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Abstract

Background and Aims: Crohn’s disease [CD] arises through host-environment interaction. 
Abnormal gene expression results from disturbed pathway activation or response to bacteria. We 
aimed to determine activated pathways and driving cell types in paediatric CD.
Methods: We employed contemporary targeted autoimmune RNA sequencing, in parallel to 
single-cell sequencing, to ileal tissue derived from paediatric CD and controls. Weighted gene 
co-expression network analysis [WGCNA] was performed and differentially expressed genes 
[DEGs] were determined. We integrated clinical data to determine co-expression modules 
associated with outcomes.
Results: In all, 27 treatment-naive CD [TN-CD], 26 established CD patients and 17 controls were 
included. WGCNA revealed a 31-gene signature characterising TN-CD patients, but not established 
CD, nor controls. The CSF3R gene is a hub within this module and is key in neutrophil expansion 
and differentiation. Antimicrobial genes, including S100A12 and the calprotectin subunit S100A9, 
were significantly upregulated in TN CD compared with controls [p = 2.61 x 10-15 and p = 9.13 x 
10-14, respectively] and established CD [both p  =  0.0055]. Gene-enrichment analysis confirmed 
upregulation of the IL17-, NOD- and Oncostatin-M-signalling pathways in TN-CD patients, identified 
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in both WGCNA and DEG analyses. An upregulated gene signature was enriched for transcripts 
promoting Th17-cell differentiation and correlated with prolonged time to relapse [correlation-
coefficient-0.36, p = 0.07]. Single-cell sequencing of TN-CD patients identified specialised epithelial 
cells driving differential expression of S100A9. Cell groups, determined by single-cell gene 
expression, demonstrated enrichment of IL17-signalling in monocytes and epithelial cells.
Conclusions: Ileal tissue from treatment-naïve paediatric patients is significantly upregulated for 
genes driving IL17-, NOD- and Oncostatin-M-signalling. This signal is driven by a distinct subset of 
epithelial cells expressing antimicrobial gene transcripts.

Key Words: IBD; crohn’s disease; paediatric; transcriptomics

1.  Introduction

Paediatric-onset Crohn’s disease is a heterogeneous condition char-
acterised by chronic, relapsing and remitting inflammation, largely of 
the intestinal tract. Paediatric-onset Crohn’s disease has a greater gen-
etic contribution to pathogenesis compared with adult-onset disease, 
with multiple genes and pathways implicated in the inflammation ob-
served in the condition.1 These genes are largely centred on innate 
and adaptive immune pathways, cytokine signalling pathways, and 
bacterial recognition and response pathways.2 Recently, Mendelian 
causes of inflammatory bowel disease [IBD] have given additional in-
sights into causes and risk factors for polygenic disease, with variation 
in a number of genes including IL10 pathway, NOD2, and NADPH 
oxidase complex genes being implicated in both forms of disease.3–5 
Non-Mendelian forms of Crohn’s disease may present with similar 
phenotypic appearance. However, it is becoming increasingly clear 
that individual patients are likely to have a specific molecular diag-
nosis related to their underlying genetic variation. This may present 
through either a limited number of genes [oligogenic inflammatory 
bowel disease: IBD] or through interaction of many genes [poly-
genic IBD], often resulting in perturbation of inflammatory pathways 
common to all genetic causes.2 The ability to determine this genetic 
signature within an individual patient will bring new opportunities for 
predicting disease outcome and personalisation of therapy.6

RNA sequencing allows identification of abnormal gene expres-
sion and specific gene signatures, which are associated with disease 
subtypes. This information provides insight into the biological pro-
cesses underlying pathways driving inflammation. Previous studies 
have identified differentially expressed genes, including OSM and 
TREM1, associated with disease onset and treatment response and 
have been able to predict disease course.7–9 Although there is clear 
utility in determining markers of disease in blood, insights from non-
gastrointestinal tissues are likely suboptimal to elucidate drivers of 
intestinal inflammation.10 In addition, bulk RNA sequencing, where 
all cell types resident within a single biopsy sample are assessed 
concurrently, may fail to sequence low-expressed genes, with reads 
being overwhelmed by housekeeping transcripts that provide little 
biological insight.11 In contrast, contemporary efforts at targeted 
and single-cell sequencing in cancer have revealed novel pathways 
and genes associated with disease, and provided clinical diagnostic 
value.12–14 Furthermore, integration of targeted RNA sequencing, 
single-cell sequencing, and clinical outcome data provides the op-
portunity for improved molecular profiling of patients, garnering 
understanding of the specific cells driving inflammatory pathways 
while simultaneously using RNA gene signatures to stratify patients. 
Recently, single-cell analysis in 22 adult Crohn’s disease patients de-
termined a specific transcriptomic module from cells derived from 
the lamina propria, which was reproducibly found in bulk RNA 

sequencing and was associated with failure to respond to anti-
tumour necrosis factor [TNF] therapy.15

In this study we apply cutting-edge autoimmune targeted RNA 
sequencing of ileal biopsy tissue from a cohort of paediatric Crohn’s 
disease patients. We use these data to characterise patients by 
underlying gene transcription signatures and identify differentially 
expressed genes impacting on signalling pathways in treatment-
naïve and established disease patients. We integrate single-cell RNA 
sequencing performed on a subset of patients to determine cell popu-
lations driving specific gene expression.

