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Abstract: The Linear-No-Threshold (LNT) model predicts a dose-dependent linear increase in cancer
risk. This has been supported by biological and epidemiological studies at high-dose exposures.
However, at low-doses (LDR ≤ 0.1 Gy), the effects are more elusive and demonstrate a deviation from
linearity. In this study, the effects of LDR on the development and progression of mammary cancer in
FVB/N-Tg(MMTVneu)202Mul/J mice were investigated. Animals were chronically exposed to total
doses of 10, 100, and 2000 mGy via tritiated drinking water, and were assessed at 3.5, 6, and 8 months
of age. Results indicated an increased proportion of NK cells in various organs of LDR exposed
mice. LDR significantly influenced NK and T cell function and activation, despite diminishing cell
proliferation. Notably, the expression of NKG2D receptor on NK cells was dramatically reduced
at 3.5 months but was upregulated at later time-points, while the expression of NKG2D ligand
followed the opposite trend, with an increase at 3.5 months and a decrease thereafter. No noticeable
impact was observed on mammary cancer development, as measured by tumor load. Our results
demonstrated that LDR significantly influenced the proportion, proliferation, activation, and function
of immune cells. Importantly, to the best of our knowledge, this is the first report demonstrating that
LDR modulates the cross-talk between the NKG2D receptor and its ligands.

Keywords: low dose radiation; natural killer cells; NKG2D; NKG2D ligand

1. Introduction

Humans are continuously exposed to ubiquitous low doses of ionizing radiation (IR)
through anthropogenic and natural sources, such as terrestrial, solar, and cosmic radia-
tion. High doses of IR are associated with impaired cellular and physiological functions,
significantly reducing organismal lifespan. The “linear-no-threshold” (LNT) model has
been used to assess health risks associated with radiation exposure [1]. According to the
LNT hypothesis, radiation exposure increases cancer risk in a linear fashion, no matter how
low the dose may be [2,3]. However, several lines of experimental evidence suggest that
low-dose radiation (LDR) elicits a non-linear response in biological systems and may result
in beneficial effects, such as activation of anti-tumor immunity and cellular antioxidant
responses to environmental insults [4–6]. The detrimental effects of high-dose radiation
(HDR) are well known [7–9]; however, at low doses, there is a lot of debate as to the actual
shape of the curve [10–15], warranting further studies.

Generally, radiation with a cumulative dose of up to 100 mGy is referred to as low-
dose radiation [16]. Several studies have demonstrated that exposure to low-dose radiation
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can protect from the damaging effects of subsequent high-dose radiation exposure. This
adaptive response has been termed radiation conditioning hormesis [17,18]. One important
constituent of the adaptive radiation response is the activation of DNA damage repair
pathways [19]. This defense mechanism to oxidative stress, induced by LDR, can provide
an endogenous protective response against an injury caused by a subsequent severe stress
(e.g., high radiation dose) [18]. The LDR-induced stress can also result in epigenetic
reprogramming, activation of various anti-oxidant genes and transcriptional factors, and
alterations of several signaling pathways, leading to a prolonged lifespan [20–22]. The
beneficial effects of low-dose radiation have also been observed in various animal and
avian models [4,21,23–26].

The most imperative risk measure of radiation exposure is cancer development [10,27].
LNT predicts increased cancer risk from doses, derived from epidemiological studies
and primarily from high dose radiation (HDR) exposures. However, cancer risk may
not always be positively correlated with radiation dose [12,14,28]; depending on the
radiation dose rate and level, defensive mechanisms of biological systems are differentially
activated by LDR and may suppress cancer induction [12]. Radiation-induced protective
pathways are more efficient in the low-dose range [6]. Presumably, these low doses of
ionizing radiation (i.e., mild stress) stimulate protective systems that may represent natural
anticancer mechanisms [29]. Intriguingly, cancer incidence rates in high natural background
radiation areas are lower than those in low background radiation areas [30]. Similarly,
workers exposed to various sources of radiation had a lower cancer incidence than expected
based on the LNT model [4,31–36].

The immune system has a vital role in the defense mechanism against cancer and
various environmental insults. Ionizing radiation has been shown to affect the immune
system [15,37–39], but the impact of LDR on the immune system remains quite ambiva-
lent [40–42]. Research has shown that LDR provokes immune-stimulatory responses in
primary human monocytes [38], demonstrating that radiation-induced macrophage activa-
tion is critical in tumor response [43]. Similarly, LDR exposure triggers selective removal of
precancerous and other aberrant cells through intracellular signaling, particularly stimulat-
ing anticancer immunity [5]. Low and moderate radiation doses induce transmigration and
chemotaxis of activated macrophages [44] and increased phagocytic rate [45]. Moreover,
mice exposed to low-dose gamma rays effectively suppress tumor growth by increasing
glutathione, thereby enhancing natural killer (NK) cell activity and antibody-dependent
cellular cytotoxicity [46]. In addition, repeated irradiations in mice augment the cytotoxicity
of NK cells and CD8+ T lymphocytes by boosting the IFNγ production of splenocytes [47].

