENs are all labeled
with combinations of specific marker genes for Exc FEZF2
GABRQ suggesting that this single transcriptomic type contains
a mixture of morphological cell types (Fig. 2d). To quantify the
proportions of cells in the Exc FEZF2 GABRQ type that have
these different morphologies, we performed dISH staining for
ADRA1A and the cluster-specific marker POU3F1 because
high expression of this gene in combination with significant
amplification of signal intensity in the dISH method both
distinctly labels the Exc FEZF2 GABRQ type and highlights the
morphology of labeled cells (Fig. 2d). Double-positive cells were
classed as pyramidal, VEN, or uncharacterized (cells that lacked
defining morphological features and were likely bisected by the
plane of section, see the “Methods” section) in FI tissues from 5
different human donors. Fork cells were extremely rare and were
not explicitly quantified. Our results show that of all ADRA1A
and POU3F1 double-positive cells, ~60% had pyramidal
morphology compared with ~25% that had VEN morphology,
confirming that morphologically-defined VENs represent only a
subset of the neurons that comprise the Exc FEZF2 GABRQ

type. To the best of our knowledge, POU3F1, BMP3, and ITGA4
represent novel, validated markers for VENs (Fig. 2d).

We next attempted to further divide the 23 nuclei assigned to
the Exc FEZF2 GABRQ cluster into subgroups that potentially
could reflect cells with different morphological identities. Reclus-
tering our data with more permissive parameter settings yielded
additional sub-clustering of other excitatory cell types, but no
change in the Exc FEZF2 GABRQ cluster (Supplementary Fig. 2a).
Similarly, a supervised analysis using genes previously reported as
differentially expressed between VEN and pyramidal-shaped
neurons46 did not reveal greater heterogeneity in these nuclei
than was found using other gene sets (Supplementary Fig. 2b, c).
Based on these analyses, there do not appear to be any obvious
gene expression differences in the morphologically-distinct cells
that comprise the Exc FEZF2 GABRQ cluster; however, due to the
small number of cells identified in this cluster (N= 23), we cannot
rule out subtle transcriptional differences that could divide this
cluster into multiple subtypes with additional sampling.

VENs predicted to be ET-projecting excitatory neurons. New
methods that enable alignment of cells between data sets based on
gene expression profiles can be used to align cell types across
cortical regions and across species41–43. This provides a mechan-
ism for predicting cellular properties of human cell types based on
measurements made in homologous cell types from model sys-
tems. For example, performing retrograde labeling and scRNA-seq
on the same cells (i.e. Retro-seq) enables determination of the
long-range projection specificity of excitatory cell types in mouse
cortex30. Previously, we showed that nearly all transcriptomically-
defined cell classes and subclasses identified in human MTG can
be aligned with transcriptomically-defined types in mouse anterior
lateral motor cortex (ALM) and primary visual cortex (VISp), even
if other features are distinct between species32.

To shed light on the cellular properties of the Exc FEZF2
GABRQ type, we combined the present data from human FI
with representative sets of cells from human MTG32 and mouse
ALM and VISp30 into an integrated reference using Seurat
(V3.0)41,42. Only excitatory cells from each data set were
included in the assembly, and cells from mouse data sets were
grouped based on subclass, which combines cell types with the
same predominant layer of soma location and long-range
projection targets30. Eight clusters were identified using Seurat,
which each contained cells from all four data sets (Fig. 3a) and
that matched with the groupings visualized through UMAP
dimensionality reduction (Fig. 3b). More importantly, nearly all
cells from mouse were mapped to the cluster in the joint
assembly that matched their initially assigned subclass (Fig. 3c),
with one exception. As reported in mouse ALM30, we identified
one cluster in agranular human FI (Exc RORB SLC38A11)

Fig. 1 Cell type characterization in human frontal agranular insular cortex (FI). a Schematic diagram illustrating nuclei isolation from postmortem human
brain specimens. The FI region was isolated, vibratome sectioned, stained with fluorescent Nissl, and layer 5 was dissected and processed for nuclei
isolation, fluorescence-activated cell sorting (FACS), and RNA-sequencing. Examples of cells with morphologies typical of von Economo neurons (VENs)
are shown in the images of Nissl-stained tissues (arrowheads). Human brain image © 2010 Allen Institute for Brain Science. Allen Human Brain Atlas.
Available from: http://human.brain-map.org/. In total 561 single layer 5 neurons passed quality control. b Hierarchical representation of 18 neuronal
(5 inhibitory, 13 excitatory) and 4 non-neuronal transcriptomic cell types based on median cluster expression. Major cell classes are labeled at branch
points in the dendrogram. The bar plot and associated numbers below the dendrogram represent the number of nuclei within each cluster. Cluster-specific
colors and labels are used in all subsequent figures. c Heatmap showing the expression of cell class marker genes across all clusters. Maximum expression
values for each gene are listed on the far right-hand side of the plot. Gene expression values are quantified as counts per million of intronic plus exonic
reads and displayed on a log10 scale, using a blue-white-red color scheme with blue= 0 and red= the maximum value in the plot (5 × 103). d Violin plots
showing expression of four marker genes per excitatory cluster. Each row represents a gene, black dots show median gene expression within clusters, and
maximum expression values for each gene are shown on the right-hand side of each row. Gene expression values are displayed on a linear scale. Box
indicates putative VEN cluster.
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whose best match was intratelencephalic (IT) layer 4 clusters in
human MTG and mouse VISp. Furthermore, for almost all
MTG clusters the subclass assignments here match those
previously reported using different alignment methodologies
(compare Fig. 3c with Fig. 5 from ref. 32).