2.  Methods

Paediatric IBD patients were recruited through the Paediatric 
Gastroenterology service at the Southampton Children’s Hospital. All 
patients were diagnosed under the age of 18 years, according to the 
modified Porto criteria.16 Two patient populations were recruited; the 
first consisted of patients referred to paediatric gastroenteology with 
a suspected diagnosis of IBD, recruited before diagnostic endoscopy. 
Patients who were diagnosed with Crohn’s disease, following suc-
cessful ileoscopy, were labelled as the treatment-naïve [TN] Crohn’s 
disease group. Children who had a normal endoscopy, and were not 
diagnosed with IBD or any other gastrointestinal pathology, were in-
cluded in a control group. The control group was followed up for a 
minimum of 6 months to confirm there was no subsequent diagnosis 
of IBD. The second population consisted of patients with established 
[ED] Crohn’s disease undergoing routine endoscopy for re-assessment, 
termed the established disease group [Figure  1 and Supplementary 
methods, available as Supplementary data at ECCO-JCC online].

2.1.  Ethical approval
The study has category A  ERGO II ethics approval [30630] and 
an REC approval from Southampton and South West Hampshire 
Research Ethics Committee [09/H0504/125]. All patients and fam-
ilies provided informed consent at recruitment.

2.2.  RNA sequencing of terminal ileal biopsies
2.2.1.  Sample acquisition, processing, and storage
Terminal ileal biopsies were obtained during endoscopy and imme-
diately placed into a cryovial containing 1 ml of RNAlater [Sigma 
Aldrich], and frozen at -80°C within 30 min from collection. The 
diameter of each biopsy was an average 2.5 mm [range 1–4.5mm] 
with the mean volume of 27 mm3 [equivalent to 30 mg].

2.2.2.  RNA extraction
Biopsies were homogenised using Qiagen TissueLyser™ and RNA 
was extracted using Promega Maxwell RSC™ [simplyRNA tissue] 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa236#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa236#supplementary-data


776 J. Ashton et al.

Targeted sequencing of 2002 autoimmune transcripts
HTG EdgeSeq Autoimmune panel

Fully automated nuclease protection assay
Barcode adaptors and ampli�cation
Library cleanup and normalisation

Next-generation sequencing (NextSeq500)
Single read, Read1: 50bp, Index1: 6bp, Index 2: 6bp

Targeted RNA-Seq Data analysis (bulk tissue)
bcl2fastq on IRIDIS cluster (--barcode mismatches 0),
fastq parsing (alignment, read �ltering on EdgeSeq)

Analysis using HTG EdgeSeq Reveal
QC metrics (suf�cent read depth >1.5M reads, minimal
expression variability, sample quality/biological signal)

DGE (DESeq2), PCA (quantile normalisation)
Heatmaps and volcano plots (ward.D2)

Single cell sequencing (DropSeq)
Digested tissue processed on ice

Coencapsulation of cells and molecular barcode beads
Cell lysis, cDNA synthesis

cDNA library tagmentation and PCR ampli�cation
Library pooling and quanti�cation 

Next-generation sequencing (NextSeq500)
Paired end, Read1: 20bp, Read2: 50bp, Index1: 8bp

-Protection probes hybridise to
wingmen and target RNA
-S1 nuclease digests unbound
RNA and probes
-Target RNA eliminated
-PCR step adds adaptor and tags
-Quantitate pool and sequence

Total mRNA-Seq Data analysis (single cell)
STAR for alignment, �ltering, barcode and UMI

Python based Scany with R (3.6.0), Scran normalisation
Exclusion of cells with >20% mitochondrial genes counts

Cell neighbourhood visualisation
BBKNN-Integrated data from separate tissue samples

UMAP dimensionality reduction
Cell population annotation using SingleR

Clustering using Leiden algorithm

Gene enrichment analysis
Marker gene identi�cation
ToppGene and EnRICHR

Weighted gene co-expression network analysis (WGCNA)
CEMI tool

Gene enrichment analysis
(KEGG,BioPlanet, WIkiPathways)

Hierarchical clustering
(NOD-signalling)

Ileal biopsy, freezing into RNALater

–80°C

RNALater

<30 min

Tissuelyser, RNA extraction , QC and quanti�cation

Cells Oil  

Barcoded
beads

Droplet  

Hybridization
poly dT 

  GGGAAAAA

cell barcode UMI5’ handle

Fresh Ileal biopsy, cell disaggregation, DropSeq

LiberaseTM

Thawing
and

DropSeq

<10 min

Slow Freezing
10%DMSO, LN2

Established
crohn’s disease (ED)

Weighted gene co-expression network analysis
(WGCNA) and clinical outcome integraton

