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Endothelial Nanomechanics in the Context
of Endothelial (Dys)function and Inflammation
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Abstract

Significance: Stiffness of endothelial cells is closely linked to the function of the vasculature as it regulates the release
of vasoactive substances such as nitric oxide (NO) and reactive oxygen species. The outer layer of endothelial cells,
consisting of the glycocalyx above and the cortical zone beneath the plasma membrane, is a vulnerable compartment
able to adapt its nanomechanical properties to any changes of forces exerted by the adjacent blood stream. Sustained
stiffening of this layer contributes to the development of endothelial dysfunction and vascular pathologies.
Recent Advances: The development of specific techniques to quantify the mechanical properties of cells
enables the detailed investigation of the mechanistic link between structure and function of cells.
Critical Issues: Challenging the mechanical stiffness of cells, for instance, by inflammatory mediators can lead
to the development of endothelial dysfunction. Prevention of sustained stiffening of the outer layer of endo-
thelial cells in turn improves endothelial function.
Future Directions: The mechanical properties of cells can be used as critical marker and test system for the
proper function of the vascular system. Pharmacological substances, which are able to improve endothelial
nanomechanics and function, could take a new importance in the prevention and treatment of vascular diseases.
Thus, detailed knowledge acquisition about the structure/function relationship of endothelial cells and the
underlying signaling pathways should be promoted. Antioxid. Redox Signal. 30, 945–959.
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Introduction

Cellular biophysical parameters and their impact on
cell and tissue function have long been underestimated.

Over the last decade, however, biophysical techniques were
established, which enable the quantification of mechanical
properties of a variety of samples, ranging from molecules to
tissues. During the last years, great efforts have been made in the
development of adequate methods for a detailed examination of
the nanomechanical properties of proteins, cells, and tissues. It
became clear that specific mechanical properties of single mol-
ecules or higher structures such as cells determine their function,
indicating a direct link between mechanics and function.

At the single-molecule level, the elasticity of a single
protein, for instance, the muscle protein titin, has a direct

impact on muscle function as an increased titin stiffness is
linked to heart failure (72). On the larger scale, stiffness of
macromolecular networks such as the extracellular matrix is
sensed by cells and affects their migratory behavior (88) as
well as differentiation. In several studies it could be shown
that cell differentiation depends on the stiffness of their
substrate (76, 79, 127). Even on the level of cell compart-
ments, the mechanical properties influence the behavior and
function of cells. Especially, endothelial mechanics is known
to be linked to cell function, as several biochemical and
biomechanical stimuli that affect endothelial cells are known
to be linked to changes in elasticity [reviewed in Fels et al.
(32)]. Here, especially two compartments of the vascular
endothelium show a strong mechanics-to-function relation-
ship, namely the endothelial cell cortex and the endothelial
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glycocalyx (eGC). This outer shell (i.e., the first 150–200 nm)
of endothelial cells determines a variety of vascular functions
in that it regulates the release of vasoactive substances and
provides a dynamic scaffold or platform for the expression
of particular proteins. Sustained stiffening of the outer layer
of endothelial cells contributes to the development of endo-
thelial dysfunction defined as Stiff Endothelial Cell Syn-
drome (SECS) (68).

Thus, the mechanical properties are strongly linked to the
function of the cells. In this review, the link between endo-
thelial nanomechanics and vascular function is discussed
with special regard to endothelial dysfunction and vascular
inflammation.

The Cell Cortex

The cell cortex comprises the plasma membrane and the
underlying cytoskeleton (cortical cytoskeleton, CSK), as well
as their associated proteins (105). Its average thickness is about
a few 100 nm (32, 59, 96). As interface between intra- and
extracellular space, the cortex can be described as autonomous
functional compartment of cells. Biochemical signals are rec-
ognized by plasma membrane proteins and transmitted either
outward or inward. The cortex regulates the uptake and the
release of nutrients, ions, and signaling molecules. In addition,
mechanical forces, generated during proliferation, growth, and
migration, are triggered, sensed, and counteracted within the
cell cortex. Hence, the cortex represents a signaling hub for all
cells with a strong influence on cell physiology.

The CSK has been recognized as a key component of the
cell cortex that determines its mechanical stiffness. It is built
by the dynamic actomyosin web directly beneath the plasma
membrane and its huge variety of associated proteins.
Network-like actin filaments span the whole cortex and in-
fluence cell morphology via their membrane anchors such as
the ERM proteins (29, 110). The actin filaments are orga-
nized in bundles spanning the cortex as well as a fine
meshwork of single filaments (27, 52, 62, 98). Crosslinkers
either connect actin filaments among themselves or to other
cellular compartments. Via binding to integrins the CSK
generates forces, facilitating movement during migration and
force transition to intracellular compartments (18, 135).
Myosin motor proteins generate lateral tension within this
network, facilitating movement and mechanical integrity (39,
54, 116). F-actin nucleating Arp2/3 and formins, as well as
filament stabilizing or severing factors such as gelsolin or
cofilin, are responsible for a steady and dynamic turnover of
cytoskeletal elements (103). Together with the crosslinkers
and the motor proteins, this leads to a mechanical elastic and
also rigid integrity of the cell cortex. The cortex is able to
rapidly change its mechanical properties to react to functional
challenges and physiological adaptations. It is important to
mention that the mechanical flexibility of the endothelial
cortex depends on the polymerization state of actin in that
the shift from (depolymerized) G- to (polymerized) F-actin
stiffens the cortical region, which is, among others, under the
control of small GTPases (49, 105).