The effects of LDR on the immune system from the perspective of tumorigenesis
have been elucidated in very few studies. Investigating the effects of low-dose radiation
has always been a significant challenge. The available epidemiological data with external
radiation exposures has insufficient statistical significance and often inadequate method-
ological approaches. Additionally, there are many confounding factors to be considered in
the analysis of endpoint phenotypes [12,13,41,48,49]. Importantly, both the total radiation
dose and the dose rate are important factors that affect a response in a biological system
and are important to distinguish and investigate. Finally, LDR-induced changes in the
cellular immune response and the consequent effects on mammary cancer have not been
investigated using a mammary tumor model. To address this gap in knowledge, this study
utilized an in vivo mouse model to assess the effects of chronic internal low-dose beta
radiation on the development and progression of mammary cancer. This study exploits a
transgenic mouse model (FVB/N-Tg(MMTVneu)202Mul/J). These mice are characterized
by the over-expression of neu gene, a rat homolog to the human her2 gene. As a result,
MMTV-Neu mice spontaneously develop mammary adenocarcinomas with a mean tumor
latency of 7.5 months. The first tumors appear as early as at 4 months of age. Disease
progression involves lung metastasis, with 75–80% of mice developing lung metastases by
the age of 7–8 months. The mean time of death for these animals is 11–12 months [50–52].
Importantly, in this mouse model, the overexpression of neu gene is specific to mammary
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tissue; thus, no other physiological systems, including the immune system, are affected by
this genetic modification, allowing the study of the effects on the native immune system.
The radiation facility at Canadian Nuclear Laboratories (CNL) is uniquely designed to
accommodate the exposure of experimental animals to both internal and external sources
of radiation. Moreover, this state-of-the-art facility enables precise irradiation of animals
from low to high doses over a defined period of time. During this study, Tritium (3H) was
used as a source of radiation due to substantial public concern for potential health effects
and the growing international attention [53]. This isotope of hydrogen is a by-product of
the nuclear industry and was found to have effects on the biological system during recent
investigations at CNL [54–56]. To the best of our knowledge, this is the first study that
investigates the effects of internal beta LDR on the immune system in an in vivo model of
spontaneous tumorigenesis.

2. Results
2.1. LDR Affects Immune Cell Frequency

The goal of this study was to investigate the impact of chronic low-dose tritium
exposures on the immune status of mice with respect to the development and progression
of mammary cancer after internal beta irradiation. To achieve this, MMTV-Neu mice
that spontaneously develop mammary adenocarcinomas were employed. These animals
received a total dose of 10, 100, or 2000 mGy in drinking water over 56 days. Mice were
sacrificed at three time-points to assess cellular response: 3.5, 6, and 8 months of age
(Figure 1).
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Figure 1. Schematic diagram of the study. Transgenic “MMTV-Neu” female mice underwent chronic low-dose tritium 
exposure (via drinking water), starting at 1.5 months of age, to a total dose of 0, 10, 100, and 2000 mGy over 56 days. Mice 
were sacrificed at three time-points: 3.5, 6, and 8 months of age. Blood, spleen, lungs and mammary glands were collected for 
further processing and analysis. Tumor number and volume were assessed in tumor-bearing mice at the time of sacrifice.

The number of various immune cell populations is indicative of the type and strength 
of the response. Therefore, to investigate the effect of LDR on immune cells, first, the pro-
portion of various immune cell populations was assessed in different tissues (spleen, 
lungs, and mammary glands). The frequency of NK cells in these tissues was increased 
for 8-month old mice that received 10 mGy beta internal radiation in comparison to un-
treated controls (Figure 2). A trend toward increased NK cell proportion was also ob-
served at earlier time points (3.5 and 6 months), with statistical significance noted only in 
the spleen at 3.5 months. Interestingly, high dose radiation exposure (2 Gy) did not sig-
nificantly affect the NK cell numbers in the spleen, lungs or mammary glands (Figure 2). 

Figure 1. Schematic diagram of the study. Transgenic “MMTV-Neu” female mice underwent chronic low-dose tritium
exposure (via drinking water), starting at 1.5 months of age, to a total dose of 0, 10, 100, and 2000 mGy over 56 days. Mice
were sacrificed at three time-points: 3.5, 6, and 8 months of age. Blood, spleen, lungs and mammary glands were collected
for further processing and analysis. Tumor number and volume were assessed in tumor-bearing mice at the time of sacrifice.

The number of various immune cell populations is indicative of the type and strength
of the response. Therefore, to investigate the effect of LDR on immune cells, first, the
proportion of various immune cell populations was assessed in different tissues (spleen,
lungs, and mammary glands). The frequency of NK cells in these tissues was increased for
8-month old mice that received 10 mGy beta internal radiation in comparison to untreated
controls (Figure 2). A trend toward increased NK cell proportion was also observed at
earlier time points (3.5 and 6 months), with statistical significance noted only in the spleen
at 3.5 months. Interestingly, high dose radiation exposure (2 Gy) did not significantly affect
the NK cell numbers in the spleen, lungs or mammary glands (Figure 2).
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Figure 2. LDR increases NK cell proportion. Single-cell suspensions were generated from different organs of mice sacri-
ficed at indicated time points after radiation exposure. Cells were stained with NK cell surface marker, and relative pro-
portion of NK cells was assessed in (A) spleen, (B) lungs, and (C) mammary glands of untreated control and LDR-exposed 
mice by flow cytometry. Y-axis represents the relative percentage of NK cells in the total population of mononuclear cells. 
Percent NK cells in untreated mice were set to 100%. Data represent mean + SD. * p < 0.05, ** p < 0.01. 

The frequency of T cells (TCRb+ NKp46−) was evaluated in spleens and lungs. In the 
spleen, LDR did not significantly affect the frequency of TCRb+CD4+ T cells at either dose 
or time-point. However, an increased proportion of TCRb+CD8+ T cells was observed upon 
10 mGy (p < 0.198) and 100 mGy (p < 0.0253) exposures at 8 months of age, with the 100 
mGy increase being statistically significant (Supplementary Figure S1A). Similar to NK 
cells, high dose radiation exposure did not affect the T cell proportion in the spleen (Sup-
plementary Figure S1A). In lungs, a relationship distinct from that of splenic lymphocytes 
was noted. TCRb+ NKp46− T cells increased at 6 months and decreased at 8 months (Sup-
plementary Figure S1B), whereas TCRb− CD19+ B cells demonstrated an opposite trend 
with decreased frequency at 6 months and increased frequency at 8 months (Supplemen-
tary Figure S1C). Trends in both populations were proportional to the radiation dose. An 
increase in T cells at 6 months and B cells at 8 months was also observed in 2000 mGy 
irradiated mice (Supplementary Figure S1B,C). 