Cell types driving enriched pathways,
weighted gene co-expression modules,

differentially expressed genes

Suspected paediatric crohn’s
disease patients

Treatment-naive
crohn’s disease

Controls

RIN:10
[FU]

20

0

20 25 30 35 40 45 50 55 60 [s]

Wing WingProtectin probe

Target
WingmanWingman

Adaptor Tag 1

Tag 2 Adaptor 

Figure 1. Summary of patient recruitment, sample processing and data analysis pipelines. Patients were recruited in two groups, established Crohn’s disease 
[ED] and suspected Crohn’s disease patients, consisting of treatment-naïve patients [TN] and controls. All groups underwent endoscopy with ileal biopsy. All 
patients had ileal biopsies retrieved and stored in RNAlater at -80°C. These biopsies underwent bulk RNA extraction and subsequent targeted RNA sequencing. 
A subgroup of TN patients had fresh ileal biopsies processed for single cell sequencing. Data quality control and processing steps can be seen in the figure. 
Integration of targeted RNA sequencing and single-cell sequencing was conducted following individual pipeline analyses.
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and frozen at -80°C. RNA quality was assessed using the Agilent 
Bioanalyzer™ [RNA Nano]. RIN values and RNA concentrations 
are available as Supplementary data 1, available as Supplementary 
data at ECCO-JCC online.

2.2.3.  Targeted RNA sequencing
The contemporary HTG EdgeSeq Autoimmune Panel was used 
to measure mRNA expression levels in 2002 autoimmune genes, 
including genes involved in the pathogenesis of inflammatory bowel 
disease.17 Briefly, RNA samples were thawed and diluted, and 25 ng 
of RNA per sample was plated in 96 wells and loaded onto the HTG 
EdgeSeq instrument. HTG fully automated nuclease target protec-
tion chemistry includes hybridisation of mRNA to target-specific 
nuclease protection probes [NPPs] and addition of S1 nuclease to 
digest excess NPPs and non-hybridized RNA, followed by heat de-
naturation of S1. The processed samples contain 5’ and 3’-end wing 
sequences and were used as a template for polymerase chain reactions 
[PCR] with primers complementary to the ‘wings’ which also contain 
barcode sequences and common adaptors required for cluster gener-
ation and sequencing [P5, P7]. Libraries were cleaned up following a 
standard clean-up procedure [AMPureXP, PEG8000] and quantified 
with qPCR using KAPA Library quantification [Roche] kit. Libraries 
were normalised accordingly, were pooled in a 3-pM concentration, 
and were loaded on the Illumina NextSeq500 for single-read deep 
sequencing [Read1: 50 bp, Index1: 6 bp, Index2: 6 bp].

2.2.4.  RNA data processing
Sequencing output basecalls were converted into FASTQ and 
demultiplexed using module bcl2fastq2/2.18 on IRIDIS HPS 
[University of Southampton], adding the option barcode mismatches 
0. FASTQ files were parsed on HTG EdgeSeq parser [v 5.2.823] con-
structing a gene expression count matrix for each gene and each 
patient. They were merged to form a single output file containing 
all genes and all counts. Downstream analyses of RNA data were 
performed using HTG Reveal, a web-based, GDPR-compliant data 
analysis suite. Gene counts were normalised using quantile normal-
isation [QN] based on best practice guidelines previously applied 
with HTG EdgeSeq targeted immuno-oncology panel.18,19

2.2.5.  RNA sequencing data quality assessment and analysis
Quality control of RNA sequencing data was performed in line 
with recommendations from HTG, to satisfy cut-offs for sample 
quality, sufficient read depth, and minimal expression variability 
across probes. Differential expression was assessed using DESeq2 
package [Python, within Reveal software, 2020 version].20 Gene 
co-expression networks enable regulatory hubs and gene-gene as-
sociations to be determined. CEMiTool [2020 version] was used 
to assess weighted gene co-expression networks within normalised 
data, and to determine modules and hub regulatory genes observed 
in different categorical groups.21 Gene-gene interactions within 
co-expressed genes were determined using the HitPredict database.22 
WGCNA [R package in R studio version 1.2.1335] was used to es-
tablish gene co-expression modules and assess correlation between 
continuous clinical outcome variables.23

We assessed for enrichment of genes in specific WGCNA mod-
ules, and differentially expressed genes [DEGs] in specific pathways 
using ToppFun,24 EnRichR,25 and BioPlanet.26 Statistical analysis 
was performed using Reveal software and SPSS [v25, IBM]. The raw 
read count matrix and metadata spreadsheet are available in the 
NCBI Gene Expression Omnibus [GSE153974].

2.3.  Single-cell transcriptomic analysis
Fresh ileal tissue biopsies from two Crohn’s disease patients were 
digested within 10 min of biopsy procedure, and cells were disag-
gregated, slow-frozen [in 10% DMSO], and thawed just before use.