Ion channels are known to function as mechanosensors in
that they are activated by mechanical stimuli and forces,
which are converted into biochemical signals and transmitted
into the interior of the cell. During the last years, a plethora of
mechanosensitive ion channels have been identified, for ex-

ample, transient receptor potential (TRP) channels, Piezo ion
channels, DEG/ENaC/ASIC channels, and mechanosensitive
potassium channels [for review, see Ranade et al. (107)].
However, in addition to their ability to sense forces acting on
cell membranes, ion channels are recognized as mediators of
the mechanical properties of the outer layer of cells. Re-
cently, it could be shown that the presence of the endothelial
ENaC (EnNaC) in the plasma membrane of endothelial cells
stiffens the cortical region, which is crucial for the functional
plasticity of the cell [for review, see Kusche et al. (66) and
Warnock et al. (137)]. A mechanism is postulated, in which,
on a specific stimulus, ENaC molecules are inserted into the
plasma membrane. Physical and/or functional interaction
of the channel with components of the CSK induces a shift
from G- to F-actin leading to an increased rigidity of the
endothelial cortex. In such a situation, the release of nitric
oxide (NO) is decreased (see Cortical Stiffness and Endothelial
Function section) (Fig. 1). Importantly, for epithelial ENaC, it
was demonstrated that laminar shear stress increases the ac-
tivity of the channel (2). The fact that ion channels are (i)
regulated by mechanical forces and (ii) are able to sense and
transduce mechanical forces indicates a regulatory feedback
loop, which is poorly understood up to now.

Cortical Stiffness and Endothelial Function

Endothelial function is defined by antithrombotic and anti-
inflammatory activity, barrier function, and blood pressure
regulation. All these characteristics are influenced by the
mechanical properties, that is, the stiffness of the endothe-
lium. Hereby, NO is the key endothelium-derived relaxing
factor (also known as EDRF). Synthesized by the endothelial
nitric oxide synthase (eNOS, NOS3), NO diffuses to the
adjacent smooth muscle cells and activates the soluble gua-
nylyl cyclase. The increased cytosolic level of cGMP induces
a decrease in intracellular calcium within the smooth muscle
cells, which results in vasorelaxation (47). In addition, NO
directly acts within the endothelium as it is linked to vaso-
protection via s-nitrosylation. It turned out that stiffness of
the apical endothelial cortex presents a parameter, which
directly correlates to eNOS function. Generally, a decrease in
apical cortical stiffness (hereinafter referred to as cortical
stiffness) is associated with an elevated NO release, whereas
cortical stiffening diminishes eNOS activity. Thus, a shift
from G- to F-actin relates to the degree of cortical stiffness
and NO release (30, 31), intriguingly demonstrating the link
between nanomechanics and function (Fig. 1).

The mechanical properties of endothelial cells are recog-
nized as important targets for specific substances. In this
context, it was shown that polyphenols such as resveratrol
exhibit vasculoprotective properties as it decreases corti-
cal stiffness (100) and induces NO release. Similarly, 1-
methylnicotinamide chloride leads to cortical softening and
increased NO bioavailability (57). However, factors that are
associated with an activated and inflamed endothelium, for
example, the mineralocorticoid hormone aldosterone or the
tumor necrosis factor a (TNFa), induce cortical stiffening via
stimulation of actin polymerization and simultaneously in-
hibit NO release (33, 128). Closely linked to the aldosterone-
dependent effect, it has been shown that the plasma Na+

concentration determines cortical stiffness. An acutely
increased Na+ intake, resulting in a temporarily increased
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plasma sodium level (115, 124), elevates cortical stiffness
and inhibits NO release (50, 60, 70, 92). In contrast, physi-
ological elevations in plasma potassium concentration (86)
induce a plasma membrane electrical potential-dependent
decrease in cortical stiffness and increase eNOS activity (14,
90). This decrease in stiffness is again linked to cortical actin
dynamics as we have shown that high extracellular potassium
decreases F-actin density in the endothelial cell cortex (31).

However, the molecular basis of stiffness-mediated eNOS
regulation is still not known. Three hypotheses can be taken
for consideration. First of all, a stiff cell will be less de-
formable, which might result in a decreased susceptibility
of mechanosensitive ion channels to changes in blood flow.
As NO release is regulated via the Ca2+/calmodulin path-
way, shear stress-induced Ca2+ entry via mechanosensitive
Ca2+ channels activates eNOS (34). The reduced mechan-
osensitivity due to cortical stiffening would result in a de-
creased Ca2+ influx on mechanical stimulation. The second
hypothesis is based on the fact that eNOS is able to associate
with actin. Interestingly, eNOS activity is increased if bound
to G-actin compared with F-actin (123). Hence, as a soft cell
is likely to exhibit higher G-actin levels compared with a stiff
cell, cortical softening could lead to increased NO due to
eNOS/G-actin association. This hypothesis is supported by
the fact that a disruption of eNOS/actin interaction leads
to decreased NO release (58) even if the cortical stiffness
was reduced due to high extracellular potassium levels (31).
Moreover, the activating effect of eNOS/G-actin interaction
seems to be independent of intracellular calcium levels as
it has been shown that certain stimuli (e.g., adenosine and
salbutamol) induce G-actin-dependent eNOS activation with-
out elevations of intracellular calcium (78). The third hy-
pothesis includes cytoskeletal control of protein expression.
It has been shown by Fang et al. that eNOS messenger RNA
(mRNA) synthesis is regulated by the myocardin-related
transcription factor A (MRTF-A), a cofactor of the serum
response factor (SRF). In the cytosol, MRTF-A can bind to
G-actin, which inhibits its translocation to the nucleus. On
actin polymerization, MRTF dissociates from G-actin and
translocates to the nucleus where it modulates expression via

the SRF pathway (97). As it has been shown that eNOS ex-
pression is downregulated on translocation of MRTF-A (28),
this opens another pathway of stiffening-mediated decrease
in endothelial NO release.

