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A metabolic system consists of a number of reactions transforming molecules of one kind into another to provide the energy that
living cells need. Based on the biochemical reaction principles, dynamic metabolic systems can be modeled by a group of coupled
differential equations which consists of parameters, states (concentration of molecules involved), and reaction rates. Reaction rates
are typically either polynomials or rational functions in states and constant parameters. As a result, dynamic metabolic systems
are a group of differential equations nonlinear and coupled in both parameters and states. Therefore, it is challenging to estimate
parameters in complex dynamic metabolic systems. In this paper, we propose a method to analyze the complexity of dynamic
metabolic systems for parameter estimation. As a result, the estimation of parameters in dynamic metabolic systems is reduced
to the estimation of parameters in a group of decoupled rational functions plus polynomials (which we call improper rational
functions) or in polynomials. Furthermore, by taking its special structure of improper rational functions, we develop an efficient
algorithm to estimate parameters in improper rational functions. The proposed method is applied to the estimation of parameters
in a dynamic metabolic system. The simulation results show the superior performance of the proposed method.

1. Introduction

Living cells require energy andmaterial for maintaining their
essential biological processes through metabolism, which is
a highly organized process. Metabolic systems are defined by
the enzymes dynamically converting molecules of one type
into molecules of another type in a reversible or irreversible
manner. Modeling and parameter estimation in dynamic
metabolic systems provide new approaches towards the
analysis of experimental data and properties of the systems,
ultimately leading to a great understanding of the language of
living cells and organisms. Moreover, these approaches can
also provide systematic strategies for key issues in medicine,
pharmaceutical, and biotechnological industries [1]. The
formulation and identification ofmetabolic systems generally
includes the building of themathematical model of biological
process and the estimating of system parameters. Because the
components of a pathway interact not only with each other

in the same pathway but also with those in different path-
ways, most (if not all) of mathematical models of metabolic
systems are highly complex and nonlinear. The widely used
approaches for modeling inter- and intracellular dynamic
processes are based on mass action law [1–4]. By mass action
law, the reaction rates are generally polynomials in concen-
trations of metabolites with reaction constants or rational
functions which are a fraction and whose denominator and
numerators are polynomials in concentrations of metabolites
with reaction constants [1–4]. As a result, the mathematical
model is nonlinear not only in the states but also in the
parameters. Estimation of these parameters is crucial to
construct a whole metabolic system [5–7].

In general, all algorithms for nonlinear parameter esti-
mation can be used to estimate parameters in metabolic sys-
tems, for example, Gauss-Newton iteration method, and its
variants such as Box-Kanemasu interpolation method, Lev-
enberg damped least squares methods and Marquardt’s
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Figure 1: Schematic representation of the upper part of glycolysis [4].

method [8, 9]. However, these iteration methods are initial-
sensitive. Another main shortcoming is that these methods
may converge to the local minimum of the least squares cost
function and thus cannot find the real values of parame-
ters. Furthermore, because of their highly complexity and
nonlinearity, Gauss-Newton iterationmethod and its variants
cannot efficiently and accurately estimate the parameters in
metabolic systems [5–7, 10, 11].

In this paper, we propose a systematic method for esti-
mating parameters in dynamic metabolic systems. Typically
mathematical model of dynamic metabolic systems consists
of a group of nonlinear differential equations, some of which
contains several rational functions in which parameters are
nonlinear. In Section 2, we propose a method for model
complexity analysis via the stoichiometric matrix. As a result,
we obtain a group of equations, each of which contains only
one-rational function plus polynomial functions which we
called an improper rational function. Then, based on the
observation that in the improper rational functions both the
denominator and numerator are linear in parameters while
polynomials are also linear in parameters, we develop an iter-
ative linear least squares method for estimating parameters
in dynamic metabolic systems in Section 3. The basic idea
is to transfer optimizing a nonlinear least squares objective
function into iteratively solving a sequence of linear least
squares problems. In Section 4, we apply our developed
method to estimate parameters in a metabolism system.
Finally we give conclusions and some directions of future
work along with this study in Section 5.