Regulatory T cells (Tregs) play an important role in down-modulating immune re-
sponses and are defined, in part, by the expression of the IL-2 receptor-α chain CD25 and 
the transcriptional factor FoxP3. Changes were not observed in splenic Tregs upon low-
dose exposures. However, increases in Tregs were seen in the 2000 mGy groups at 3.5 and 

Figure 2. LDR increases NK cell proportion. Single-cell suspensions were generated from different organs of mice sacrificed
at indicated time points after radiation exposure. Cells were stained with NK cell surface marker, and relative proportion of
NK cells was assessed in (A) spleen, (B) lungs, and (C) mammary glands of untreated control and LDR-exposed mice by
flow cytometry. Y-axis represents the relative percentage of NK cells in the total population of mononuclear cells. Percent
NK cells in untreated mice were set to 100%. Data represent mean + SD. * p < 0.05, ** p < 0.01.

The frequency of T cells (TCRb+ NKp46−) was evaluated in spleens and lungs. In the
spleen, LDR did not significantly affect the frequency of TCRb+CD4+ T cells at either dose
or time-point. However, an increased proportion of TCRb+CD8+ T cells was observed upon
10 mGy (p < 0.198) and 100 mGy (p < 0.0253) exposures at 8 months of age, with the 100 mGy
increase being statistically significant (Supplementary Figure S1A). Similar to NK cells, high
dose radiation exposure did not affect the T cell proportion in the spleen (Supplementary
Figure S1A). In lungs, a relationship distinct from that of splenic lymphocytes was noted.
TCRb+ NKp46− T cells increased at 6 months and decreased at 8 months (Supplementary
Figure S1B), whereas TCRb− CD19+ B cells demonstrated an opposite trend with decreased
frequency at 6 months and increased frequency at 8 months (Supplementary Figure S1C).
Trends in both populations were proportional to the radiation dose. An increase in T
cells at 6 months and B cells at 8 months was also observed in 2000 mGy irradiated mice
(Supplementary Figure S1B,C).

Regulatory T cells (Tregs) play an important role in down-modulating immune re-
sponses and are defined, in part, by the expression of the IL-2 receptor-α chain CD25
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and the transcriptional factor FoxP3. Changes were not observed in splenic Tregs upon
low-dose exposures. However, increases in Tregs were seen in the 2000 mGy groups at
3.5 and 6 months but not 8 months of age (Supplementary Figure S2), suggesting that at
high-dose radiation exposures, immune suppressive mechanisms may be activated.

Altogether, these results showed that LDR exposure affected the frequency of the
immune cells at different time points. Importantly, the proportion of NK cells was mostly
affected by LDR and in all tissues. This suggests that even the low dose of 10 mGy could
induce immunomodulation by increasing NK cell proportion, and this effect could still be
observed at later time points (Table 1).

Table 1. Summary of LDR-induced NK cell proportion in different tissues.

Tissue Dose/Time-Point 3.5 mo 6 mo 8 mo
Spleens 10 mGy

100 mGy
2000 mGy

Lungs 10 mGy
100 mGy

2000 mGy
Mammary Glands 10 mGy

100 mGy
2000 mGy

Legend:
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2.2. LDR Influences Immune Cell Activation Status

The activation status of NK and T cells is suggestive of anti-tumor immunity; immune
cells are able to kill target cells via various mechanisms following activation [57]. The
activation status of splenic NK and T cells was assessed by flow cytometric analysis of
activation-associated surface markers. CD43 is a transmembrane glycoprotein, which is
expressed on activated hematopoietic cells. Its signaling can induce chemokine synthesis
and cytotoxic activity in NK cells [58]. Similarly, CD69 is a very early marker of lymphocyte
activation, which is expressed on T cells after TCR/CD3 engagement [59].

A dose-dependent increase was observed in the expression of CD43 in NK cells and
CD69 in CD4+ T cells at 3.5 months but not at the later time-points, with the 2000 mGy dose
reaching statistical significance (Figure 3A,B), as observed previously [39]. Interestingly, at
the later time-points of 6 and 8 months, CD69 expression on CD4+ T cells demonstrated
a dose-dependent decrease with the 100 mGy dose reaching statistical significance. This
suggests a distinct temporal pattern of T cell activation to that of NK cells. Although
statistically significant effects were only observed with HDR, these results indicated that
radiation exposure can lead to the activation of both NK and T cells, but these effects were
transient as they were only observed at an early age, soon after the mice were taken off the
tritiated water.
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these cells are known to be highly prevalent in the spleens of tumor-bearing mice. Addi-
tionally, Ly6C+ bearing neutrophils, eosinophils, and both subsets of monocytes/macro-
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Figure 3. Radiation induces immune cell activation. Splenic lymphocytes from mice sacrificed at indicated points after
radiation exposure were used to measure the expression of activation markers. (A) Expression of CD43 (activation-associated
glycoform) on NK cells and (B) expression of CD69 (early activation marker) on CD4+ T were measured by flow cytometry
after surface staining. Y-axis in (A) represents the relative MFI and (B) relative percent of CD4+ cells expressing an activation
marker. MFI and percent cells in untreated mice were set to 100%. Data represent mean + SD. * p < 0.05, ** p < 0.01.