In summary, these findings indicate that endothelial cor-
tical stiffness could act as a physiological readout for endo-
thelial function. A soft cortex generally goes along with an
actin depolymerization and increased NO release, whereas
stiffening includes filament formation and eNOS inhibition.
This hypothesis is supported by the fact that a synthetic de-
stabilization of the cortical actin cytoskeleton, for example,
by low doses of the filament destabilizing mycotoxin cyto-
chalasin D (CyD), leads to a decrease in cortical stiffness,
resulting in increased NO release (Fig. 2A, B) (30, 128).

In addition to actin dynamics and the balance between
filament formation and depolymerization, a number of other
proteins could be identified, which play a crucial role in
cortical plasticity. Myosin motor protein activity, for in-
stance, induces stiffening of the endothelium, which is clo-
sely linked to its barrier function. Here, the Rho kinase 1
(Rock1) plays a central role in the regulation of stiffness-
associated endothelial function. Rock1 increases lateral ten-
sion via actin polymerization and myosin light chain kinase
(MLCK) activation (45, 143), increasing contractility. Ele-
vated myosin activity in turn results in cortical stiffening (54,
116). The increased lateral tension leads to a barrier break-
down and an increased permeability of the endothelial
monolayer (61, 74, 144). In addition to its effects on endo-
thelial mechanics and barrier function, Rho kinase inhibits
eNOS activity (125). Although stiffening and eNOS inhibi-
tion are regulated via distinct pathways, the effect of Rho
kinase on endothelial mechanics correlates with its impact on
endothelial blood pressure regulation.

One factor that controls endothelial function, even under
physiological conditions, is the Nox family of NADPH
oxidases in that the Nox-derived intermediates scavenge
NO (67) and thus determine the availability of NO. For
many years, it is known that the Nox NADPH oxidases
represent the major source of reactive oxygen species (ROS)
in diverse systems. In particular, in the cardiovascular

FIG. 1. Link between en-
dothelial nanomechanics and
function. A mechanism is
postulated in which, on a spe-
cific stimulus, ENaC mole-
cules are inserted into the
plasma membrane. Physical
and/or functional interaction
of the channel with compo-
nents of the cortical cytoskel-
eton induces a shift from G- to
F-actin leading to increased
rigidity of the endothelial cor-
tex. In such a situation the
release of NO is decreased.
EnNaC, endothelial ENaC;
eNOS, endothelial nitric oxide
synthase; NO, nitric oxide. To
see this illustration in color, the
reader is referred to the web
version of this article at www
.liebertpub.com/ars
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system, Nox-derived ROS are important modulators of
stress response leading to cellular activation, hypertrophy,
and inflammation but, as mentioned above, also limit NO
availability [for review, see Brandes (10) and Brandes et al.
(12)].

Up to now, seven isoforms of the Nox family of NADPH
oxidases could be identified (Nox1–5 and Duox1/2), which
produce different types of ROS. Nox1, Nox2, Nox3, and
Nox5 mainly produce �O2

-, whereas H2O2 is the prominent
product of Nox4 (11, 12). In vascular cells, the NADPH
oxidase isoforms Nox1, Nox2, Nox4, and Nox5 are mainly
expressed, which differ in their activity, response to stimuli,
and as mentioned in the type of ROS released (11). Inter-
estingly, Nox-derived signaling in the vascular system can be
both detrimental and protective. Physiological amounts of
H2O2 maintain endothelial integrity and stimulate anti-
inflammatory systems (118a, 118b); overproduction of H2O2,
however, is shown to be proinflammatory and induces oxi-
dative stress and endothelial dysfunction (139a, 141a).

Overproduction of superoxide anions (�O2
-) provides a

proinflammatory stimulus, mediates uncoupling of eNOS,
and thus triggers the development of endothelial dysfunction
(39a, 118a).

Mechanical forces such as shear stress stretch or pressure
stimulate the cellular production of ROS. Furthermore, ROS
determine cellular mechanics in that it is involved in the
remodeling of the cytoskeleton. This can occur either indi-
rectly by modification of proteins and enzymes that regulate
actin dynamics or directly by oxidation of actin filaments.
H2O2, for instance, decreases the rate of actin polymerization
(20). ROS and reactive nitrogen species are also shown to
activate Rho GTPases, including RhoA, Rac, and Cdc42 in-

ducing stress fiber formation (1, 44). Using the atomic force
microscope (AFM) as nanoindentation tool, Sun et al. dem-
onstrated that H2O2 decreases cell stiffness and reduced
RhoA expression (126). In the end, mechanical stimulation of
cells, however, modulates ROS production leading either to
endothelial function or dysfunction strongly depending on
the quality of the applied physical forces [for review, see
Brandes et al. (13)]. However, the exact relationship between
cortical stiffness, the balance between NO and ROS pro-
duction, and endothelial function has to be elucidated.