We find that Exc FEZF2 GABRQ co-clusters with Exc L4-5
FEZF2 SCN4B from human MTG and with all layer 5 ET clusters
from mouse VISp and ALM (Fig. 3c), which we confirmed
by running Seurat with different parameter settings and through
an independent correlation-based mapping strategy (see the
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“Methods” section). This result suggests that VENs are part of a
cluster of neurons that are predicted to have deep subcortical
projections, though further experiments would be necessary to
confirm this hypothesis. Interestingly, the other two FEZF2+
clusters in FI co-cluster with near-projecting neurons in mouse,
suggesting that they may not have long-range projections despite
the developmental role of FEZF2 in specifying subcortical
projection neurons29. A summary of these results, including
common markers between species, is shown in Supplementary
Fig. 3.

Molecular features of putative ET neurons. While several VEN
marker genes have been previously described24,28,46, we find that,
although most of these genes are expressed in Exc FEZF2 GABRQ,
very few are specific to this cluster but rather are expressed in
several or many other excitatory neuron types (Supplementary
Fig. 4). To describe a more refined set of genes selectively
expressed in VENs and other putative ET neurons, we performed
differential expression analysis comparing Exc FEZF2 GABRQ to
all other excitatory clusters (see the “Methods” section) and
identified 30 genes selectively expressed in Exc FEZF2 GABRQ
(Fig. 4a). These genes included reported markers for VENs such as
GABRQ and ADRA1A, as well as many novel markers. Several
genes appear to be common ET cell markers in mouse and
human, including FAM84B, POU3F1, and ANKRD34B (Supple-
mentary Fig. 3), although many more show divergent patterning
between species consistent with previous comparisons of mouse
and human cell types32.

Approximately half of genes enriched in Exc FEZF2 GABRQ
were similarly enriched in the matching putative ET cluster from
human MTG (e.g., ADRA1A) (see the “Methods” section, Fig. 4b).
However, region-specific genes were apparent for both FI (Exc
FEZF2 GABRQ) and MTG (Exc L4-5 FEZF2 SCN4B), consistent
with reported variation of excitatory neurons across cortical
areas30 (Fig. 4a, b). We note that a comparable number of MTG-
enriched genes as FI-enriched genes were found, but only a subset
of MTG-enriched genes is shown in Fig. 4 to highlight our FI
results. Interestingly, while the putative-ET cluster was highly
distinct transcriptomically in each data set, it also had the highest
Spearman correlation between each pair of data sets (see the
“Methods” section), suggesting that the morphological specializa-
tion of VENs likely is not accompanied by transcriptomic
specialization that is comparable in scope.

SnRNA-seq data suggested that the proportion of putative ET
neurons may also vary between MTG and FI (Fig. 4c). To further
examine this difference in situ we used mFISH to count the
fraction of total excitatory cells (SLC17A7+) in layer 5 that also
express the specific putative ET marker gene POU3F1 (Fig. 4c, d).
In agreement with snRNA-seq data, mFISH counts showed that a
substantially higher fraction of putative ET cells was found in FI

than in MTG. Together these results indicate that, while the
primary features of putative ET neurons in human are conserved
across cortical areas, ET neurons show some transcriptomic
differences between cortical areas, and putative ET neurons in FI
appear to be more abundant and have more diverse cellular
morphologies than those in MTG.

Intrinsic membrane properties of putative VENs. ET neurons
possess distinctive intrinsic membrane properties compared to
neighboring non-ET neurons34,47. To test whether VENs also
have distinctive electrophysiological properties, we took advan-
tage of a very rare opportunity to perform single neuron patch
clamp recordings in human insula ex vivo brain slices from a
single human donor. In this case study, peri-tumor insula tissue
was removed from the brain of a 68-year-old female patient to
access a deep brain tumor located in the left insula/putamen
region (Fig. 5a, b). We performed whole-cell patch clamp
recordings from large spindle-shaped neurons (putative VENs)
in layer 5 (n= 3 cells) and nearby (presumably non-ET) pyr-
amidal neurons for comparison (n= 5 cells). A biocytin cell fill
was also recovered for one recorded VEN (Fig. 5c), with con-
firmed layer 5 localization based on soma location (1.7 mm from
the pial surface of the slice) in the DAPI stain. Consistent with
previous reports, this cell displayed the expected large spindle-
shaped morphology with large caliber bipolar dendrites that
extended into layer 6 (descending trunk), as well as towards the
pial surface into upper layer 3 (ascending trunk). Dendritic
branching was very simple, but with notable short and wispy
lateral branches concentrated proximal to the soma. The axon
could not be readily distinguished from these finer dendrites. The
fill quality was not sufficient to identify clear dendritic spines;
however, these recorded VENs appear to have a lower spine
density than recorded pyramidal cells, consistent with previous
reports based on Golgi staining3.

We observed marked differences in the suprathreshold response
of putative VENs vs. neighboring pyramidal neurons in response to
1s current injection steps (Fig. 5d–g). Specifically, VENs produced
fewer action potentials in response to a given level of current
injection. This difference may be related to differences in spike
timing during a train of action potentials; putative VENs displayed
higher variability in spike timing and greater spike frequency
accommodation than neighboring pyramidal neurons. All putative
VENs displayed brief pauses and prominent subthreshold mem-
brane oscillations during sustained firing. Although this result was
not statistically significant (p > 0.05), the differences in average
input resistance of the putative VENs (61 ± 14Mohms, mean ±
standard error [SE]) compared with neighboring pyramids (113 ±
25Mohm, mean ± SE) may also contribute to differences in firing of
these morphologically-distinct types. It is worth noting that the top
marker for Exc FEZF2 GABRQ, namely GABRQ, is an ion channel