2.3. LDR Induces Inflammatory Responses

It is known that radiation activates a strong pro-inflammatory immune response in
the tumor microenvironment, provoking tumor eradication by immune cells [60]. In our
study, the contribution of LDR to the activation of inflammation was assessed. Notably, an
increasing trend in the proportion of various subpopulations of immune cells involved in
inflammation was observed. This was assessed via flow cytometry by staining splenic cells
for surface markers that are known to be expressed specifically on the inflammatory com-
partment of immune cells [61]. The frequency of Gr-1+CD11b+ cells was measured, as these
cells are known to be highly prevalent in the spleens of tumor-bearing mice. Additionally,
Ly6C+ bearing neutrophils, eosinophils, and both subsets of monocytes/macrophages were
assessed in mouse spleens [61,62]. A significant increase in the proportion of inflammatory
cells was only observed following high-dose radiation exposure, and only at the early
time-point of 3.5 months (Figure 4). At 8 months of age, however, this effect was lost or
completely reversed (Supplementary Figure S3).

Altogether, these results suggested that consistent with the previous reports [60,63],
high doses of IR induced inflammatory conditions in vivo. However, the effect was not
sustained once irradiation was discontinued, as shown by the reduced proportion of
inflammatory cells at 8 months. Although statistically significant results were observed
only with HDR, a slight trend of positive association of radiation dose and inflammatory
cells was noted for the 100 mGy dose as well. Taken together, these results indicated that
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high dose radiation induced inflammatory conditions in vivo but the effects were acute
and subsided with time.
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2.4. LDR Affects the Function of Immune Cells

Following immune stimulation, the release of cytokines is indicative of immune cell
function. Exposure to LDR has been known to enhance cytokine secretion and cytotoxic
activity of NK cells [64]. To evaluate the IFNγ production of NK cells upon various
stimulations ex vivo, splenic lymphocytes were isolated from mice in each group and were
stimulated with either IL-2/IL-12, or anti-NKp46 for 4 h. In order to measure the IFNγ

production of T cells, splenic lymphocytes were stimulated with anti-CD3/28 for 16 h
followed by intracellular staining.

We observed that LDR exposure increased the proportion of NK cells producing IFNγ

upon stimulation with cytokines or activating receptors at 3.5 months. The enhanced
response was significant with LDR exposure for the 100 mGy and high-dose control
(2000 mGy) groups. However, this effect subsided in the 6 and 8 month time points
(Figure 5A,B). On the contrary, differences in the proportion of IFNγ producing T cells
were not observed in either treatment group or time-point.

In conjunction with IFNγ production, cytotoxic cells also mount effective killing
mechanisms to target cells via the release of cytolytic enzymes, including Granzyme B.
Thus, we investigated whether LDR can enhance Granzyme B production. Although there
was no difference in the proportion of granzyme B+ NK cells in either treatment group at
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3.5 and 6 months, we observed an increase in Granzyme B-producing NK cells in mice
receiving a dose of 10 mGy and 2000 mGy at 8 months (Figure 5C). A similar observation
was made for T cells, where 10 mGy LDR exposure increased Granzyme B+ CD4 and CD8
cells at 8 months (Supplementary Figure S4A,B). Collectively, these results indicated that
exposure to LDR can have a significant impact on immune cell functional plasticity by
inducing cytokine production of NK cells and cytotoxicity of NK and T cells.
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Figure 5. LDR enhances immune cell function. Splenic lymphocytes isolated from mice sacrificed at indicated time points
after radiation exposure were stimulated with either (A) IL-2 and IL-12 or (B) anti-NKp46 for 5 h followed by intracellular
staining and flow cytometry to measure IFNγ positive cells in the NK cell population. (C) Intracellular staining of splenic
lymphocytes was performed to measure expression of Granzyme B in NKp46+ DX5+ NK cells by flow cytometry. To
measure IFNγ, the experiment was performed in triplicate. Y-axis in (A) represents the relative percent of IFNγ+ NK cells
and (B) represents the relative MFI of Granzyme B staining on NK cells. Percent cells and MFI in untreated mice were set to
100%. Data represent mean + SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.5. LDR Suppresses Immune Cell Proliferation

Anti-tumor immunity is highly modulated by the proliferation of immune cells. To
determine the proliferative potential of NK and T cells, CellTrace Violet (CTV) dye dilution
was measured upon IL-2 or anti-CD3/28 stimulation, followed by 3 days of ex vivo
culture. In the assay, the higher intensity of CTV dye indicates a lower proliferation.
The results demonstrated a decrease in NK cell proliferation in the 100 mGy group at
3.5 months; in both the 100 and 2000 mGy groups at 6 months; and in 2000 mGy group
at 8 months (Figure 6A). Similarly, upon IL-2 stimulation, proliferation of CD4 and CD8
T cells decreased at 3.5 months in the 100 mGy group and at 6 months in the 100 and
2000 mGy groups, but increased at 8 months in the 100 mGy group (Figure 6B,C). A similar
pattern was observed when cells were stimulated with anti-CD3/28. There was a reduced
proliferation for both CD4 and CD8 T cells at 3.5 months and 6 months for CD4 T cells
following 100 mGy and 2000 mGy irradiation. Increased proliferation was observed for
CD8 T cells at 6 months in the 10 mGy group, and for both CD4 and CD8 T cells at 8 months
with 100 mGy dose (Figure 6D,E). Taken together, these results suggest that LDR exposure
is critical for immune cell proliferation and has suppressive effects on NK and T cell
proliferation at early time points and stimulating effects on T cells at later stages (Table 2).

Table 2. Summary of LDR-induced immune cell proliferation.