Cortical Stiffness and Endothelial Function
During Aging

Aging of the vascular system is a major risk factor for
cardiovascular disease and mostly attributed to a combina-
tion of genetic predisposition and morphological changes of
the cell finally leading to organ damage (4, 5). Recently, in a
clinical study, a correlation was found between endothelial
stiffness and the overall arterial stiffness (69), which relates
to the fact that changes in the mechanical properties of en-
dothelial cells could be linked to disturbed endothelial func-
tion. In particular, it was found that the EnNaC abundance in
the plasma membrane of endothelial cells is augmented dur-
ing the process of aging, which could be prevented by low
doses of the mineralocorticoid hormone receptor spir-
onolactone (24). In parallel to an accumulation of EnNaC in
the plasma membrane, an increased cortical stiffness and re-
duced release of NO were found (24, 94). This might be due to
either changes in protein expression or structural reconstruc-
tions of proteins and cellular components. In the first case, a
concept was developed in which ‘‘aging’’ is able to derail

FIG. 2. Cortical stiffness deter-
mines the mechanical properties
of the eGC and endothelial func-
tion. (A) Application of the actin-
depolymerizing agent CyD signifi-
cantly decreases cortical stiffness,
which is paralleled by an increase in
NO release. (B) The mechanical
properties of eGC are also changed
under these conditions in that the
stiffness of eGC is decreased (C),
while the thickness is increased (D),
indicating a physical or functional
link between proteins located on top
and beneath the plasma membrane
of endothelial cells [modified after
Peters et al. (100)] (*p £ 0.05). CyD,
cytochalasin D; eGC, endothelial
glycocalyx.
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specific signaling pathways leading to altered metabolism and
protein expression pattern. In the second case, cytoskeletal
proteins such as actin, myosin, or involved linker proteins are
structurally changed, which in turn directly influences the
mechanical properties of the endothelial cortex (102). How-
ever, this demonstrates a time-dependent manifestation of
SECS and endothelial dysfunction, which might facilitate the
development of cardiovascular pathologies.

The Endothelial Glycocalyx

The eGC is a negatively charged, carbohydrate-rich gel-
like mesh of membranous glycoproteins, proteoglycans,
glycosaminoglycans (GAGs), and associated plasma proteins
covering the luminal surface of the endothelium along the
entire vascular tree (138). The GAGs are composed of heparan
sulfate (HS, 50–90%), chondroitin sulfate (CS), and hya-
luronic acid (HA) (109, 112, 131). Transmembrane syndecans
and the membrane-bound glypicans are the major protein core
families found on the endothelial plasma membrane. Synde-
cans are attached to GAG and their cytoplasmic tails associate
with the cytoskeleton through linker molecules such as ezrin,
tubulin, syntenin, syndesmos, dynamin, and a-actinin and are
thus able to distribute force throughout the cell (138).

The functional thickness of the eGC was long in debate.
For many years the studies revealed an eGC thickness less
than 100 nm. During the last years, new techniques developed
to more precisely determine the thickness and accordingly
the height of the eGC. By stabilizing the anionic carbohydrate
structures of the eGC, a thickness of up to 0.5 lm was dem-
onstrated in rat left ventricular myocardial capillaries (132).
By direct in vivo measurements of the eGC in hamster cre-
master muscle, Vink and Duling provided evidence for a eGC
thickness of 0.4–0.5 lm (133), which was supported by re-
cent data derived from intravital microscopy (37) [for com-
prehensive review about eGC structure, see Dane et al. (21)
and Fu and Tarbell (36)].

Under physiological conditions, the structure of the eGC
layer is fairly stable but subject to a permanent dynamic
balance between biosynthesis of new GAGs and shear-
dependent removal of existing constituents. Thus, the eGC is
neither an inflexible nor a homogeneous structure due to
various electrostatic and molecular interactions between its
constituents (140). According to its crucial role as vasculo-
protective layer, the eGC is structurally degraded during
inflammation. However, Potter et al. showed that a period of
5–7 days is required for the eGC to make a full recovery after
deterioration with proinflammatory substances or enzymatic
degradation of the eGC (104).

The process of eGC deterioration is mainly maintained by
proteases, where heparanase is specific for cleaving heparan
sulfate side chains or hyaluronidase for removing hyaluronan
from the eGC (83) or TNFa (84). In vivo several patho-
physiological situations have been associated with structural
and functional derangement of the eGC, for example, post-
ischemic organ damage, sepsis, inflammation, renal disease,
and atherosclerosis [for review, see Becker et al. (7)].
However, protection of the eGC against damage after is-
chemic insult or TNFa was found to be mediated by anti-
thrombin (42), hydrocortisone (16), or albumin (6). After
shedding, the eGC can be completely recovered within a few
hours. Recently, it was demonstrated that sphingosine 1-
phosphate induced eGC recovery via the phosphoinositide 3-
kinase (PI3K) pathway (146, 147).

As already described for the endothelial cortex, stiffness is
a mechanical property that reflects the physiological function
of a specific structure. Because of the complex composition
of the eGC, it can be found in different conditions regarding
mechanical stiffness and functional thickness. During the last
years, efforts have been made to quantify and analyze the
nanomechanical properties of the eGC. Although the eGC
seems to be a fragile and delicate structure, it turned out that
changes of the eGC nanomechanics have immense effects on
the vascular function in that a soft and upright eGC is a
prerequisite for proper endothelial function and protects
against inflammatory processes and bacterial invasion (38,
41, 115, 117, 140). Three different eGC conformations could
be identified: (i) soft and upright, (ii), soft and flat, and (iii)
stiff and flat (91, 115, 140) (Table 1 and Fig. 3). Since the
structure is tightly linked to the function of the eGC, each
conformation reflects a specific functional condition. A soft
and upright eGC can be seen as the physiologically intact
conformation where the eGC perfectly fulfils its role as va-
soprotective gel-like structure and mechanosensor on top of
endothelial cells. During inflammatory processes, the pres-
ence of cytokines, for example, TNF-a, damages the eGC
leading to a reduced thickness and stiffness indicating a
shedding of the eGC (140). Enzymatic degradation also leads
to a shedded eGC. In contrast, high plasma Na+ concentra-
tions dramatically stiffen the eGC while its functional
thickness is reduced, which is likely due to a collapse of the
structure. The different conformations of the eGC are de-
picted in Figure 3 and summarized in Table 1.