Fig. 2 Identifying a transcriptomic cell type that corresponds to von Economo neurons (VENs) in situ. a Violin plots showing distributions of genes
further examined by in situ hybridization (ISH). Each row represents a gene, black dots indicate median gene expression within clusters, and maximum
gene expression values are shown on the right-hand side of each row. Gene expression values are displayed on a linear scale. The EXC GABRQ FEZF2 type
expresses GABRQ and ADRA1A, previously defined markers of VENs. b Chromogenic single gene ISH from the Allen Human Brain Atlas (http://human.
brain-map.org/) for GABRQ and ADRA1A confirms a subset of layer 5b cells expressing these genes have spindle-shaped cell bodies typical of VENs (red
arrows). The nearest Nissl-stained section is shown for each ISH image for laminar context. c ISH from the Allen Human Brain Atlas (http://human.brain-
map.org/) for genes expressed in other excitatory neuron types revealed by our analyses. Genes are expressed in and around layer 5 of FI but labeled cells
lack spindle-shaped cell bodies typical of VENs. Red arrows in the nearest Nissl-stained section for each ISH image show representative examples of cells
with VEN morphology in the approximate region highlighted in the neighboring ISH image (red rectangle). Scale bars in b, c low magnification, 150 μm, high
magnification 50 μm. d Multiplex fluorescent ISH (top left) and double chromogenic ISH for marker genes of Exc FEZF2 GABRQ. Cells with pyramidal (P),
VEN (V), and fork (F) morphologies are indicated by labeled arrows in each image. Scale bars, 10 μm. e Quantification of the proportion of ADRA1A+,
POU3F1+ cells with pyramidal vs. VEN morphologies (n= 5 human donors). Cells lacking defining features of these morphological classes were called
uncharacterized. Bars show the mean and error bars the standard deviation. Individual data points are overlaid on each bar plot.
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that encodes the theta subunit of the GABA-A receptor, and that
several other ion channels also show some enrichment in this
cluster, albeit to a much lesser degree. While many small gene
expression differences in ion channels could collectively influence
the distinct electophysiological properties we have described, the
functional impact of any given ion channel will be an important
topic for future study.

Discussion
To determine if VENs represent a discrete transcriptionally-
defined cell type, we applied snRNA-seq to classify neurons in FI
layer 5 and carried out cross-species homology mapping to make
predictions about VEN cellular phenotypes that are difficult to
measure in human tissues. We define 13 excitatory neuron types
and show that VENs can be localized to a single transcriptomic
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cell type (Exc FEZF2 GABRQ), but this cell type also includes cells
with fork and pyramidal morphologies. This approach identified
many novel and selective marker genes of VENs and other
excitatory neuron types that will facilitate better identification and
study of these populations in situ. However, consistent with all
published studies to date, we do not find a molecular signature
that can distinguish VENs from transcriptionally similar fork or
pyramidal neurons that comprise the Exc FEZF2 GABRQ type.
Several explanations for this inability to distinguish VENs from
closely-related cells on the basis of gene expression signatures are
possible. First, it is possible that none of our sorted putative ET
nuclei were from VENs; however, this is highly unlikely given the
high frequency of VENs expressing ET markers in our validation
studies (~25%). Second, these morphologically-defined types may
not be molecularly distinct in the adult, but rather could represent
a spectrum of morphologies established during development
within a broader excitatory cell class. Alternatively, the current
study may have lacked the power to discriminate closely related

VEN and pyramidal neuron types from the 23 total neurons
in the putative ET cluster. Supporting this latter idea, greater
diversity of ET neurons is seen in mouse where these cells are
more abundant and can be selectively enriched30,32, including one
type projecting predominantly to myelencephalon and others
targeting additional subcortical areas30. Further studies using
higher-throughput snRNA-seq technologies will be required to
definitively answer this question, but it is clear that VENs, fork
cells and a subset of pyramidal cells are transcriptomically similar
to one another.

Homology mapping to mouse predicts that VENs are likely
subcortically-projecting ET neurons. Prior studies in mouse
demonstrate a robust division between locally-projecting (IT) and
subcortically-projecting (ET) neurons based on gene expression30

as well as electrophysiology33,34. Alignment of human FI data
with mouse cortical scRNA-seq data shows that Exc FEZF2
GABRQ is homologous to ET neurons in mouse VISp and
ALM30. In addition, VENs express transcription factors required
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Fig. 5 Distinctive electrophysiological properties of putative L5 VENs in ex vivo insula brain slices from a human neurosurgery patient. a MRI
scan indicating the location of the excised insula tissue specimen for research. b Best matched location in the Allen 2D coronal human brain reference atlas,
with crosshairs centered on the short insular gyrus. Scale bar: 1 cm. c Biocytin-filled putative VEN in L5 of an ex vivo insula brain slice. Low magnification
brightfield and DAPI image confirms the L5 location of the neuron. The boxed region bounding the biocytin-filled neuron is expanded at right. Inset: image
of Alexa dye fill following patch clamp recording in live tissue. Scale bars: 1 mm and 100 µm. d Example traces of action potential firing pattern in response
to current injection steps for a representative pyramidal neuron (PN) and VEN. Scale bars: 50 pA, 500msec. e Summary plot of action potential firing in
response to current injection steps. *p < 0.0001, 2-way ANOVA. f Summary plot of coefficient of variation (CV) for VENs vs. PNs. *p < 0.05,
Mann–Whitney. g Summary plot of spike frequency adaptation (SFA) for VENs vs. PNs. *p < 0.05, Mann–Whitney. Center lines show mean and error bars
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for the generation of subcortically-projecting neurons, such as
FEZF229, but do not express transcription factors associated with
corticothalamic or callosal projections28. Lastly, a study in rhesus
monkey proposed that VENs primarily project to distant sub-
cortical regions, including the parabrachial nucleus of dorsolateral
pons and the midbrain periaqueductal gray27. Together, our
findings and those of previous reports27,28 support the hypothesis
that VENs project to deep subcortical structures. However, VEN
projections might not be restricted to ET targets as tract-tracing
shows that some VENs project to both ipsilateral and con-
tralaterial cortical targets, potentially including VEN populations
within homologous structures of the contralaterial hemisphere27.
Matching of a transcriptomic cluster that includes VENs and fork
cells in human to ET types in mouse that do not have these
distinct morphologies suggests that, like rosehip neurons44 and
interlaminar astrocytes32, VENs and fork cells may represent
morphological diversification of an evolutionarily conserved cell
type. Furthermore, we recently used homology mapping in
human MTG and identified a putative ET type homologous to
mouse ET types32. This MTG ET type aligns to the FI ET type,
and much of the molecular signature is shared between these
putative ET types in human FI and MTG. However, many genes
are expressed selectively by the FI type that are distinct from the
MTG type, suggesting potential regional specialization of these
excitatory neurons.