Co-encapsulation of single cells with genetically encoded beads 
was performed following the Drop-seq pipeline.14,27 Optimised 
microfluidics parameters were used, ensuring the generation of 
single-cell/single-barcoded Bead SeqB [Chemgenes, USA] encapsu-
lation events. Following encapsulation, ~4500 STAMPS [beads ex-
posed to a single cell] from 1.2 ml of cell suspension were generated; 
1000 STAMPS for each biopsy were taken further for library prep-
aration [High Sensitivity DNA Assay, Agilent Bioanalyser, 12 peaks 
with the average fragment size 500 bp]. Prepared libraries were run 
on an Illumina NextSeq [1 × 105 reads/cell].

Alignment, read filtering, barcode, and Unique Molecular 
Identifier [UMI] counting were performed using STAR.28 For 
gene filtering, genes detected in less than 10 cells were excluded. 
Subsequent data analyses were run using the python-based Scanpy29 
with R [3.6.0]. Background empty barcodes were identified and re-
moved using EmptyDrops.30 Cells of low quality with high fraction 
of counts from mitochondrial genes [20% or more], which indi-
cates stressed or dying cells, were removed. Data were normalised 
using Scran.31 A  single-cell neighbourhood graph, with data inte-
grated from separate tissue samples, was computed using BBKNN.32 
Data were visualised using Uniform Manifold Approximation and 
Projection [UMAP], with the Leiden algorithm used to identify cell 
clusters.33

Cell type annotation was performed using SingleR [database: 
BlueprintEncodeData].34 Marker genes for cell clusters were identi-
fied using a t test within Scanpy.29 Raw sequencing data are available 
in the NCBI Gene Expression Omnibus [GSE153866].

2.4.  Clinical data integration
Clinical outcome data were collected on all treatment-naïve pa-
tients. Time to first clinical relapse was used as the primary clin-
ical outcome measure. We defined relapse as requirement for 
repeated steroid course, or exclusive enteral nutrition, or step-up in 
immunomodulation or biologic therapy, after completion of initial 
induction. All patients had entered remission following induction 
therapy. Patients who had not relapsed at most recent follow-up 
were arbitrarily assigned their time from diagnosis to most recent 
follow-up for analysis.

Any histological evidence of ileitis was recorded for all patients. 
Clinical biopsies were taken concurrently and examined by a paedi-
atric histopathologist to determine the presence of inflammation 
within the ileum at the time of endoscopy.

3.  Results

In all, 91 patients with ileal biopsies were recruited to the study. 
Confirmation of diagnosis by Porto criteria resulted in 70 patients 
being included: 27 TN Crohn’s disease patients; 17 controls; and 
26 ED Crohn’s disease. Twenty-one patients who were diagnosed 
with IBD unclassified [IBDU] or ulcerative colitis following endos-
copy were excluded. A single ED sample failed targeted RNA quality 
control [parameter two, sample had low variation of counts across 
probes], leading to exclusion. Patient characteristics can be seen in 
Table 1. Ileal biopsies taken from the TN Crohn’s disease patients 
were from inflamed areas in 74% of cases; for established disease 
patients, only 27% had biopsies that were from inflamed areas.

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa236#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjaa236#supplementary-data
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3.1.  Targeted RNA sequencing of 2002 
autoimmune genes

3.1.1.  A 31-gene module characterises  
treatment-naïve Crohn’s disease patients
Gene modules associated with TN patients, controls, and ED pa-
tients were established. Three gene modules were identified con-
taining 104, 47, and 31 genes, respectively [Supplementary data 2, 
available as Supplementary data at ECCO-JCC online]. Module 1 
co-expression was significantly increased in controls (normalized ex-
pression score [NES] 1.95, p = 0.0004) and significantly decreased 
in TN [NES -1.7, p  =  0.0015] and ED [NES -2.35, p  =  0.0012] 
patients. Although module 2 contained 47 co-expressed genes, it 
was not significantly associated with any patient group. Module 2 
was significantly enriched for cell metabolic processes, including 
PPAR signalling [p  =  1.22 x 10-7] and protein digestion and ab-
sorption [p = 0.006055]. Module 3, containing 31 genes, was sig-
nificantly upregulated in TN patients [NES 3.07, p = 0.0006] and 
downregulated in controls [NES -2.73, p = 0.0004], Figure 2A and 
B and Supplementary Table 1, available as Supplementary data at 
ECCO-JCC online. Module 3 did not correlate with ED patients.

3.1.2.  The treatment-naïve gene co-expression module  
is associated with upregulation of oncostatin-M and  
NOD-signalling pathways
Following multiple testing correction, 33 pathways were significantly 
associated with module 3 genes [Supplementary data 3, available 
as Supplementary data at ECCO-JCC online]. The most implicated 
pathway was the oncostatin-M [OSM] signalling pathway [adj-
p = 4.47 x 10-22], upregulation of which was seen in treatment-naïve 
patients. OSM signalling results in activation of pro-inflammatory 
pathways including JAK/STAT3, MAPK, and PI3K. Interestingly, 
given the key role of NOD2 in Crohn’s disease pathogenesis, activa-
tion of the NOD-signalling pathway was also significantly enriched 
for in module 3 [adj-p = 0.0008].