Cell Type Dose/Time-Point 3.5 mo 6 mo 8 mo

NK cells
(IL-2 stimulation)

10 mGy
100 mGy
2000 mGy

CD4 cells
(IL-2 stimulation)

10 mGy
100 mGy
2000 mGy

CD8 cells
(IL-2 stimulation)

10 mGy
100 mGy
2000 mGy

CD4 cells
(CD3/CD28 stimulation)

10 mGy
100 mGy
2000 mGy

CD8 cells
(CD3/CD28 stimulation)

10 mGy
100 mGy
2000 mGy

Legend:
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Figure 6. LDR suppresses immune cell proliferation. Single-cell suspensions were obtained from spleens of mice sacrificed
at indicated time points after radiation exposure. Cells were stained with cell trace violet (CTV) dye and stimulated with
(A–C) IL-2 (1000 U/mL) or (D,E) anti-CD3/28 for three days. The MFI of CTV dye in NK, CD4+ and CD8+ cells was
measured using flow cytometry. The experiment was performed in triplicate. Note, the higher intensity of the CTV dye
indicates lower proliferation as the dye gets diluted upon cell division. Y-axis indicates the relative MFI percentiles among
different treatment groups. MFI of untreated mice was set to 100%. Data represent mean + SD. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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2.6. LDR Regulates Cross-Talk between NKG2D Receptor and Its Ligand

The most noticeable observation revealed in this study was the reduced expression of
natural killer group 2, member D (NKG2D) receptor on splenic NK cells of mice exposed
to LDR (Figure 7A). NKG2D is one of the activation receptors expressed on NK cells that
binds to a diverse family of ligands and plays a critical role in NK cell-mediated immune
response to transformed cells [65–68]. A variety of NKG2D ligands (NKG2DL) on the cell
surface can become upregulated during stress conditions produced by diverse stimuli,
including radiation, although their expression is regulated at multiple levels [68–72]. To
characterize anti-tumor surveillance of NK cells, the expression of NKG2D on the splenic
NK cells of mice exposed to LDR was measured. Notably, NKG2D expression was found
to be reduced on NK cells at 3.5 months in a radiation-dose-dependent manner (Figure 7A).
Reduced expression of NKG2D on NK cells may suggest increased expression of NKG2DL
on target cells, using a feedback regulation in which sustained expression of NKG2DL on
target cells can lead to the internalization of NKG2D on NK cells [73]. Consistent with this,
we observed increased expression of Rae-1 (NKG2D ligand) on activated splenic leukocytes
(defined by the Ly6C expression) of mice that received the LDR exposure (Figure 7B).
Surprisingly, the effect of decreased NKG2D expression was not sustained and the opposite
trend was observed with increased NKG2D expression on splenic NK cells and a coincident
decrease of pan-Rae-1 on activated splenic leukocytes at 8 months (Figure 7A,B).

To investigate further the correlation between the NKG2D downregulation on NK cells
and NKG2D-L upregulation on other stressed cells, the expression of individual members
of the NKG2D-L family (Rae-1, Mult-1 and H60) was assessed at the transcriptional level
for the 3.5-month time point. Interestingly, HDR upregulated the expression of all stress
ligands, however, with LDR only the expression of Rae-1 and Mult-1, was upregulated
compared to control mice (Figure 7C), suggesting an LDR-specific response and, perhaps,
pointing toward a potential LDR biomarker/sensor. These findings support our hypothesis
that low-dose radiation activates NKG2D-related pathways and modulates the cross-talk
between NKG2D and its ligands.
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Figure 7. LDR modulates a cross-talk between NKG2D and its ligands. Isolated splenic cells from untreated and irradiated
mice were stained with NKG2D or one of its ligands, Pan-Rae-1, prior to flow cytometry analysis. (A) Expression of NKG2D
(MFI) on NK cells and (B) proportion of Ly6C+ cells expressing Pan-Rae1, a family of NKG2D ligands (NKG2D-L), on
splenic leukocytes were measured. Y-axis in (A) represents the relative MFI of NKG2D staining and (B) relative percent of
Ly6C+ cells expressing NKG2D-L. MFI and percent cells in untreated mice were set to 100%. (C) mRNA expression levels
of NKG2DL (Rae-1, Mult-1 and H60) in spleens of mice from 3.5-month time point. Data represent mean + SD. * p < 0.05,
** p < 0.01, *** p < 0.001.
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2.7. LDR Has No Impact on Tumorigenesis at Organismal Level

Finally, in order to explore the effects of LDR on the immune system and how those
further affect the process of tumorigenesis at the organismal level, the number and size
of tumors from individual mice (n = 550) were measured upon sacrifice. There was no
statistical difference among different treatment groups (Figure 8A). Similarly, no significant
differences in the tumor size or number were observed between the control mouse group
and that exposed to various doses of radiation (Figure 8B,C). These data suggest that
although immune changes were detected at the cellular and molecular levels, the LDR
effects were not propagated to the organismal level. This may be due to the transiency
of the effects on NK cell immunomodulation that were primarily observed at early time
points, soon after the irradiation was stopped. This could also be due to other systemic
compensatory mechanisms stemming from the nature of the transgenic murine strain.
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Figure 8. LDR has no impact on tumor development and burden. Transgenic “MMTV-Neu” female
mice were exposed to total doses of 0, 10, 100, and 2000 mGy of chronic low-dose tritium. Exposures
started at 1.5 months of age and were delivered via drinking water over 56 days. These transgenic
mice develop their first spontaneous tumors at the age of 4 months. (A) Percentage of tumor-free mice
was measured starting from the age of 130 days. (B) Number of tumors per mouse and (C) tumor
volume were measured in tumor-bearing mice at the time of sacrifice. Data represent mean + SD.
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Interestingly, the high-dose control group (2000 mGy) did not exhibit any acceleration
in tumorigenesis or increased tumor load, as would be expected based on the LNT model.
This points to the importance of the dose rate, as well as the total dose received, in the
observable tissue and systemic effects. In this study, low dose rates of exposure were used
for 2000 mGy total cohort—910 MBq/L. This finding supports the notion that the detriment
of high-dose radiation exposure can be diminished, and perhaps even circumvented via a
decreased dose rate, which can be achieved through chronic or fractionated regimens. The
latter is being employed in radiotherapy, e.g., total body irradiation for leukemic patients.