Selective loss of VENs and fork cells in FI and ACC has been
proposed to contribute to several neuropsychiatric disorders
characterized by social-emotional deficits16,18–21,48. Many of
these disorders show dysfunction of the salience network48, which
has key nodes in these same brain regions49 and coordinates the
brain’s responses to behaviorally-relevant stimuli50, suggesting a
direct link between VEN loss and dysfunction. Additionally, the
salience network has functional connectivity in several subcortical
areas including parts of amygdala, striatum, dorsomedial thala-
mus, and substantia nigra49, consistent with the predicted pro-
jection targets of VENs. However, our results suggest the
possibility that bvFTD and other neuropsychiatric disorders tar-
geting FI might result from loss of ET neurons more generally,
rather than exclusive loss of VENs and fork cells. The novel
markers identified here for ET neurons and other excitatory types
provide opportunities for a refined analysis of disease-related loss
of excitatory neurons. Importantly, despite the lack of VENs in
rodent brains, mouse models of bvFTD are surprisingly effective
at recapitulating histopathological51 and behavioral52 impair-
ments reported in humans, suggesting that additional cell types
are likely affected or that rodent has a homologous type to VENs
that, despite different morphology, has similar circuit function.

A major challenge in understanding human brain cellular and
circuit function is a paucity of tools, techniques, and tissue.
However, techniques for physiological and morphological analysis
using in vitro slice preparations and patch clamp physiology work
robustly on human tissue from neurosurgical resections44,53–58.
Although it is exceedingly rare for tissue to be removed from
regions like FI and ACC during such surgeries, the instances in
which such specimens can be collected for research purposes
represent rare opportunities to collect highly valuable data in the
spirit of case studies in disease, where even sparse data can provide
important observations and generate testable hypotheses. From
the singular such specimen collected in more than three years, we
demonstrate that neurons with VEN-like morphologies in layer 5
of human insula can be targeted and functionally characterized.
Further, these putative VENs exhibit distinctive intrinsic physio-
logical properties compared to neighboring pyramidal neurons in
the same brain region. Given the small number of neurons
recorded from L5 insula of a single patient, it will be important to
replicate these findings, should such rare opportunities arise in the

future. Nonetheless, these data represent the first reported patch
clamp recordings from putative VENs in the human insula, and
our findings are consistent with the hypothesis that VENs repre-
sent a functionally specialized cell type. Further evidence will be
necessary to establish the exact contributions of this cell type to
human brain function in health and disease.

It is essential to find experimental strategies to understand the
specifics of the human brain, particularly for cell types affected by
diseases that are not well modeled in widely used experimental
organisms. New technological advances built on the transcriptomic
approach to cell type classification promise to accelerate progress
on functional analyses of human neuron types. Patch-seq allows
the combination of electrophysiological, transcriptomic and mor-
phological analysis59,60, which can in principle be applied to
human brain slice studies over extended time frames with recent
advances in culturing of human ex vivo brain tissue53. Further-
more, novel viral tools enable cell type-specific genetic targeting in
this system61, and application of enhancers for ET cells, such as the
Fam84b enhancer that labels mouse ET cells with >90% specifi-
city62, represents a potential avenue for labeling and studying
the properties of VENs in ex vivo human brain tissue. Such studies
can help to further refine our understanding of the characteristics
of VENs, potentially providing information about their local
connectivity and teasing out subtle gene expression differences
between putative ET cells with spindle, fork, and pyramidal
morphologies.

Methods
Ethical compliance. De-identified postmortem human brain tissue was collected
by the San Diego Medical Examiner’s office and provided to the Allen Institute for
Brain Science after obtaining permission from decedent next-of-kin. The Western
Institutional Review Board (WIRB) reviewed the use of de-identified postmortem
brain tissue for research purposes and determined that, in accordance with federal
regulation 45 CFR 46 and associated guidance, the use of and generation of data
from de-identified specimens from deceased individuals did not constitute human
subjects research requiring institutional review board (IRB) review. Postmortem
tissue collection was performed in accordance with the provisions of the United
States Uniform Anatomical Gift Act of 2006 described in the California Health and
Safety Code section 7150 (effective 1/1/2008) and other applicable state and federal
laws and regulations.