2. Model Complexity Analysis for
Parameter Estimation

A dynamic metabolic system consists of 𝑘 substances
(molecules), and 𝑚 reactions can be described by a system
of differential equations as follows:

𝑑𝑥
𝑖

𝑑𝑡
=

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑟
𝑗
, for 𝑖 = 1, . . . , 𝑘, (1)

where 𝑥
𝑖
represents the concentrations of molecule 𝑖, 𝑟

𝑗

represents the reaction rate 𝑗, and 𝑐
𝑖𝑗
represents the stoi-

chiometric coefficient of molecule 𝑖 in reaction 𝑗. The mass
action law in biochemical kinetics [2–4, 12] states that the
reaction rate is proportional to the probability of a collision
of the reactants. This probability is in turn proportional to
the concentration of reactants. Therefore, reaction rate 𝑟

𝑗
is

a function of the concentrations of molecules involved in
reaction 𝑗 and proportion constants.

The stoichiometric coefficient 𝑐
𝑖𝑗
assigned to molecule 𝑖

and reaction 𝑗 can be put into a so-called stoichiometric
matrix C = [𝑐

𝑖𝑗
]
𝑘×𝑚

. Let 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
]
𝑇 and r =

[𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
]
𝑇, and let 𝛽 = [𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑝
]
𝑇 represent the

vector consisting of all independent proportion constants,
and then (1) can be rewritten in the following vector-matrix
format:

𝑑𝑋

𝑑𝑡
= Cr (𝑋,𝛽) . (2)

In principle, the stoichiometric coefficient 𝑐
𝑖𝑗
in matrix C

is a constant integer and can be decided according to how
molecule 𝑖 is involved in reaction 𝑗. According to mass action
law, the expression of reaction rates can be determined to be
polynomials or rational functions with reaction constants [2–
4, 12]. The challenge to build up the mathematic model of
dynamic metabolic system (2) is to estimate the parameter
vector 𝛽, especially when some reaction rates are in the form
of rational functions in which parameters are nonlinear.

If each differential equation in (2) contains one-rational
function without or with polynomial functions, the parame-
ters in model (2) can be estimated by algorithms in [13, 14]
or a new algorithm proposed in the next section of this
paper. Unfortunately, each differential equation contains a
linear combination of several rational functions,whichmakes
the parameter estimation in those coupled differential equa-
tions more difficult. The stoichiometric matrix contains very
important information about the structure of the metabolic
systems and is widely used to analyze the steady state and
flux balance of metabolic systems [2–4]. In this paper, via
the stoichiometric matrix, we propose a systematic method
to transfer a system of differential equations (2) into another
system of differential equations, in which each differential
equation contains at most one-rational function.

Running Example. To illustrate the proposed method, we use
the upper part of glycolysis system as a running example,
showing how the method is applied to this system step after
step. The schematic representation of this system is shown in
Figure 1. The model for this metabolic system is described by
the system of differential equations (2) as follows:

𝑑

𝑑𝑡
Gluc6P = 𝑟

1
− 𝑟
2
− 𝑟
3
,

𝑑

𝑑𝑡
Fruc6P = 𝑟

3
− 𝑟
4
,

𝑑

𝑑𝑡
Fruc1, 6P

2
= 𝑟
4
− 𝑟
5
,
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𝑑

𝑑𝑡
ATP = −𝑟

1
− 𝑟
2
− 𝑟
4
+ 𝑟
6
− 𝑟
7
− 𝑟
8
,

𝑑

𝑑𝑡
ADP = 𝑟

1
+ 𝑟
2
+ 𝑟
4
− 𝑟
6
+ 𝑟
7
+ 2𝑟
8
,

𝑑

𝑑𝑡
AMP = −𝑟

8
.