3. Discussion

It would be difficult to imagine life without radiation, especially in modern medical
care where every medium-sized hospital is equipped with crucial, radiation-emitting
equipment. Moreover, about 10% of the world’s electricity is estimated to be generated by
nuclear power plants [6]. Generally, the radiation protection framework employs the “linear
no-threshold” (LNT) model that was originally adopted at the end of the 1950s. According
to the LNT theory, any dose of ionizing radiation, no matter how low it is, increases cancer
risk, and the only safe radiation level is “ZERO”. This model is the basis for the existing
radiation protection regulations. However, several studies have called into question the
LNT model of radiation protection, since radiation-related carcinogenicity at low and
intermediate doses is highly stochastic. Neither the large-scale nuclear incidents nor the
atomic bombings of Japan provided statistically significant epidemiological evidence to
support the LNT model at the low-dose/dose rate range (≤100 mGy; 6 mGy/h) [6,12,74–77].
It is well accepted that high dose/quantity radiation is detrimental. However, experimental
and epidemiological studies have shown that low doses of ionizing radiation can have
substantial beneficial effects in biological systems [78,79]. Currently, the field of low-dose
effects is the most controversial and highly discussed topic in radiation biology.

Prolonged and acute exposure to LDR can have a significant impact on immune cell
proportion [37,41]. As an integral part of the innate immune system, NK cells play a crucial
role in immune surveillance. In our study, an increased NK cell frequency was observed
in various organs in mice that received LDR exposure. Others have shown that LDR can
enhance the activation and function of immune cells (particularly NK cells) with regard to
IFNγ and Granzyme B production [25,39]. In our study, these effects were transient, and
enhanced IFNγ production was not observed at later time points, i.e., several months after
radiation exposure. On the other hand, an augmented Granzyme B production was noted
in NK and T cells from irradiated mice at the latest time point (8 months).

In agreement with our results, it has been shown that radiation can increase NK cell
proportion, activation, and killing potential [37,46,47]. Radiation therapy was shown to
increase NK cell cytotoxicity [80]. Similarly, IL-2 primed purified NK cells showed aug-
mented cytotoxicity upon moderate irradiation [81]. The possibility for LDR-induced direct
stimulation of NK cells, via the P38-MAPK pathway, also strengthens our findings [64] that
LDR can potentially enhance NK cell’s functional potential.

Inflammation is part of the immune defense mechanisms and is an important con-
tributor to tumor suppression. We observed a significant increase in the proportion of
various immune cell subsets involved in the inflammation processes in mice that received
HDR. This was consistent with previous findings indicating the role of HDR in inflam-
mation [63]. A slight, non-significant increase, in 3 out of 4 measured subsets, was also
observed for the 100 mGy group. However, even with HDR, as the time following irradia-
tion increased, the effects subsided. Similar to HDR mechanisms, higher doses in the LDR
range may activate the interconnected network of cytokines, cellular signaling pathways,
adhesion molecules, and reactive oxygen species (ROS), which collectively promote a
pro-inflammatory microenvironment. LDR was shown to functionally regulate a variety of
inflammatory processes and pathways [60,82]. Irradiation has been observed to provoke
the activation of inflammasomes in several types of cells, including NK and T cells [83].
Moreover, the observation that tumor-associated macrophages in irradiated tissue have
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enhanced secretion of pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFNγ further
supports our results [84–86].

Our study demonstrated that LDR could suppress NK and T cell proliferation follow-
ing IL-2 stimulation at 3.5 and 6 month time points. Interestingly, while suppression of T
cell proliferation was observed during early time points (particularly at 3.5 months i.e.,
right after irradiation), the proliferation of CD8+ T cells increased at later stages following
stimulation. Several studies have observed disparity in cellular proliferation competence
after radiation exposure. LDR has been shown to enhance cell proliferation in a cell type-
dependent manner through the activation of cellular signaling pathways [87]; however,
it has also been observed that IR can induce DNA damage leading to cell cycle arrest,
senescence, or apoptosis [88–90]. Moreover, IR can cause cell division failure and loss or
abnormal distribution of chromosomal material during division, thus impacting cellular
integrity [91]. Such discrepancies in the literature could be due to the variation in radiation
dose rates, radiation types, and cell types. Interestingly, although in our study NK cells had
a reduced proliferative capacity, there was an increased frequency of NK cells in different
tissues of mice that received LDR exposure. This suggests two possible complementary
mechanisms at play, increased mobilization of NK cells to target tissues, and increased ma-
turity and longevity of NK cells, whcih decrease their rate of proliferation. LDR is known
to induce antioxidant mechanisms and longevity [20–22]; therefore, it is plausible that LDR
could increase the lifespan of immune cells by slowing down apoptosis. The LDR-induced
suppression of apoptosis in NK cells has already been demonstrated [37]. In fact, exposure
to low radiation doses may induce trivial stress factors to enhance protective antioxidant
pathways that may contribute to longevity [5,18]. It has recently been determined that
background radiation within the natural range of low-dose radiation increases the life
expectancy by approximately 2.5 years [92]. In support of this, others have shown that
LDR is involved in DNA double-stranded-break repair mechanisms [33,93], which can
ultimately delay cell death mechanisms.