Recently, a mechanism was described resulting in
‘‘swelling’’ of the eGC, which can be attributed to reorga-
nization events (depolymerization) of the cortical actin (100).

However, despite its fundamental role in regulating vas-
cular integrity and endothelial functions, visualization and

Table 1. Effects of Na
+
, Tumor Necrosis Factor a, and Heparanase on the Shape

of Endothelial Glycocalyx

Low Na+ (control) High Na+ TNFa Heparanase

eGC thickness, % 100a -50a -55b -50b

eGC stiffness, % 100a +130a -35b -33b

Monocyte adhesion, % 100 +37 +80 +187
Hypothesis Intact eGC Collapsed eGC Shedded eGC Shedded eGC

aOberleithner et al. (91).
bWiesinger et al. (140).
eGC, endothelial glycocalyx; TNFa, tumor necrosis factor a.

NANOMECHANICS AND ENDOTHELIAL FUNCTION 949



quantification of the eGC are rather challenging. Recently,
the AFM was used to measure the elastic response of bovine
lung microvascular endothelial cells (87). It was found that
the glycocalyx stiffness and thickness changed after removal
of GAGs by specific enzymes. By using a microinterfero-
metric technique based on reflectance interference contrast
microscopy (RICM), the same group reported that enzymatic
digestion of HA and nonspecific glycocalyx digestion with
pronase increased the mean effective stiffness of the glyco-
calyx, implying that HA chains act as a cushioning layer to
distribute applied forces to the glycocalyx structure (51).

With a combination of immunofluorescence microscopy
and AFM-mediated nanoindentation, it was shown that he-
paranase treatment leads to a reduction in eGC stiffness by
47% as well as a reduction in the HS abundance on the cell
surface by 34% indicating a correlation between eGC stiffness
and the amount of stained HS (99). The mechanical properties
of the eGC also depend on blood proteins and specifically on
the albumin concentration in the plasma. Job et al. exposed the
eGC to 0.1%, 1.0%, and 4.0% albumin. The RICM images
indicated that eGC thickness and its compliance increase at
higher albumin concentrations (51). Recently, we could show
with AFM nanoindentation measurements that a concentration
of at 0.1% fetal calf serum (FCS) is required for a proper
mechanical nanostructure of the eGC. The functional thickness
(height) is increased with application of 0.1% FCS compared
with the absence of FCS (Fig. 4).

The mechanical properties of both endothelial cortex and
eGC are important for proper vascular function. Apparently,
the mechanical properties of the endothelial cortex determine
the mechanical stiffness and functional thickness of the eGC.
Application of low doses of CyD softens the endothelial
cortex. In fact, CyD-induced cortical softening is accompa-
nied by a decrease in eGC stiffness and an increase in eGC
thickness (100). This is explained by the fact that the eGC is
anchored to proteins of the cortical web (3). This functional
and structural connection leads to a mutual interaction in that
the depolymerization of cortical actin leads to changes in the
anchoring of the eGC. This in turn reorganizes its structure
and affects its mechanical properties. Under these conditions,
the release of NO is increased, which might be explained
by (i) the facilitated shear stress sensing of the thicker eGC
and (ii) the better deformability of the softer cortex, which
stimulates the eNOS underneath the plasma membrane
(Fig. 2A–D). The functional interaction between eGC and

cortex becomes relevant by detailed observation of a specific
situation (e.g., high plasma Na+ concentrations or inflam-
mation) with increased mechanical stiffness of both endo-
thelial cortex and eGC.

In Figure 5, an example is given for the link between en-
dothelial nanomechanics and function. Challenge of the
vascular endothelium with Na+ concentrations in the supra-
physiological range (150 mM), as present after acute oral Na+

load (115, 124), damages the eGC in that the functional
thickness/height is decreased by 50% (Fig. 5A), while the
mechanical stiffness is increased by 130% (Fig. 5B). In other
words, Na+ load makes the eGC rigid and flat, negatively
influencing the barrier function of the eGC. Recent data show
that under high Na+ conditions, the adhesion of monocytes is
facilitated, promoting the development of vascular inflam-
mation (115) (see paragraph below). In parallel, high Na+

load stiffens the endothelial cortex and decreases the release
of NO (Fig. 5C, D). This example indicates that (i) the na-
nomechanical properties of the eGC and cortex sensitively
react to physiological challenges and (ii) that changes of the
nanomechanical properties are directly linked to vascular
function. Thus, the inverse correlation between mechanical
plasticity and NO secretion is physiologically relevant since a
reduced release of NO due to endothelial stiffening causes
impaired vasodilation of blood vessels, which promotes the
development of endothelial dysfunction, arterial hyperten-
sion, and inflammatory processes (30, 71).

As mentioned above, the application of polyphenols such
as resveratrol induces a softening of the endothelial cortex.
AFM-based nanoindentation measurements using ex vivo
endothelial cells derived from mouse aortae reveal that

FIG. 3. Schematic overview of possible eGC confor-
mations. Depending on the extracellular environment, the
eGC on top of endothelial cells can exist in at least three
different conformations: (i) intact, (ii) collapsed in the
presence of high extracellular Na+, or (iii) shedded after
treatment with TNFa or heparanase. Importantly, the dif-
ferent conformations also influence the nanomechanical
properties and function of the eGC. TNFa, tumor necrosis
factor a.