(3)

Based on the mass action law, the individual reaction rates
can be expressed as

𝑟
1
=

𝑉max,2ATP (𝑡)

𝐾ATP,1 + ATP (𝑡)
,

𝑟
2
= 𝑘
2
ATP (𝑡) ⋅ Gluc6P (𝑡) ,

𝑟
3
= (

𝑉
𝑓

max,3

𝐾Gluc6P,3
Gluc6P (𝑡)

−
𝑉
𝑟

max,3

𝐾Fruc6P,3
Fruc6P (𝑡))

× (1 + (
Gluc6P (𝑡)

𝐾Gluc6P,3
)

+
Fruc6P (𝑡)

𝐾Fruc6P,3
)

−1

,

𝑟
4
=

𝑉max,4(Fruc6P (𝑡))
2

𝐾Fruc6P,4 (1 + 𝜅(ATP (𝑡) /AMP (𝑡))
2
) + (Fruc6P (𝑡))

2
,

𝑟
5
= 𝑘
5
Fruc1, 6P

2 (𝑡) ,

𝑟
6
= 𝑘
6
ADP (𝑡) ,

𝑟
7
= 𝑘
7
ATP (𝑡) ,

𝑟
8
= 𝑘
8𝑓
ATP (𝑡) ⋅ AMP (𝑡) − 𝑘

8𝑟(ADP (𝑡))
2
.

(4)

Model (3) has six ordinary differential equations (ODEs) and
15 parameters contained in eight reaction rates, three out of
which are rational functions. Some ODEs contain more than
one rational reaction rates, which makes the parameter more
difficult.

Comparing (3) to (2) we have the state vector: X =
[Gluc6P; Fruc6P; Fruc1,6P

2
; ATP, ADP, AMP] and stoichio-

metric matrix:

C =

[
[
[
[
[
[
[

[

1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

−1 −1 0 −1 0 1 −1 −1

1 1 0 1 0 −1 1 2

0 0 0 0 0 0 0 −1

]
]
]
]
]
]
]

]

. (5)

In the following, we describe our proposedmethod to analyze
the complexity of model (2) through the running example.

Step 1. Collect the columns in the stoichiometric matrix
corresponding to the rational reaction rates in model (2) to
construct a submatrix C

𝑟
and collect other columns (cor-

responding to polynomial reaction rates) to construct a
submatrix C

𝑝
. Therefore, we have

𝑑𝑋

𝑑𝑡
= Cr (𝑋,𝛽) = C

𝑟
r
𝑟
(𝑋,𝛽) + C

𝑝
r
𝑝
(𝑋,𝛽) , (6)

where r
𝑟
is the subvector of r and consists of all rational

reaction rates while r
𝑝
is another subvector of r and consists

of all polynomial reaction rates. In this step, we should
make sure that the rank of matrix C

𝑟
equals the number of

rational reaction rates. If the rank of matrixC
𝑟
does not equal

the number of rational reaction rates, it means that some
rational reaction rates are not independent.Thenwe combine
dependent rational reaction rates together to create a new
reaction rate such that all resulted rational reaction rates
should be linearly independent [14]. As a result, the rank of
matrix C

𝑟
will equal the number of rational reaction rates.

For the running example, we have

C
𝑟
= [𝑐
1
, 𝑐
3
, 𝑐
4
] =

[
[
[
[
[
[
[

[

1 −1 0

0 1 −1

0 0 1

−1 0 −1

1 0 1

0 0 0

]
]
]
]
]
]
]

]

,

C
𝑝

= [𝑐
2
, 𝑐
5
, 𝑐
6
, 𝑐
7
, 𝑐
8
] =

[
[
[
[
[
[
[

[

−1 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

−1 0 1 −1 −1

1 0 −1 1 2

0 0 0 0 −1

]
]
]
]
]
]
]

]

,

(7)

and r
𝑟

= [𝑟
1
, 𝑟
3
, 𝑟
4
] and r

𝑝
= [𝑟
2
, 𝑟
5
, 𝑟
6
, 𝑟
7
, 𝑟
8
]. The rank of

matrix C
𝑟
equals 3, which is the number of rational reaction

rates.