Tissue procurement from neurosurgical donors was performed outside of the
supervision of the Allen Institute for Brain Science at local hospitals, and tissue was
provided to the Allen Institute for Brain Science under the authority of the IRB of
each participating hospital. A hospital-appointed case coordinator obtained
informed consent from donors prior to surgery. Tissue specimens were de-
identified prior to receipt by Allen Institute personnel. The specimen collected for
this study was apparently non-pathological tissue removed during the normal
course of tumor surgery. The tissue specimen collected was determined to be non-
essential for diagnostic purposes by medical staff and would have otherwise been
discarded.

Postmortem tissue donors. Postmortem tissue donors were prescreened for
history of neuropsychiatric disorders, neuropathology, and infectious disease (HIV,
Hepatitis B, Hepatitis C), and postmortem blood samples were sent for routine
serology and toxicology testing. Specimens were further screened for RNA quality
and had an RNA integrity number (RIN) ≥ 7. Tissues used for RNA-sequencing in
this study were from two control Caucasian male donors who died from
cardiovascular-related issues, aged 50 (H200.1025) and 54 (H200.1030) years, as
previously described44.

Tissue processing and isolation of nuclei. Whole postmortem brain specimens
were processed as previously described32,44. For RNA-sequencing experiments,
frontoinsula (FI) was identified on frozen cortex slabs of interest, and the region of
interest was removed and vibratome sectioned at 500 µm intervals32,44 (Fig. 1).
Layer 5 was microdissected from vibratome sections stained with fluorescent Nissl
and nuclei were isolated from microdissected tissue pieces using Dounce homo-
genization. Mouse monoclonal anti-NeuN antibody (EMD Millipore, MAB377)
was applied to nuclei preparations followed by secondary antibody staining (goat
anti-mouse Alexa Fluor 594, ThermoFisher), and single-nucleus sorting was car-
ried out on a BD FACSAria Fusion instrument (BD Biosciences) using a 130 µm
nozzle following a standard gating procedure (Supplementary Fig. 1)32,44.
Approximately 10% of nuclei were intentionally sorted as NeuN–negative to
capture non-neuronal cell types. Single nuclei were sorted into 96-well PCR plates
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(ThermoFisher Scientific) containing 2 µL of lysis buffer (0.2% Triton-X 100, 0.2%
NP-40 (Sigma Aldrich), 1 U/µL RNaseOUT (ThermoFisher Scientific), PCR-grade
water (Ambion), and ERCC spike-in synthetic RNAs (Ambion). 96-well plates
were snap frozen and stored at −80 °C until use. Positive controls were pools of
10 nuclei, 10 pg total RNA, and 1 pg total RNA.

cDNA and sequencing library preparation. Single nucleus cDNA libraries were
prepared using Smart-seq2 with minor modifications as follows: Protoscript II
(New England Biolabs) was used for reverse transcription, the final dilution of
ERCCs in the reverse transcription reaction was 1:55 million, the template
switching oligonucleotide was 5′-biotinylated, and 21 PCR cycles were used for
cDNA amplification44. Sequencing libraries were prepared using Nextera XT
(Illumina) with input cDNA at 250 pg per reaction; reactions were carried out at
1/4 the volume recommended by the manufacturer with a 10 min tagmentation
step. Libraries were sequenced on a HiSeq 4000 instrument (Illumina) using 150 bp
paired-end reads.

RNA-seq data processing. SnRNA-seq data were processed and analyzed as
previously described38,44. Briefly, following demultiplexing of barcoded reads
generated on the Illumina HiSeq platform, the amplification (cDNA and PCR) and
sequencing primers (Illumina) and the low-quality bases were removed using
Trimmomatic 0.35 software63. Trimmed reads were mapped to the human refer-
ence genome, version GRCh38 (Ensembl), guided by the version 21 annotations
obtained from the GENCODE repository. RSEM 1.2.3164, TopHat 2.1.1, and
Cufflinks 2.2.165 were used to quantify transcript expression at the transcriptome
(exon) and whole-genome (exon plus intron) levels, respectively. Software packages
fastQC 0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
FASTX 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html), RSeQC
2.6.166, and RNA-seq-QC 1.1.867 were used to generate various sequence and
alignment quality metrics used for classifying sample quality. A novel pipeline
(SCavenger, J.M., unpublished) was created to automate execution across statistical
analysis tools, integrate preformatted laboratory and clustering metrics, and cal-
culate new statistics specific to biases identified in the single-nuclei lab and
sequence preparation protocol.

RNA-seq quality control. To remove data from low-quality samples before
downstream analysis, we implemented a random forest machine-learning classi-
fication approach as previously described44,68. The overall workflow for sample
quality classification and filtering was to (i) establish a training set using a repre-
sentative subset of samples, (ii) collect a series of 108 quality control metrics (for
example, percent unique reads, percent reads surviving trimming, transcript iso-
form counts) spanning both the laboratory and data analysis workflows as model
features, (iii) use these training data and quality control metrics to build a classi-
fication model using the random forest method, and (iv) apply the model to the
entire dataset for quality classification and data filtering.

The random forest quality control model was then applied to the data and final
quality Pass-Fail classifications were determined. A Pass confidence cutoff of 0.6 or
greater was used to select single-nuclei data for downstream analysis. Using this
random forest model applied to the entire layer 5 dataset, 78% of 1118 single-nuclei
samples passed quality control (N= 876). For these Pass samples, the average
number of reads after trimming was 16,715,521 ± 20,434,739, the number of ERCC
transcripts detected was 41.78 ± 4.79 out of 92, and the average number of genes
detected across all passing nuclei at FPKM > 1 was 5584 ± 2004, giving an average
coverage of 2174 reads per human gene detected. Additional summary statistics
(grouped by donor or cluster) for nuclei passing QC and included in the analysis
are shown in Supplementary Fig. 1.