FIG. 4. Albumin is important for the nanostructure of
the eGC. The mechanical properties of eGC depend on
blood proteins and specifically on the albumin concentration
in the plasma. With an AFM-based nanoindentation ap-
proach, we could show that a concentration of 0.1% FCS is
required for a proper mechanical nanostructure of the eGC.
The functional thickness (height) is increased with appli-
cation of 0.1% FCS compared with the absence of FCS
(Lukasz A, unpublished data). AFM, atomic force micro-
scope; FCS, fetal calf serum.
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polyphenols also act on the eGC making it soft and thick (99).
Since under these conditions the amount of HS molecules at
the surface of endothelial cells was not changed, it is postu-
lated that the nature of eGC modulation by polyphenols is a
result of conformational alterations, named ‘‘swelling.’’ This
might at least partially explain the anti-inflammatory prop-
erties of, for example, hawthorn extracts. In addition, it is
possible that a softer and thicker glycocalyx results in a better
detection of shear stress by the endothelium and thus higher
NO synthesis and release (99). However, it can speculated
that the nanomechanical properties of the eGC influence its
biochemistry, for example, by regulating the number of
binding sites for different blood-borne substances making it a
crucial regulator and protector of vessel function.

The Endothelial Glycocalyx as Mechanotransducer
and Mediator of NO Release

Endothelial cells are constantly subjected to the forces of
streaming blood. This shear stress induces cellular responses,
including morphological adaptations of the cells such as
orientation in flow direction, the regulation of gene expres-
sion, and production of vasoactive substances such as NO and
ROS. All these cellular responses are mediated by specific
intracellular signaling pathways. However, knowledge about
the cellular structures that sense and transduce shear forces
is rare (130). Mechanotransduction involves both sensing
of shear forces at the luminal side of endothelial cells and at
the opposite site where the forces are transmitted toward
the cytoskeleton. A number of transmembrane and intracel-
lular mechanosensors have been identified over the past
years, including ion channels, receptor tyrosine kinases, G
protein-coupled receptors, platelet endothelial cell adhesion

molecule-1 (PECAM-1) and its associated intercellular
junction complex, and integrins and their basal adhesion
complex [reviewed in Tarbell et al. (130)]. Especially to be
emphasized is the role of eGC as mechanotransducer and
mediator of NO release (129). NO is one of the most im-
portant vasoprotective molecules produced in a biphasic
manner. The first rapid and acute NO release depends on
blood flow (shear stress) and Ca2+, whereas the chronic
NO production is independent of Ca2+ (15, 35, 64). Mor-
phologically, the eGC is linked to proteins of the cortical
web beneath the plasma membrane (139) and thus is able to
transmit biochemical and biomechanical signals from the
intravascular compartment toward endothelial cells making
it a critical interface between the blood and vascular wall
(Fig. 6). In a number of studies, it could be shown that
degradation of the eGC inhibits the flow-induced NO pro-
duction, suggesting that the eGC plays a key role in me-
chanosensing and mechanotransduction in vessels (35, 95,
145). The underlying mechanism of these observations could
be that drag forces acting on the cell surface are transduced
via the eGC core protein glypican to the submembranous
caveolae, which triggers eNOS activation and subsequent
production of NO (26).

The production of superoxide is found to increase in blood
vessels under elevated shear stress, indicating that superoxide
may be involved in endothelial mechanotransduction. It
could be shown that HS proteoglycans and sialic acid act as
important mediators for vascular oxidative stress. Removal
of HS impacts the nearby superoxide dismutase (SOD),
which in turn affects the superoxide balance and thus the
bioavailability of NO (65).

Recently, Dragovich et al. could demonstrate that horizontal
and vertical stimulation of the eGC causes reorganization of

FIG. 5. High Na1 changes the
mechanical properties of cortex
and eGC. Application of Na+

concentrations in the supraphysio-
logical range (150 mM) to endo-
thelial cells damages the eGC in
that the functional thickness/height
is decreased by 50% (A), while the
mechanical stiffness is increased
by 130% (B), indicating a collapse
of the structure. In parallel, high
Na+ load stiffens the endothelial
cortex (C) and decreases the re-
lease of NO (D), indicating a direct
link between the nanomechanical
properties and vascular function.
(*p £ 0.05).
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GAGs, proteoglycans, and glycoproteins, which is transduced
to the cytoskeleton. The enhanced tension then may activate
mechanically sensitive Ca2+ channels, such as TRP channels.
The following TRP-mediated Ca2+ influx into the cell leads to
vasorelaxation and stretch-induced NO release (8, 23). Un-
published data of our laboratory reveal that Na+ influx via the
mechanosensitive EnNaC might also contribute to this mech-
anism, in that a decreased activity of EnNaC coincides with an
increase in NO production. These data lead to a model where
the eGC acts as an important sensor and transducer of me-
chanical forces at the surface of cells. As a consequence, NO is
rapidly released and likely related to the action of ion channels
or more specifically the influx of Ca2+ and Na+ via mechan-
osensitive cation channels. However, one parameter that is
important for the transduction of shear forces into the cell is the
mechanical stiffness of eGC.

eGC Stiffness and Inflammation

During the last years, eGC was recognized as a crucial
vasculoprotective and anti-inflammatory nanobarrier on the
apical surface of endothelial cells. It has both proadhesive
and antiadhesive functions and thus plays a crucial role
during inflammatory processes, especially during leukocyte
recruitment (77, 80, 148). Due to its position on the surface of
endothelial cells, the eGC serves as a ‘‘firewall’’ by medi-
ating flow-induced shear stress and regulation of leukocyte/
endothelium interactions. Since the eGC can reach a height of
about 0.5–1 lm, leukocytes are ‘‘tip-toeing’’ with their cy-
toskeletal protrusions on the eGC and can barely reach the
adhesion molecules at the endothelial surface—unless the
barrier is compromised. Thus, shedding of the eGC appears to
be required for leukocyte adherence to the vessel wall, be-
cause, under normal conditions, leukocytes are supposed to
be shielded from contact with their adhesion molecules by
eGC (19, 73, 80) (Fig. 6).