Step 2. Calculate the left inverse matrix of C
𝑟
. That is, cal-

culate C−
𝑟
such that

C−
𝑟
C
𝑟
= 𝐼. (8)

As matrix C
𝑟
has the column full rank, matrix C−

𝑟
satisfying

(8) exists although it is typically not unique. For a given
matrix C

𝑟
, C−
𝑟
can be easily found by solving (8) which is

a linear algebraic system. If it is not unique, any matrix
satisfying (8) works for our proposed method.

For the running example, we can have

C−
𝑟

= [

[

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

]

]

. (9)

Step 3. Multiply (6) by matrix C−
𝑟
from the left to obtain

C−
𝑟

𝑑𝑋

𝑑𝑡
= C−
𝑟
C
𝑟
r
𝑟
(𝑋,𝛽) + C−

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽)

= r
𝑟
(𝑋,𝛽) + C−

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽)

(10)
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or

r
𝑟
(𝑋,𝛽) + C−

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽) = C−

𝑟

𝑑𝑋

𝑑𝑡
. (11)

From its expression, each differential equation in the system
(11) contains only one-rational reaction rates plus a linear
combination of polynomial reaction rates.

For the running example, we have

𝑟
1
− 𝑟
2
− 𝑟
5
=

𝑑

𝑑𝑡
(Gluc6P + Fruc6P + Fruc1, 6P

2
) ,

𝑟
3
− 𝑟
5
=

𝑑

𝑑𝑡
(Fruc6P + Fruc1, 6P

2
) ,

𝑟
4
− 𝑟
5
=

𝑑

𝑑𝑡
Fruc1, 6𝑃

2
.

(12)

Step 4. Calculate matrix C⊥
𝑟
such that

C⊥
𝑟
C
𝑟
= 0, (13)

where C⊥
𝑟
has the full row rank and rank(C⊥

𝑟
) + rank(C−

𝑟
) =

the number of rows in C
𝑟
. Note that C⊥

𝑟
can be easily found

by solving (13), which is a homogenous linear algebraic
system. Again if it is not unique, any matrix satisfying (13)
works for our proposed method.

Then multiply (6) by matrix C⊥
𝑟
from the left to obtain

C⊥
𝑟

𝑑𝑋

𝑑𝑡
= C⊥
𝑟
C
𝑟
r
𝑟
(𝑋,𝛽) + C⊥

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽) = C⊥

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽)

(14)
or

C⊥
𝑟
C
𝑝
r
𝑝
(𝑋,𝛽) = C⊥

𝑟

𝑑𝑋

𝑑𝑡
. (15)

For the running example, we can have

C⊥
𝑟

= [

[

1 1 2 1 0 0

0 0 0 1 1 0

0 0 0 0 0 1

]

]

,

C⊥
𝑟
C
𝑝

= [

[

−2 −2 1 −1 −1

0 0 0 0 1

0 0 0 0 −1

]

]

.

(16)

Step 5. Let𝐷 = C⊥
𝑟
C
𝑝
. If rank(𝐷) ≥ the number of columns,

then solving (15) yields

r
𝑝
(𝑋,𝛽) = (𝐷

𝑇
𝐷)
−1

𝐷
𝑇C⊥
𝑟

𝑑𝑋

𝑑𝑡
. (17)

If rank(𝐷) < the number of columns, it means that some
polynomial reaction rates in (15) are linearly dependent.Then
combine the linearly dependent rates and construct a new
reaction rate vector r

𝑝
(𝑋,𝛽) and full column rank matrix 𝐷

such that

𝐷r
𝑝
(𝑋,𝛽) = 𝐷r

𝑝
(𝑋,𝛽) = C⊥

𝑟
C
𝑝
r
𝑝
(𝑋,𝛽) = C⊥

𝑟

𝑑𝑋

𝑑𝑡
, (18)

and then solving (18) yields

r
𝑝
(𝑋,𝛽) = (𝐷

𝑇

𝐷)𝐷
𝑇C⊥
𝑟

𝑑𝑋

𝑑𝑡
. (19)