Gene expression calculation. For each nucleus, expression levels were estimated
based on the scaled coverage across each gene. Specifically, bam files were read into
R using the readGAlignmentPairs function in the GenomicAlignments library, and
genomic coverage was calculated using the coverage function in GenomicRanges69.
All genes in GENCODE human genome GRCh38, version 21 (Ensembl 77; 09-29-
2014) were included, with gene bounds defined as the start and end locations of
each unique gene specified in the gtf file (https://www.gencodegenes.org/releases/
21.html). Total counts for each gene (including reads from both introns and exons)
were estimated by dividing total coverage by twice the read length (150 bp, paired
end). Expression levels were normalized across nuclei by calculating counts per
million (CPM).

Clustering nuclei. Nuclei and cells were grouped into transcriptomic cell types
using an iterative clustering procedure as described in Boldog et al.44. Briefly,
intronic and exonic read counts were summed, and log2-transformed expression
(CPM + 1) was centered and scaled across nuclei. Differentially expressed genes
were selected while accounting for gene dropouts, and principal components
analysis (PCA) followed by t-distributed stochastic neighbor embedding (t-SNE)70

was used to reduce dimensionality. Nearest-neighbor distances between nuclei were
calculated, and segmented linear regression (segmented R package) was applied to
estimate the distribution breakpoint to help define the distance scale for density
clustering. The statistical significance of the separation of clusters identified by

density clustering was evaluated with the R package sigclust71, which compares the
distribution of nuclei to the null hypothesis that nuclei are drawn from a single
multivariate Gaussian. Iterative clustering was used to split nuclei into subclusters
until the occurrence of one of four stop criteria: (i) fewer than 6 nuclei in a cluster
(because it cannot be split due a minimum cluster size of 3), (ii) no significantly
variable genes, (iii) no significantly variable principal components, or (iv) no sig-
nificant subclusters.

To assess the robustness of clusters, the iterative clustering procedure described
above was repeated 100 times for random subsamples of 80% of nuclei. A co-
clustering matrix was generated that represented the proportion of clustering
iterations in which each pair of nuclei was assigned to the same cluster. Average-
linkage hierarchical clustering was applied to this matrix, followed by dynamic
branch cutting (R package WGCNA) with cut heights ranging from 0.01 to 0.99 in
steps of 0.01. A cut height resulting in 25 clusters was selected to balance cohesion
(average within cluster co-clustering) and discreteness (average between cluster co-
clustering) across clusters. Finally, gene markers were identified for all cluster pairs,
and clusters were merged if they lacked binary markers (gene expressed in >50%
nuclei in first cluster and <10% in second cluster) with average CPM > 1. Clusters
were marked as outliers and excluded from analysis if they contained lower quality
nuclei based on QC metrics or expression of mitochondrial genes.

To retain only a high confidence set of clusters, we used two strict quality
control steps. One primary quality control step was to exclude clusters containing
only cells from a single donor. This filtering decreases the chances that identified
cell types are due to low tissue quality or batch effects. Second, we removed clusters
containing primarily low quality cells due to poor RNA quality. These clusters were
identified as having meta-data values more than three standard deviations below
the mean. For example, nuclei from these excluded clusters had a distinct
expression signature of approximately 100 non-coding genes including miRNAs
and pseudogenes that had low expression in other passing nuclei. In addition, the
clusters defined as outlier clusters all had lower median pass scores as defined using
the machine-learning classifier described above, suggesting that our initial
threshold may have been too lenient. Around half the 315 excluded nuclei were
removed for each of these two reasons, leaving a total of 561 nuclei in the passing
clusters presented in this analysis. A slightly modified version of this entire
clustering process is available in the scrattch.hicat R library on GitHub (https://
github.com/AllenInstitute/scrattch.hicat).

Cluster names were defined using an automated strategy as previously
described32. Briefly, clusters were assigned to the major classes interneuron,
excitatory neuron, microglia, astrocyte, oligodendrocyte precursor, or
oligodendrocyte based on maximal median cluster CPM of GAD1, SLC17A7, C3,
AQP4, CSPG4, or OPALIN, respectively. Clusters were then assigned a subclass
marker, defined by maximal median CPM of LAMP5, VIP, SST, PVALB, LHX6,
LINC00507, RORB, THEMIS, FEZF2, CTGF, C3, FGFR3, CSPG4, or OPALIN.
Finally, clusters in all major classes that contained more than one cluster were
assigned a cluster-specific marker gene. These marker genes had the greatest
difference in the proportion of expression (CPM > 1) with a cluster compared to all
other clusters regardless of mean expression level. In some cases the most specific
marker gene was the subclass marker (SST and VIP).

Scoring cluster marker genes. Many genes were expressed in the majority of
nuclei in a subset of clusters. A marker score (beta) was defined for all genes to
measure how binary expression was among clusters, independent of the number of
clusters labeled. labeled. First, the proportion (xi) of nuclei in each cluster that
expressed a gene above background level (CPM > 1) was calculated. Then, scores
were defined as the squared differences in proportions normalized by the sum of
absolute differences plus a small constant (ε) to avoid division by zero. Scores
ranged from 0 to 1, and a perfectly binary marker had a score equal to 1.

Pn
i¼1

Pn
j¼1 xi � xj

� �2

Pn
i¼1

Pn
j¼1 jxi � xjj þ ϵ

:

Enrichment marker genes. Genes were defined as enriched in Exc FEZF2 GABRQ
if they met the following criteria: (1) they were expressed in at least half the cells in
Exc FEZF2 GABRQ, (2) they were expressed in fewer than half the cells in every
other cluster, (3) they were expressed in at least 25% more cells in Exc FEZF2
GABRQ than in any cluster, and (4) the average expression in Exc FEZF2 GABRQ
was at least two-fold higher than every other cluster. 30 genes met these criteria.
Marker genes for the corresponding cluster in MTG (Exc L4-5 FEZF2 SCN4B) were
identified the same way, but only genes that also were expressed in fewer than 30%
of the cells in Exc FEZF2 GABRQ are show in Fig. 4a, b.