3.1.3.  CSF3R appears to act as a regulatory hub within the 
treatment-naïve module
In order to assess regulatory hub genes within the module 3 net-
work, we performed an interaction network analysis. This revealed 
genes with three hub interactions within the module Figure 2C. Of 
these genes, CSF3R was also co-expressed within the network with 
AQP9 Figure  2C. CSF3R is the receptor for colony stimulating 
factor 3. The related pathway functions to control expansion, differ-
entiation, and role of neutrophils, with highly deleterious variants in 
CSF3R resulting in congenital neutropenia.

3.1.4.  S100A9 [calprotectin subunit] and S100A12 
antimicrobial genes are significantly upregulated in  
treatment-naïve patients
Differential gene expression was assessed between TN patients, con-
trols, and ED patients using DESeq2 [Supplementary data 4 and 5, 
available as Supplementary data at ECCO-JCC online]. Following 
multiple testing correction, 342 genes were significantly differen-
tially expressed between TN patients and controls, 259 of which 
were upregulated in TN patients (logFC >1.15, false discovery rate 
[FDR] <0.05, Figure 3A). The five most significant upregulated DEGs 
in TN patients were S100A12 [fold change 32.5, adj-p = 2.6 x 10-15], 
CXCL8 [IL8] [fold change 20.2, adj-p = 5.5 x 10-15], S100A9 [fold 
change 12.6, adj-p = 9.1 x 10-14], FCGR3A/B [fold change 7.3, adj-
p = 5.0 x 10-13], and IL1RN [fold change 8.1, adj-p = 3.9 x 10-12]. The Ta
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difference between TN and ED patients was less marked, whereby 
just 12 genes were significantly upregulated in TN patients compared 
with ED patients [Figure  2D, logFC >1.15, FDR <0.05]. The five 
most significantly upregulated genes were CSF3R [fold change 2.5, 
adj-p = 0.0055], IL1RN [fold change 3.0, adj-p = 0.0055], S100A9 
[fold change 3.6, adj-p = 0.0055], S100A12 [fold change 4.8, adj-
p = 0.0055], and AQP9 [fold change 3.6, adj-p = 0.03].

3.1.5.  Treatment-naïve Crohn’s disease is characterised by 
elevated IL17- and NOD-signalling
We used gene enrichment analysis to assess for pathways associated 
with TN patients using genes implicated by both WGCNA and dif-
ferential gene expression analysis. The IL17- and NOD-signalling 
pathways were recurrently implicated across multiple gene enrich-
ment databases [Supplementary Table 2, available as Supplementary 
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data at ECCO-JCC online]. These pathways have previously been 
implicated in Crohn’s disease pathogenesis, and more so are a bio-
logically plausible explanation for a chronic inflammatory process 
within the intestine.35,36

3.2.  Gene expression differences are not driven 
solely by inflamed tissue
To ensure differences between groups were not driven solely by 
active inflammation, we conducted analysis on inflamed vs non-
inflamed tissue. Whilst there were differentially expressed probes 
between inflamed and non-inflamed biopsies [total DEGs  =  185], 
the most differentially expressed genes were different from those ob-
served when comparing TN CD and controls [Supplementary Figure 
1, available as Supplementary data at ECCO-JCC online].

3.2.1.  Gene expression in NOD-signalling pathway clusters 
Crohn’s disease patients distinctly from controls
NOD2 is the most heavily implicated gene in Crohn’s disease patho-
genesis, with variation in multiple interacting genes, including XIAP, 
RIPK2, and ATG16L1, described as increasing risk of Crohn’s dis-
ease.2 Transcripts from genes within the NOD-signalling pathway 
were among the most significantly enriched in treatment-naïve pa-
tients. We hypothesised that aberrant NOD-signalling gene expres-
sion could be used to classify patients from controls. Using a list 
of 95 genes in the NOD-signalling pathway, curated by the HTG 
platform, we performed hierarchical clustering of all patients [quan-
tile normalised data, average distance clustering] Figure  4. Three 
broad clusters were formed, with 8 patients remaining outliers. All 
but three of the controls grouped together in cluster 3, characterised 
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by low CXCL8 [IL8], CXCL2, and CASP5 expression. In contrast, 
clusters 1 and 2 had increased expression of pro-inflammatory 
CXCL1 and STAT1. NOD2 expression itself did not appear to differ 
between groups.

3.3.  Clinical data integration
3.3.1.  Th17-cell differentiation gene module associated with 
prolonged time to relapse
Using WGCNA, we assessed whether co-expressed gene modules 
were predictive for patient prognosis. The number of days from 
diagnosis to relapse were entered as a continuous variable. Six of the 
27 treatment-naïve Crohn’s disease patients had not relapsed at the 
time of analysis. We took the conservative approach of setting their 

time to relapse as the number of days from diagnosis to most re-
cent follow-up. A co-expression module [‘blue’, Supplementary data 
6], available as Supplementary data at ECCO-JCC online] charac-
terised by 55 significantly upregulated genes [p = <0.05], was posi-
tively correlated with time to relapse [correlation coefficient 0.36, 
p = 0.07] [Supplementary Figure 2, available as Supplementary data 
at ECCO-JCC online]. The 55 genes comprising this module were 
significantly enriched for Th17 cell differentiation [KEGG, adjusted 
p-value 9.21 x 10-11], indicating patients with longer duration of re-
mission had increased activation of Th17 cell differentiation path-
ways Supplementary data 7, available as Supplementary data at 
ECCO-JCC online.