This study resulted in a key significant finding that was not reported previously.
An LDR-induced cross-talk between NKG2D and its ligands was identified. NKG2D
is one of the critical activating receptors of NK cells that recognizes diverse ligands in
humans and mice. The ligation of NKG2D with the corresponding ligand is sufficient to
activate cytolysis and cytokine production by NK cells [68,72]. The expression of NKG2D
was found to be reduced on NK cells of LDR-treated mice, while ligand expression was
upregulated on splenic leukocytes. Several studies have shown that various types of
stimuli, including radiation exposure, can upregulate a variety of NKG2D ligands on the
surface of stressed cells [65,70,72,94], and the expression of these stress molecules can
consequently regulate the NKG2D expression levels on NK cells [95]. Moreover, sustained
NKG2D ligand expression, even on normal cells, may cause systemic immunosuppression
of NK activities and increase tumor susceptibility independent of tumor context [73,96]. The
decrease in NKG2D expression is the consequence of two possible mechanisms: (a) NK cells
are functionally active and engaged in clearing target cells expressing the corresponding
ligand; or (b) NK cells become exhausted due to prolonged encounters with stressed cell-
bound ligands. Our observations support the former mechanism (a) for the following
reasons. First of all, NK cell dysfunction and exhaustion are associated with profound
proliferation [97], but this was not the case in our study as reduced NK cell proliferation
was observed. Secondly, exhausted NK cells possess a reduced ability to produce IFNγ

upon stimulation; however, we observed increased IFNγ+ NK cells in the spleen of mice
that received LDR. Thirdly, the downregulation of activation markers is another sign of NK
cell exhaustion [98], which was not observed throughout our experiments. In our study, the
downregulation of NKG2D was correlated with increased levels of stress ligand expression
after LDR exposure. Thus, reduced NKG2D expression on NK cells is most likely due
to the consistent engagement with NKG2D-L-bearing stressed cells due to continuous
radiation exposure.
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As shown in Figures 2–7, the majority of observable effects demonstrated some dose-
dependent behavior; however, most of the dependencies were not linear. Both threshold
and one-dose trends were noted. Based on this, our study did not provide sufficient data
to comment on the validity of the LNT model. The authors would also like to highlight
that the analysis of data with a view to support or invalidate the LNT theory was outside
the scope of this study.

Lastly, it was observed that LDR exposure did not influence overall tumor burden
and volume, even though several studies have proposed a positive correlation between
LDR exposure and tumor suppression [4,99,100]. This divergence in results could be due
to the difference in radiation quality, quantity and dose rate, as well as the study model.
In our study, the following critical factors could contribute to divergence: (a) use of a
transgenic model characterized by over-expression of an oncogene that allows spontaneous
development of mammary tumors and progression to aggressive lung metastasis, i.e.,
cancer initiation stage is already activated; (b) prolonged continuous chronic irradiation;
(c) discontinuation of irradiation before tumor development and cancer progression stages.
Moreover, beta internal radiation exposure (i.e., drinking water in our study) would have
different biological impacts compared to external radiation exposure (i.e., gamma rays) [53].
A role of myeloid-derived suppressor cells (MDSCs) cannot be ruled out either. An increase
in MDSCs was observed with radiation and is known to suppress the immune system [62],
rendering tumor development. Finally, an observed decrease in T cell proliferation may
have impacted the tumor burden.

Although we did not observe any effects of LDR at the organismal level, LDR was
shown to have potent effects on the proportion, activation, and function of immune cells.
Ultimately, our study demonstrated that LDR exposure results in increased expression of
NKG2D stress ligands on target cells, which mobilizes and modulates NK cell function
in the context of NKG2D-NKG2D-L cross-talk. Our data open exciting new avenues for
exploring the potential of low-dose-mediated modulation of NK-driven immune surveil-
lance.

4. Methodology
4.1. Mice

A total of 550 female FVB/N-Tg(MMTVneu)202Mul/J mice (Stock # 002376, Jackson
Laboratories) entered the study at 6 weeks of age. Mice were housed in the Specific
Pathogen-Free Biological Research Facility at CNL. Six mice were housed per cage in
individually ventilated Thoren weaning cages with ad libitum access to food (Charles
River Rodent Chow 5075) and reverse osmosis (RO) water. Mice were exposed to chronic
low-dose Tritium in drinking water for total doses of 0 (UT), 10, 100, or 2000 mGy over
56 days. The 2000 mGy was used as a high dose control. Before and after tritium exposure,
mice received un-irradiated RO water. All animal husbandry and experimental procedures
were approved by the Canadian Nuclear Laboratories Animal Care Committee (BRF 15-01),
in accordance with the standards of the Canadian Council on Animal Care (CCAC).

The experimental endpoints were 3.5, 6, and 8 months of age. These endpoints were
chosen to examine tissues at multiple stages of mammary tumor development; before
tumor development (3.5 months); during tumor development (6 months); and high tumor
burden/metastasis development (8 months), as shown in Figure 1. Mice were euthanized
via exsanguination under Isoflurane gas anesthesia, followed by cervical dislocation. Blood,
mammary glands, lung, spleen, and tumor samples were collected from 115 mice for further
processing and analysis.

Tumors were measured weekly using calipers. Mice with cumulative tumor volumes
greater than 2.9 cm3 were euthanized at any point in the study, as per the clinical endpoints
determined by the CNL Animal Care Committee.
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4.2. Tritium Exposure

Biological grade tritium (HTO) was purchased from American Radiolabeled Chemi-
cals, Inc. (ART0194). High concentration HTO was diluted in reverse osmosis (RO) water
to create the mouse drinking water concentrations of 4.5, 45.5, and 910 MBq/L, providing
the respective total doses of 10, 100, and 2000 mGy over the 56 day ingestion period.
The tritium concentrations for mouse drinking water were calculated based on previous
research at CNL, which measured the tritium retention in mouse tissues during chronic
tritium exposure [56]. Tritium measurements were performed using a Liquid Scintillation
Counter (Tricarb 210TR, Perkin Elmer, Waltham, MA, USA) and Ultima Gold scintillation
fluid (Perkin Elmer, Waltham, MA, USA).