Cluster dendrograms. Clusters were arranged by transcriptomic similarity based
on hierarchical clustering. First, the average expression level of the top 1200 scoring
cluster marker genes (highest beta scores, as above) was calculated for each cluster.

A correlation-based distance matrix (Dxy ¼ 1� ρ x;yð Þ
2 ) was calculated, and complete-

linkage hierarchical clustering was performed using the “hclust” R function with
default parameters. The resulting dendrogram branches were reordered to show
inhibitory clusters followed by excitatory clusters, with larger clusters first, while
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retaining the tree structure. Note that this measure of cluster similarity is com-
plementary to the co-clustering separation described above. For example, two
clusters with similar gene expression patterns but a few binary marker genes may
be close on the tree but highly distinct based on co-clustering.

Gene expression visualization. Gene expression (CPM) was visualized using heat
maps and violin plots, which both show genes as rows and nuclei as columns,
sorted by cluster. Heat maps display each nucleus as a short vertical bar, color-
coded by expression level (blue= low; red= high), and clusters were ordered as
described above. The distributions of marker gene expression across nuclei in each
cluster were represented as violin plots, which are density plots turned 90 degrees
and reflected on the y-axis. Black dots indicate the median gene expression in
nuclei of a given cluster; dots above y= 0 indicate that a gene is expressed in more
than half of the nuclei in that cluster.

Colorimetric in situ hybridization. Information about postmortem tissue donors
and methods used for colorimetric in situ hybridization (ISH) is available from the
Allen Human Brain Atlas documentation at http://human.brain-map.org/.

Multiplex fluorescent in situ hybridization (FISH). Human tissue specimens
used for RNAscope mFISH came from a cohort of neurosurgical resection and
postmortem tissues that included donors used for snRNA-seq. Fresh-frozen tissues
were sectioned at 14–16 μm onto Superfrost Plus glass slides (Fisher Scientific).
Sections were dried for 20 min at −20 °C and then vacuum sealed and stored
at −80 °C until use. The RNAscope multiplex fluorescent v1 kit was used per the
manufacturer’s instructions for fresh-frozen tissue sections (ACD Bio), except that
fixation was performed for 60 min in 4% paraformaldehyde in 1X PBS at 4 °C and
protease treatment was shortened to 10 min. Positive controls used to assess RNA
quality in tissue sections were either a set from ACD Bio (POLR2A, PPIB, UBC,
#320861) or a combination of SLC17A7, VIP, and GFAP. Sections were imaged
using either a 40X or 60X oil immersion lens on a Nikon TiE fluorescent micro-
scope equipped with NIS-Elements Advanced Research imaging software (version
4.20). For all RNAscope mFISH experiments, positive cells were called by manually
counting RNA spots for each gene. Cells were called positive for a gene if they
contained ≥5 RNA spots for that gene. Lipofuscin autofluorescence was dis-
tinguished from RNA spot signal based on the larger size of lipofuscin granules and
broad fluorescence spectrum of lipofuscin.

Dual chromogenic in situ hybridization. Dual chromogenic in situ hybridization
(dISH) was performed using the RNAscope 2.5 HD Duplex Assay Kit (ACD Bio)
per the manufacturer’s protocol. Experiments were performed using fresh-frozen
tissues sectioned at 16–25 μm onto Superfrost Plus glass slides (Fisher Scientific)
and sections were counterstained with hematoxylin to visualize nuclei.

Scoring of morphological types. Staining for the EXC FEZF2 GABRQ markers
ADRA1A and POU3F1 was carried out using dISH as described above. At least
3 sections from 5 individual human donors were used for morphological assess-
ment and scoring. First, the total number of layer 5 cells positive for both ADRA1A
and POU3F1 was determined for each donor. Then, the morphology of each
double-positive cell was assessed and scored as either pyramidal (cell body round to
pyramidal in shape and wider than tall), VEN (cell body elongated, spindle-shaped
and taller than wide) and uncharacterized (lacking definitive morphological fea-
tures perhaps due to bisection of cells during sectioning). The proportion of cells in
each morphological type was then calculated as a fraction of the total number of
ADRA1A and POU3F1 double-positive cells. Cells were called positive for a gene if
they contained ≥5 RNA spots for that gene.

Quantification of putative extratelencephalic (ET) neurons. The fraction of
putative ET neurons in FI and MTG was estimated using both mFISH and snRNA-
Seq. For mFISH estimates, the total numbers of SLC17A7+, POU3F1+ and
SLC17A7+, POU3F1− cells in layer 5 were quantified in at least 3 sections per
donor (n= 3 donors for both FI and MTG). The percentage of putative ET cells
(SLC17A7+, POU3F1+) was then calculated as a fraction of the total number of
SLC17A7+ cells in layer 5. SnRNA-seq estimates were made by taking the total
number of neurons mapping to the relevant ET cluster (Exc FEZF2 GABRQ and
Exc L4-5 FEZF2 SCN4B in FI and MTG, respectively) and dividing by the total
number of excitatory neurons collected in layer 5 dissections.