For the running example, we have rank(𝐷) < the number
of columns. As the first four columns are linearly dependent,
we can have a new reaction rates−2𝑟

2
−2𝑟
5
+𝑟
6
−𝑟
7
.Therefore,

we have

𝐷 = [

[

1 −1

0 1

0 −1

]

]

, 𝐷
𝑇C⊥
𝑟

= [
1 1 2 1 0 0

−1 −1 −2 0 1 −1
] ,

(20)

and furthermore, noting that (𝑑/𝑑𝑡)(ATP+ADP+AMP) = 0,
from (19) we have

𝑟
6
− 𝑟
7
− 2𝑟
2
− 2𝑟
5

=
𝑑

𝑑𝑡
(Gluc6P + Fruc6P

+ 2Fruc1, 6P
2
+ ATP − AMP) ,

𝑟
8
= −

𝑑

𝑑𝑡
AMP.

(21)

After these five steps, dynamic metabolic system (2) is
transferred into a system of differential equations, in which
each differential equation contains one-rational function
plus polynomial functions ((11) or (12)) or only polynomial
function ((19) or (21)). Parameters in (19) can be analytically
estimated by well-known least squares methods. In the next
section, we describe an algorithm to estimate parameters in
(11).

3. Parameter Estimation Algorithm

After its complexity analysis, estimating parameters in
dynamic metabolic system is reduced to mainly estimating
parameters in a rational function plus polynomial, which
we call the improper rational function. These functions are
nonlinear in both parameters and state variables. Therefore,
estimation of parameters in these models is a nonlinear
estimation problem. In general, all algorithms for nonlinear
parameter estimation can be used to estimate parameters
in the improper rational functions, for example, Gauss-
Newton iteration method and its variants such as Box-
Kanemasu interpolation method, Levenberg damped least
squares methods, Marquardt’s method [9–12, 15], and more
sophisticatedmethods [16].However, these iterationmethods
are initial sensitive. Another main shortcoming is that most
of these methods may converge to the local minimum of
the least squares cost function and thus cannot find the
real values of parameters. In the following, we describe an
iterative linear least squaresmethod to estimate parameters in
the improper rational functions. The basic idea is to transfer
optimizing a nonlinear least squares objective function into
iteratively solving a sequence of linear least squares problems.

Consider the general form of the following improper
rational functions:

𝜂 (X,𝛽) =
𝑁
0 (X) + ∑

𝑝𝑁

𝑖=1
𝑁
𝑖 (X) 𝛽𝑁𝑖

𝐷
0 (X) + ∑

𝑝𝐷

𝑗=1
𝐷
𝑗 (X) 𝛽𝐷𝑗

+

𝑝𝑃

∑

𝑘=1

𝑃
𝑘 (X) 𝛽𝑃𝑘

, (22)



Computational and Mathematical Methods in Medicine 5

where the vector X consists of the state variables and the
𝑝-dimensional vector 𝛽 consists of all parameters in the
improper rational function (22), which can naturally be
divided into three groups: those in the numerator of the ratio-
nal functions 𝛽

𝑁𝑖
(𝑖 = 1, . . . , 𝑝

𝑁
), those in the denominator

of the rational function 𝛽
𝐷𝑗

(𝑗 = 1, . . . , 𝑝
𝐷
), and those in the

polynomial 𝛽
𝑃𝑘

(𝑘 = 1, . . . , 𝑝
𝑃
), where we have that 𝑝

𝐷
+𝑝
𝑁
+

𝑝
𝑃

= 𝑝. 𝑁
𝑖
(X) (𝑖 = 0, 1, . . . , 𝑝

𝑁
), 𝐷
𝑗
(X) (𝑗 = 0, 1, . . . , 𝑝

𝐷
),

and 𝑃
𝑘
(X) (𝑘 = 1, . . . , 𝑝

𝑃
) are the known functions nonlinear

in the state variable X and do not contain any unknown
parameters. Either 𝑁

0
(X) or 𝐷

0
(X) must be nonzero, and

otherwise from sensitivity analysis [9, 16] the parameters in
model (22) cannot be uniquely identified.