In order to determine if any DEGs were associated with early 
relapse, we stratified the 27 treatment-naïve CD patients into 
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those that relapsed within 16 weeks [n = 14] and those that ei-
ther relapsed after 16 weeks or did not relapse [n = 13]. Sixteen 
weeks was chosen to split the cohort into two equal groups, to 
increase the power to identify DEGs. Expression of the PI3 gene, 
an antimicrobial peptide expressed in response to lipopolysac-
charide and IL17-signalling, was significantly upregulated in pa-
tients with early relapse [fold change = 2.13, adjusted p = .0358, 
Supplementary Table 3, available as Supplementary data at 
ECCO-JCC online].37

3.4.  Single-cell sequencing of treatment-naïve 
Crohn’s disease patients
3.4.1.  Specialised gastrointestinal epithelial cells drive 
differential expression of S100A9, a key molecule in 
IL17-signalling pathway
Single-cell RNA sequencing of ileal biopsies from two treatment-naïve 
Crohn’s disease patients [patient IDs SOPR0472 and SOPR0476] were 
undertaken in order to identify distinct cell populations driving the en-
richment of specific biological pathways. After filtering, a total of 1458 
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cells [SOPR0472 = 710 cells, SOPR0476 = 748 cells] and 4731 genes 
were used for analyses. ScanPy UMAP dimensionality reduction of 
the 1458 cells integrated from both patient biopsies [SOPR0472=710, 
SOPR0476=748 cells] was performed [Figure 5A], followed by annota-
tion of cell populations as CD8+ effector memory T cells [CD8+ Tem], 
memory B cells, monocytes, epithelial cells, and plasma cells, contrib-
uted by cells from each sample [Figures  5A, 4B]. We identified nine 
distinct clusters within the SingleR annotated populations [Figure 5C], 
with each cluster defined by the expression of unique marker genes 
[Figure 5D], Supplementary data 8, available as Supplementary data 
at ECCO-JCC online. Cells were assigned to clusters based on their 
overall transcription profiles and confirmed by further annotation by 
Enrichr CellType [Supplementary data 9, available as Supplementary 
data at ECCO-JCC online]. Interestingly, the two genes that most 
strongly defined cluster 7 as epithelial cells included both calprotectin 
subunits, S100A8 and S100A9, and the S100A9 gene was one of the 
top DEGs between TN patients and controls. S100A8 is the other 
calprotectin subunit but, as this transcript was not probed in the tar-
geted panel, we could not compare its expression between methodolo-
gies. Gene ontology analysis of the genes that define cluster 7 [n = 50] 
revealed associations with inflammatory immune response processes, 
including an epithelial defence response to bacteria [adj-p = 2.2 x 10-5].

3.4.2.  Specific cell populations drive gene expression seen in 
treatment-naïve patients
The nine discrete cell populations were interrogated for their relative 
expression of genes identified in the gene module 3 that characterised 
TN CD patients [Figure 2A]. The cell populations showing elevated 
expression of module 3 genes included cells identified as monocytes 
[cluster 5- CCL4, CXCL3, IL1RN, IL8, and PLAUR] and epithelial 
cells in cluster 7 [S100A9], cluster 4 [LCN2, MMP1, and PLAUR] 
and cluster 2 [IL8, LCN2, MMP1, PI3, and PLAUR] [Figure 5E].

3.4.3.  Enrichment of IL17-signalling was observed in 
monocytes and specialised epithelial cells
We hypothesised that specific cell populations were driving the path-
ways implicated by targeted bulk RNA sequencing. IL17-signalling 
genes were enriched within the specialised epithelial cells [cluster 7] 
and in monocytes [cluster  5]. Significant enrichment for the IL17 
pathway [adj-p = 0.016] in cluster 7 was largely attributed to ele-
vated expression of S100A7, S100A8, and S100A9. Cluster 5 mono-
cytes markers [n = 50] were enriched for genes involved in the IL17 
signalling pathway [adj-p = 0.0012]; due to elevated expression of 
CXCL8 [IL8], CXCL3, IL1B, NFKBIA, and HSP90B1, as well as 
the broad pathways of ‘response to cytokines’ [adj-p = 1.1 x 10-9] 
and the ‘inflammatory response’ [adj-p = 2.6 x 10-6].