Cross-species data integration. To assess cross species cell type homology,
excitatory cells (mouse) or nuclei (human) collected from human FI (these data),
human MTG32, mouse VISp, and mouse ALM30 were compared. Log2-
transformed CPM of intronic plus exonic reads was used as input for all four
datasets. Including exonic reads increased experimental differences due to mea-
suring whole cell vs. nuclear transcripts, but this was out-weighed by improved
gene detection. To the extent possible, a matched subset of cells was included as
input to Seurat. In human MTG, we included all cells dissected from layers 4 or 5
that were mapped to excitatory clusters with at least 10 total cells from layer 5,
including up to 50 randomly sampled cells per cluster (for a total of 616 nuclei);

cells from layer 4 were included since FI does not contain a layer 4. In mouse VISp
and ALM, cells were grouped by subclass (rather than cell type) and we selected
100 random cells per subclass (for a total of 700 in ALM, which does not contain
layer 4, and 800 in VISp). All genes that could be matched between data sets, except
a set of sex and mitochondrial genes, were considered.

These data sets were assembled into an integrated reference using Seurat V3
(https://satijalab.org/seurat/)41,42 following the tutorial for Integration and Label
Transfer and using default parameters for all functions, except when they differed
from those used in the tutorial. Seurat is an R package which can take multiple
single-cell RNA-seq data sets as input, and then perform normalization, alignment
(also called integration), and clustering of all of these data together. When aligning
multiple data sets, Seurat identifies shared pairwise correspondences of cells across
data sets and uses these anchors to transfer information from one set to another for
alignment. We chose to apply this method for its ease of use, but also find that our
result is robust to choice of method.

More specifically, we first selected the union of the 2000 most variable genes in
each data set (using FindVariableFeatures with method= “vst”). Next, we
projected this data sets into subspace based on common correlation structure using
canonical correlation analysis (CCA) followed by L2 normalization, and found
integration anchors (cells that are mutual nearest neighbors between data sets) in
this subspace. Each anchor is weighted based on the consistency of anchors in it’s
local neighborhood, and these anchors were then used as input to guide data
integration (or batch-correction), as proposed previously72. We then scaled the
data, reduced the dimensionality using principal component analysis, and
visualized the results with Uniform Manifold Approximation and Projection
(UMAP)73. We defined homologous cell types by constructing a shared nearest
neighbor (SNN) graph on the integrated data sets based on the Jaccard similarity of
the 10 nearest neighbors of each sample. Louvain community detection was run to
identify clusters that optimized the global modularity of the partitioned graph.
Data set clusters are grouped based on the maximal fraction of cells in these Seurat-
assigned cluster, which were nearly perfectly aligned for most subclasses, including
ET. Changes in parameters did not change the integration of cluster Exc FEZF2
GABRQ with mouse ET clusters.

In addition, we performed correlation-based cell type matching of human FI to
mouse VISp and ALM (independently) and show that human and mouse ET cells
align. For each gene, we scaled the data such that the maximum log2(CPM+1)
across human cells and across mouse cell type means was set to 1. We then selected
the 75, 100, 150, 250, or 500 most depleted and most enriched genes in the mouse
clusters and used these genes to calculate the Pearson correlation between each
human FI cell and each mouse cell type, assigning each human cell to the mouse
cell type with maximal correlation. In all cases, we found that the 23 human cells in
the Exc FEZF2 GABRQ cluster were assigned to the mouse ET clusters.

Electrophysiology. Electrophysiological experiments were performed as reported
previously54. Briefly, the surgical tissue specimen obtained from the insula was
sectioned into 300 μm thick slices using a Compresstome VF-200 (Precisionary
Instruments) in a solution composed of (in mM): 92 with N-methyl-D-glucamine
(NMDG), 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES), 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-
pyruvate, 0.5 CaCl2•4H2O and 10 MgSO4•7H2O. After warming for 10 min in the
same solution, slices were transferred to a holding chamber containing 92 NaCl,
2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-
ascorbate, 3 Na-pyruvate, 2 CaCl2•4H2O and 2 MgSO4•7H2O. Slices were sub-
merged in a recording chamber continually perfused with artificial cerebrospinal
fluid (aCSF) consisting of 119 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3,
12.5 glucose, 2 CaCl2•4H2O and 2 MgSO4•7H2O and were viewed with an
Olympus BX51WI microscope equipped with infrared differential inter-
ference contrast optics and a ×40 water immersion objective.

Whole cell somatic recordings were acquired using a Multiclamp 700B amplifier
and PClamp 10 data acquisition software (Molecular Devices). Electrical signals
were digitized at 20–50 kHz and filtered at 2–10 kHz. The pipette solution
contained 130 K-gluconate, 4 KCl, 10 HEPES, 0.3 EGTA, 10 Phosphocreatine-Na2,
4 Mg-ATP, 0.3 Na2-GTP, 0.5% biocytin and .020 Alexa 594. Pipette capacitance
was compensated and the bridge was balanced throughout the recording.

Data were analyzed using custom analysis scripts written in Igor Pro
(Wavemetrics). All measurements were made at resting potential. FI curves were
constructed by measuring the number of action potentials elicited by 1s long
current injections of increasing amplitude (Δ50 pA). Spike frequency
accommodation was determined from the current injection yielding 10 ± 2 spikes
and was calculated as the ratio of the last to the second interspike interval. The
coefficient of variation of spike times was calculated from the same sweep.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw and aligned data have been registered with dbGaP (https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001791.v1.p1) and have been deposited in
the NeMO archive (https://nemoarchive.org/) for controlled access, as soon as such
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functionality in NeMO becomes available. In addition, aligned (count) data is available
on GitHub (https://github.com/AllenInstitute/L5_VEN).

Code availability
Custom R code and count data used to generate transcriptomics related figures can be
downloaded from https://github.com/AllenInstitute/L5_VEN.

Received: 7 October 2019; Accepted: 31 January 2020;
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