Furthermore, the eGC seems to play a role as protector of
endothelial cells against damage by various mediators of
oxidative stress. Under physiological conditions, the eGC
contributes to its vasculoprotective effect by docking major
enzymatic systems, such as the extracellular SOD bound to

HS proteoglycans, contributing to a reduction in oxidative
stress by quenching oxygen radicals and maintaining NO
bioavailability (40, 85, 108). The eGC can also bind cyto-
kines, which have profound effects on eGC compound syn-
thesis and inflammatory processes by attenuating the binding
of cytokines to cell surface receptors (77).

Release of inflammatory mediators induced by eGC deg-
radation initiates the accessibility of leukocytes to adhe-
sion molecules (17, 56). Kubes et al. demonstrated that
endothelium-derived NO modulates leukocyte adhesion (63).
NO seems to suppress the expression of VCAM-1, ICAM-1,
and E-selectin in response to proinflammatory cytokines,
indicating an anti-inflammatory role of NO.

In observational studies in critically ill patients with sepsis, it
was shown that plasma levels of shed glycocalyx constituents
correlate with disease severity and mortality (82, 111, 115).
Both systemic and local inflammatory responses such as dia-
betes, atherosclerosis, surgical ischemia/reperfusion injury, and
sepsis lead to a rapid loss of glycocalyx functions (6, 17, 56). As
discussed in The Endothelial Glycocalyx section, the functions
of the glycocalyx are dependent on an intact structure. Pertur-
bation of the structure can range from deterioration to funda-
mental destruction of the glycocalyx layer (Table 1 and Fig. 3).

By applying AFM-based nanoindentation, Wiesinger et al.
demonstrated eGC deterioration in septic mice, which again
identifies the eGC as an important structure during inflamma-
tory processes. Corresponding in vitro experiments reveal that
nanomechanical changes, that is, decreased stiffness and re-
duced thickness induced by TNF-a and thrombin, respectively,
are identical to those seen after lipopolysaccharide exposure
in vivo, suggesting that changes of the eGC nanomechanics are
a common hallmark of all inflammatory processes (140).

The stiffness of eGC determines the adhesion and trans-
migration of leukocytes. As mentioned before, eGC thereby
acts as vasculoprotective ‘‘firewall.’’ In areas with increased
stiffness of the extracellular matrix and thus the vascular
wall, such as atherosclerotic plaques, leukocyte extravasation
is enhanced [reviewed in Doring et al. (22)]. In an elegant
study by Schaefer et al., endothelial a-actinin-4 could be
identified as a key regulator of endothelial cell stiffness and
of ICAM-1-mediated neutrophil transmigration. Since

FIG. 6. The eGC is a flow sen-
sor and determines the produc-
tion of NO. Due to its connection
to proteins of the cortical web be-
neath the plasma membrane, eGC
is able to transmit biochemical and
biomechanical signals from the in-
travascular compartment, for ex-
ample, drag forces and shear stress,
toward endothelial cells. Further-
more, eGC is important for NO
production and prevents adhesion
of leukocytes. In case of endothe-
lial stiffening, eGC is damaged and
leukocyte adhesion and transmi-
gration are facilitated. To see this
illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars
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endothelial cells lining atherosclerotic plaques show elevated
levels of a-actinin-4, endothelial cell stiffness was recog-
nized as an important regulator of the adhesion and trans-
migration of neutrophils (113, 114). Adhesion of leukocytes
was shown to occur predominantly in endothelial areas with
increased stiffness, while transmigration seems to be facili-
tated in softer regions (113). This indicates that inflammatory
processes depend on the nanomechanical properties of en-
dothelial cells. Mechanical forces induced by age- and
inflammation-mediated extracellular matrix stiffening pro-
mote endothelial stiffness, which impairs barrier function and
stimulates leukocyte transmigration (48, 113).

As shown for human neutrophils, adhesion increases leu-
kocyte stiffening which, in turn, further promotes adhesion
and transmigration, indicating a positive feedback loop (136).
Indeed, pharmacological inhibition of F-actin dynamics in
human neutrophils, impairing leukocyte stiffening, reduces
leukocyte transmigration across inflamed human umbilical
vein endothelial cells (122). These events are likely to be
mediated by the RhoA–ROCK–myosin pathway, which re-
sults in localized actomyosin-based contractile forces. These
forces, dependent on endothelial stiffness, allow crawling
and transmigrating leukocytes to retract their uropod for ef-

ficient transmigration (113, 142). Furthermore, Rho kinase-
induced lateral tension correlates with an increased transen-
dothelial migration of leukocytes (43, 118, 121).