4.  Discussion

We present data using a targeted autoimmune panel for the first time 
in IBD. These data demonstrate an ileal gene expression signature 
identified through both WGCNA and differential gene expression 
analysis, characterised by NOD- and IL17-signalling and specific to 
treatment-naïve Crohn’s disease patients. Parallel single-cell analysis 
identified specialised epithelial cells driving differential expression of 
several genes, including the calprotectin subunits [S100A8/S100A9]. 
Enrichment of IL17-signalling genes was observed in this epithelial 
cell cluster as well as in a distinct subset of monocytes. Finally, we 
identify a gene module characterised by the Th17 cell differentiation 
pathway that is observed in patients with increased time to relapse 
following diagnosis.

Our data confirm and corroborate findings from a number of pre-
vious studies, implicating OSM, CXCL8, and AQP9 as upregulated 
DEGs in IBD patients compared with controls.7,8 We also provide 
tissue-specific evidence for several upregulated genes that have pre-
viously been observed in blood, including TREM1.9 We confirm 
the findings of Haberman et al., who previously detailed paediatric 
Crohn’s disease ileal transcriptomic signatures. We identify a large 
number of overlapping genes from their ‘core ileal Crohn’s disease’ 
expression module, including upregulation of CXCL5, IL8, and 
S100A9.8 These genes, including IL8, OSM, and TREM1, are either 
pro-inflammatory cytokines or receptors triggering downstream in-
flammatory signalling, and have been linked to inflammatory pro-
cesses in autoimmune disease.7,9,38 In addition, we identify the hub 
gene, CSF3R, a regulator of neutrophil differentiation, which ap-
pears to be key in controlling expression of a number of genes in 
treatment-naïve Crohn’s disease. This gene has been previously as-
sociated with congenital neutropenia, but this is the first time it has 
been specifically implicated in IBD pathogenesis. This is despite the 
fact that a number of primary immunodeficiencies are recognised to 
present with IBD-like phenotypes.39

Stratification of patients based on differential gene expression 
provides the opportunity to predict treatment response and patient 
prognosis. Recently the RISK cohort from North America has been 
used to develop prediction algorithms, specifically using integration 
of ileal transcriptome profiles into a multifactorial risk score for 
stricturing disease, identifying an extracellular matrix gene signature 
associated with stricturing disease.40 Haberman et al. also created a 
model, including APOA1 gene expression, able to predict 6-month 
steroid-free remission.8 Here we identify a gene module, character-
ised by Th17 cell differentiation, associated with prolonged time to 
relapse. Once the results are replicated in external cohorts, transi-
tioning these models into clinical practice will be key for personal-
ising therapy in patients.

Th17 cells and IL17-signalling are of great interest in IBD patho-
genesis. Differentiated Th17 cells produce several effector IL17 cyto-
kines, promoting inflammation and mucosal pathogen clearance.36 
We implicate ileal activation of IL17-signalling within TN Crohn’s 
disease patients, compared with both controls and ED patients. 
Several previous studies have not identified increased serum IL17 in 
Crohn’s disease patients;, however, increased IL17 levels have been 
detected in affected tissues.41,42 We replicate these findings in paedi-
atric patients and, for the first time, identify a specialised epithelial 
cell cluster and a monocyte cell cluster appearing to drive the IL17-
signalling. We hypothesise that the epithelium appears to be a target 
tissue for IL17-signalling, resulting in heightened pro-inflammatory 
and antimicrobial response within this specific population of cells, 
characterised by secretion of calprotectin [S100A8/S100A9]. This 
pro-inflammatory effect of IL17-signalling on epithelial cells has 
been observed in colonic epithelial cell cultures, with upregulation 
of CXCL8 and CXCL1 promoting neutrophil chemotaxis.43 Our 
data identify distinct cell clusters driving these processes, and tar-
geted RNA sequencing replicates similar expression profiles within 
the ileum of treatment-naïve patients.

Previously, Martin et al. identified an expression module in ileal 
Crohn’s disease, characterising IgG plasma cells, mononuclear pha-
gocytes, activated T cells, and stromal cells.15 Through single-cell 
sequencing of ileal tissue derived from two TN patients, we were 
able to identify a novel group of epithelial cells driving differential 
expression of the calprotectin complex [S100A8/S100A9], which 
was echoed in the targeted sequencing of all patients. Typically, it 
has been thought that most calprotectin is derived from colonic 
neutrophils, with small bowel inflammation less reflected in faecal 
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sampling.44 Our data indicate that specialised ileal epithelial cells 
highly express S100A8/S100A9 in Crohn’s disease patients, driving 
the differential gene expression between patients and controls. It ap-
pears that these ileal epithelial cells show an increased expression of 
these proteins under inflammatory conditions. Interestingly, previous 
transcriptomic analysis of only intestinal epithelial cells of paedi-
atric Crohn’s disease patients did not identify any differentially ex-
pressed genes correlated to active inflammation.45 In their article, 
Howell et al. describe several genes, including DEFA5, DEFA6, LYZ, 
PLA2G2A, CD40, and CD44, that were differentially expressed be-
tween controls and TN Crohn’s disease patients, concluding that 
there was minimal molecular impact of disease on the epithelial 
cells.45 Through application of a single-cell resolution analyses, we 
identify a distinct sub-population of S100A8/S100A9-expressing 
epithelial cells. Including those markers, alongside staining for the 
calprotectin complex, within the epithelium may aid with histo-
logical diagnosis of small bowel Crohn’s disease and with assessment 
of mucosal inflammation in known patients.