4.3. Cell Isolation

Spleens were harvested upon the sacrifice, and a single-cell suspension was generated
using the following process: dissociating tissues using a 3 mL syringe plunger and passing
through a 70-µm filter (Bio Basic Canada Inc., Markham, ON, Canada), centrifugation
at 1200× g rpm for 10 min at 4 ◦C; and finally, washing with RPMI containing 2% fetal
bovine serum (FBS) (Gibco™, Burlington, ON, Canada). The cell pellet was reconstituted
in 1 mL of red blood cell lysis buffer (Roche™, Sigma-Aldrich, Oakville, ON, Canada)
followed by an immediate vortex. Cells were washed with RPMI containing 2% FBS and
filtered using a nylon mesh before counting. To obtain leukocytes from lungs, tumors,
and mammary glands, these tissues were dissociated into small pieces using dissection
scissors and then mixed with extraction buffer (RP-10) containing 25 U/mL collagenase
VIII (Sigma, Mississauga, ON, Canada). Sample homogenization was done at 37 ◦C using
gentle MACS™ Dissociator (Milteney biotech, Gaithersburg, USA) followed by straining
with a 70-µm filter. Lymphocyte isolation was performed using a Percoll gradient centrifu-
gation (Percoll®, Millipore Sigma, Oakville, ON, Canada) according to the manufacturer’s
instructions. Cells were filtered through a nylon mesh before counting. All the assays were
performed on splenic lymphocytes; other tissues were used only for immune profiling.

4.4. In Vitro Proliferation and Functional Assay

For the proliferation of NK cells, the single-cell suspension of splenic cells was labeled
with cell trace violet (CTV) dye using CellTrace™ Violet Cell Proliferation Kit (Invitrogen™,
Burlington, ON, Canada) according to the manufacturer protocol. Cells were washed
twice with RP-10, followed by 3 days of culture in RP-10 media (RPMI-1640 medium
(HyClone™, Fisher Scientific, Saint-Laurent, QC, Canada) containing 10% FBS, 1× peni-
cillin/streptomycin (HyClone™), 2 mM L-glutamine (Wisent Bioproducts, Saint Bruno, QC,
Canada), 10 mmol HEPES (Lonza™, Walkersville, MD, USA), 50 µmol 2-mercaptoethanol
(Gibco™) in the presence of 1000 U/mL of recombinant human IL-2 (obtained from NCI
Preclinical Repository, Frederick, MD, USA). For T cell proliferation, splenic cells were
stimulated with anti-CD3/28 following CTV labeling before culturing. For intracellular
IFNγ measurements ex vivo, freshly derived spleen leukocytes were stimulated with ei-
ther a combination of IL-2 (100 U/mL) and IL-12 (10 ng/mL) (eBioscience™, Burlington,
ON, Canada), or with anti-NKp46 (BioLegend™, San Diego, CA, USA) for 1 h and then
incubated in RP-10 media containing 5 µg/mL brefeldin A (Invitrogen™, Burlington, ON,
Canada) for 4 h, followed by intracellular staining.

4.5. Antibodies and Flow Cytometry

Single-cell suspensions (1 × 106 cells) were incubated at 4 ◦C for 10 min with α-
CD16/32 (clone 2.4G2, from BioExpress, Kaysville, UT, USA) to reduce non-specific binding.
Cells were labeled with various combinations of fluorochrome-conjugated monoclonal
antibodies (mAbs) and incubated at 4 ◦C for 25 min. The following mAbs were used: anti-
TCRβ (H57-597), anti-CD8 (53–6.7), anti-CD49b (DX5), anti-IFNγ, anti-CD11b (M1/70),
anti-NKG2D (CX5) from eBioscience™; anti-CD19 (1D3), anti-CD4 (RM4-5), anti-F4/80
(T45-2342), anti-NK1.1 (PK136), anti-Ki-67 (B56), anti-CD69 (H1-2F3), anti-Ly6C (AL-21),
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anti-Gr1 from BD Biosciences™, anti- Rae- Pan specific from Milteney biotech, anti-CD43
(1B11) activation- Glycoform from BioLegend™ and Live/Dead Fixable Yellow Dead Cell
Stain from Invitrogen™. The intracellular staining of IFNγ and Granzyme B was performed
using Cytofix/Cytoperm protocols (BD Biosciences™). Intracellular staining of Foxp3 was
carried out using a Foxp3 staining kit (eBioscience™) according to the manufacturer’s
protocol. Cells were acquired using BD LSRFortessa or Thermofisher Attune NxT flow
cytometers, and data was analyzed using Kaluza 1.3 Analysis software (Beckman Coulter)
or FlowJo (V10).

4.6. RNA Extraction and Quantitative Real-Time PCR

Purification of total RNA from the spleens was performed using miRNeasy Mini Kit
(QiagenTM) according to the manufactured protocol. Total RNA (1 µg) was subjected to
reverse transcription using RT2 First Strand Kit (QiagenTM). Quantitative real-time PCR
(qPCR) was conducted using the appropriate primers and a Bio-Rad CFX96 system with
SYBR green to determine the mRNA expression levels of genes of interest. Expression
levels were normalized to β actin level.

4.7. Statistical Analysis

The statistical analysis was performed using One-way ANOVA with post-hoc Tukey
HSD test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001) using Prism Version 8
(GraphPad Software, San Diego, CA, USA).

5. Conclusions

Our data demonstrated that LDR results in multiple significant changes in molecular
and cellular immune parameters that are indicative of immune activation. However, these
changes did not translate to an organismal level and low-dose chronic tritium exposure did
not affect the overall tumor burden of MMTV-Neu-exposed mice. This study uncovered
evidence that LDR affects the cross-talk between NKG2D and its ligands, the first report
of its kind, which warrants further investigation. Our findings aim to contribute to a
better understanding of low-dose radiation effects on immune processes and hence, the
health risks associated with such exposures in an effort to better advise current radiation
protection policies and standards.

6. Limitations

Further studies are necessary in order to elucidate the molecular mechanisms causing
NKG2D downregulation and its role in modulating NK and T cell proportion, cytokine
production, and proliferation.
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