High Na1 Induces Mechanical Stiffness
and Vascular Inflammation

In addition to its function as a transmitter of signals, the
eGC is known to function as an Na+ buffering system (91,
119). Importantly, the capacity of eGC to buffer Na+ is di-
minished after exposure to high Na+ concentrations. This
phenomenon can be explained, in part, by the fact that Na+

strongly interacts with negatively charged side chains of
proteins and proteoglycans within the eGC (134). Changes in
the nanomechanical properties (i.e., stiffness and functional
thickness) of the eGC, however, alter its function (32, 137).
By studying eGC nanomechanics, it could be shown that, in
the presence of aldosterone, already a small increase in Na+

concentration causes a collapse of the eGC (91). A chronic
increase in extracellular Na+ concentration beyond 140 mM
‘‘neutralizes’’ the negative charges of the eGC leading to
collapse of the structure (91). Thus, the eGC is highly sen-
sitive to salt, and Na+-induced collapse of eGC results in

FIG. 7. High Na1 facilitates the adhesion of monocytes on endothelial cells. (A) Na+ concentrations in the supra-
physiological range (150 mM) increase the number of adherent monocytes on an endothelial monolayer. (B) Na+ con-
centrations in the supraphysiological range (150 mM) increase the adhesion forces between monocytes and endothelial
surface, compared with low Na+ conditions, indicating changed conformation of the eGC and thus stronger binding to
surface receptors [modified after Schierke et al. (115)] (*p £ 0.05). (C) Principle of the CellHesion method. A human
monocyte is mounted on a soft cantilever (red circle) and brought into contact with endothelial cells. On the monocyte
touching the surface, it is retracted and the unbinding forces are quantified. (D) Representative force curve. On the
monocyte touching the endothelial surface (approach, green line) it is retracted (red line) and the unbinding forces are
quantified. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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breakdown of its barrier function. In addition, at high Na+

conditions, the physical interaction forces between eGC and
red blood cells (RBCs) are augmented, which predisposes
blood vessels to thrombotic events (89, 93).

Recently, high extracellular Na+ concentrations were
considered to be a risk factor for inflammatory pathologies
and for the development of autoimmune diseases (9, 46, 53,
75). Wild et al. showed that the number of adherent human
monocytes on endothelial cells is augmented under high Na+

conditions (141). In particular, eGC seems to play a crucial
role during Na+-dependent inflammation. It could be dem-
onstrated that high extracellular Na+ concentrations activate
endothelial cells thus creating proinflammatory conditions.
This leads to (i) stiffening of the endothelial cortex and re-
duced NO release (92), (ii) endothelial-derived production of
proinflammatory cytokines (115), and (iii) damage of the
eGC (91). In such a scenario, the adhesion of leukocytes is
increased, which is most likely due to dramatic changes of the
nanomechanical properties of eGC and thus facilitated ac-
cessibility to adhesion molecules in the plasma membranes of
inflamed endothelial cells. As shown in Figure 7A, incuba-
tion of endothelial cells in media with high extracellular Na+

concentrations increases the number of adherent monocytes
on endothelial cells, which can be seen as the first step toward
vascular inflammation. In addition, the adhesion forces be-
tween cells can be measured by using specific AFM tech-
niques (25, 93, 106, 120). This nanotechnical approach
allows the quantification of adhesion forces between mono-
cyte and the endothelial surface and thus the measurement of
Na+-dependent cell/cell interaction forces. As shown in
Figure 7B, a significantly larger force (+37%) is necessary to
detach a human monocyte from the endothelial cell surface
under high Na+ conditions compared with low Na+ conditions
(115) (Fig. 7C, D).

By comparing the effects of TNFa and heparanase, both
known to induce a shedding of eGC, it is concluded that high
Na+ leads to conformational changes and collapse of the eGC
(Table 1 and Fig. 3). Since the effect of Na+ on eGC con-
tradicts that induced by TNFa and heparanase, the question is
raised whether it is driven by different molecular mecha-
nisms. High Na+ conditions per se, besides contributing to the
development of endothelial dysfunction, activate vascular
endothelial cells and thus create proinflammatory conditions.
In this context, it can be stated that endothelial nano-
mechanics significantly contributes to proper endothelial
function. Hence, Na+- induced changes in the nanomecha-
nical properties of eGC and cortex contribute to the devel-
opment of inflammatory processes, making them both a
predictor and therapeutic target for vascular pathologies.

Conclusions

Endothelial cells are exposed to a number of different
forces generated by the streaming blood, membrane tension,
and traction forces acting on the vascular wall. The outer
layer of the cells (cortex and eGC) senses the mechanical
forces and adapts its mechanical properties in response to
changes in its environment. This controls a biochemical and
biophysical signaling cascade, including the release of va-
soactive substances (e.g., NO and ROS). Thus, the interplay
between structure and function of cortex and eGC suggests
that the mechanical properties can be seen as a direct marker

and readout for the integrity of the vasculature. Recently, in a
clinical study, a correlation between the cortical stiffness of
endothelial cells ex vivo derived from patient’s arteries and
the overall arterial stiffness in vivo has been shown (69). This
strongly suggests that endothelium-dependent dysregulation
of the vascular tone could be of relevance for the develop-
ment of vascular-related diseases.
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CSK¼ cortical cytoskeleton
CyD¼ cytochalasin D
eGC¼ endothelial glycocalyx

EnNaC¼ endothelial ENaC
eNOS¼ endothelial nitric oxide synthase

FCS¼ fetal calf serum
GAGs¼ glycosaminoglycans

HA¼ hyaluronic acid
HS¼ heparan sulfate

MRTF-A¼myocardin-related transcription factor A
NO¼ nitric oxide

RICM¼ reflectance interference contrast microscopy
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SOD¼ superoxide dismutase
SRF¼ serum response factor

TNFa¼ tumor necrosis factor a
TRP¼ transient receptor potential
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