Within TN patients we also identify the upregulation of NOD-
signalling genes, associated with bacterial recognition, response, and 
pro-inflammatory downstream signalling.35 Taken together, activa-
tion of these pathways infers increased inflammatory response to 
pathogenic bacteria, or an aberrant response to normal bacteria. 
Alternatively ineffectual bacteria clearance, related to a downstream 
‘hypoimmune’ response, has recently been postulated as a cause of 
IBD.46 Through WGCNA we identified a module of genes associ-
ated with increased time to relapse, characterised by upregulation of 
the Th17 cell differentiation pathway. Regulation of Th17 differen-
tiation is complex, several key cytokines, including IL1β, IL6, IL23, 
and TGFβ, suppressing FOXP3 expression and inducing RORC-
dependent Th17 differentiation.36 We hypothesise that in patients 
able to mount a robust Th17 response, bacteria are cleared more 
quickly, resulting in immediate reduction of chronic inflammation 
following induction therapy. Conversely at diagnosis, most Crohn’s 
disease patients exhibit marked upregulation of IL17- and NOD-
signalling as a response to ineffective bacterial clearance, resulting 
in chronic inflammation. Whether IL17-signalling is driving chronic 
inflammation in response to invasive bacteria, or as a primary 
‘hyperinflammatory’ response, is uncertain. However, it appears that 
downstream IL17-signalling within these cell populations results in 
production of antimicrobial peptides and pro-inflammatory cell in-
filtration as part of the disease process.

This study has several strengths. Treatment-naïve patients have 
no confounding effects from medications. Through a targeted 
sequencing approach we reduce the number of reads lost to ‘house-
keeping’ genes, enabling accurate identification of low expression 
probes which impact on biological processes, a method previously 
successfully applied in tumour samples.13 Additionally, this method-
ology provides the ability to work with low biomass samples, re-
duction of extraction bias, and a user-friendly analytical pipeline.17 
Applying single-cell transcriptomics allowed identification of cell 
types driving differential gene expression and provided insight into 
the biology of specific cells in disease. 

We acknowledge the potential limitations of classifying cell types, 
including the specialised epithelium and monocytes, based on tran-
scription profiles alone. However, we have followed best practice 
guidelines for the best-established software, SingleR, to type these 
cells, with confirmation from Enrichr CellType.25,34 Nonetheless, 
analyses of primary patient biopsies are associated with challenges; 
thus, our study has some limitations. Analysis was limited to Crohn’s 
disease patients and controls, but there remains disease heterogeneity 

between individuals, exacerbated by the relatively modest numbers 
in each subgroup. Specifically, the effect of patient age on gene ex-
pression could not be assessed due to low patient numbers; how-
ever, the majority of patients were aged between 10 and 16 years, 
when most maturation of the immune system has already occurred.47 
Additionally, at the time of analysis, follow-up duration was insuf-
ficient to assess WGCNA and DEGs with long-term disease behav-
iour and response to therapy. Despite these limitations, by applying 
novel targeted and single-cell sequencing methods to Crohn’s dis-
ease biopsy material we uncovered specific disease-associated 
pathways, identified the driver cell populations, and characterised 
a gene module associated with disease prognosis. Finally, we pro-
vide evidence that DropSeq sequencing in single cells and targeted 
assessment of expressed transcripts using HTG EdgeSeq revealed 
comparable expression profiles. We restricted our comparison to the 
expression levels of 736 genes common to both technologies. For the 
samples from two patients who underwent single-cell sequencing, 
we pooled their cell type-specific data to regenerate pseudo-bulk 
tissue data, and compared expression levels for the 736 transcripts 
with those observed in the bulk tissue-targeted RNASeq. Both pa-
tients independently showed highly significant [p = <0.0001] correl-
ation of gene expression, indicating reproducible results from both 
technologies [Supplementary Figure 3, available as Supplementary 
data at ECCO-JCC online]. This agrees with recent data from Ran 
et al., where targeted sequencing was validated against bulk RNA 
sequencing for >1200 samples.48

In conclusion, this study demonstrates the enhanced resolution 
of targeted RNA sequencing to identify pathways in paediatric 
Crohn’s disease, particularly the IL17- and NOD-signalling path-
ways. We identify a Th17 cell differentiation gene module associ-
ated with increased time to relapse in treatment-naïve patients, and 
use single-cell RNA sequencing to determine a distinct epithelial 
cell population driving differentially expressed genes. Personalising 
therapy based on underlying molecular diagnosis and stratification 
is an exciting prospect. Replication of these findings is required, and 
integration of long-term outcomes may yield improved predictive 
models. All data generated in this project are available via the GEO 
repository- GSE153974 and GSE153866.
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