If there is no polynomial part, model (22) is reduced
to a rational function. Recently, several methods have been
proposed for estimating parameters in rational functions
[5, 6, 13, 14]. The authors in [5, 6] have employed general
nonlinear parameter estimation methods to estimate param-
eters in rational functions. As shown in their results, the
estimation error is fairly large. We have observed that in
rational functions both the denominator and numerator are
linear in the parameters. Based on this observation, we have
developed iterative linear least squares methods in [13, 14] for
estimating parameters in rational functions. Mathematically,
improper rational function (22) can be rewritten as the
following rational function:

𝜂 (X,𝛽) = (𝑁
0 (X) +

𝑝𝑁

∑

𝑖=1

𝑁
𝑖 (X) 𝛽𝑁𝑖

+ (

𝑝𝑃

∑

𝑘=1

𝑃
𝑘 (X) 𝛽𝑃𝑘

)

×(𝐷
0 (X) +

𝑝𝐷

∑

𝑗=1

𝐷
𝑗 (X) 𝛽𝐷𝑗

))

× (𝐷
0
(X) +

𝑝𝐷

∑

𝑗=1

𝐷
𝑗
(X)𝛽
𝐷𝑗

)

−1

.

(23)

However, in the numerator of the model above, there are
𝑝
𝐷
𝑝
𝑃

+ 𝑝
𝑁

+ 𝑝
𝑃
coefficients while there are 𝑝

𝐷
+ 𝑝
𝑁

+

𝑝
𝑃
unknown parameters. When 𝑝

𝑃
= 1, the number of

parameters is equal to the numbers of coefficients, and the
methods developed in [13, 14] can be applied. However, when
𝑝
𝑃

> 1, those methods are not applicable as the number
of parameters is less than the number of coefficients in the
numerator.

In order to describe an algorithm to estimate parameters
in the improper rational function (22) for 𝑛 given groups of
observation data 𝑦

𝑡
and X

𝑡
(𝑡 = 1, 2, . . . , 𝑛), we introduce the

following notation:

𝛽
𝑁

= [𝛽
𝑁1

, 𝛽
𝑁2

, . . . , 𝛽
𝑁𝑝𝑁

]
𝑇

∈ 𝑅
𝑝𝑁 ,

𝛽
𝐷

= [𝛽
𝐷1

, 𝛽
𝐷2

, . . . , 𝛽
𝐷𝑝𝐷

]
𝑇

∈ 𝑅
𝑝𝐷 ,

𝛽
𝑃

= [𝛽
𝑃1

, 𝛽
𝑃2

, . . . , 𝛽
𝑃𝑝𝐷

]
𝑇

∈ 𝑅
𝑝𝑃 ,

𝛽 = [ 𝛽𝑇
𝑃
𝛽𝑇
𝑁
𝛽𝑇
𝐷
]
𝑇

,

𝜑
𝑁

(X
𝑡
) = [𝑁

1
(X
𝑡
) ,𝑁
2
(X
𝑡
) , . . . , 𝑁

𝑝𝑁
(X
𝑡
)] ∈ 𝑅

𝑝𝑁 ,

𝜑
𝐷

(X
𝑡
) = [𝐷

1
(X
𝑡
) , 𝐷
2
(X
𝑡
) , . . . , 𝐷

𝑝𝐷
(X
𝑡
)] ∈ 𝑅

𝑝𝐷 ,

𝜑
𝑃
(X
𝑡
) = [𝑃

1
(X
𝑡
) , 𝑃
2
(X
𝑡
) , . . . , 𝑃

𝑝𝑃
(X
𝑡
)] ∈ 𝑅

𝑝𝑃 ,

Y = [𝑦(1), 𝑦(2), . . . , 𝑦(𝑛)]
𝑇

∈ 𝑅
𝑛
,

Φ
𝑁0

= [𝑁
0
(X
1
) ,𝑁
0
(X
2
) , . . . , 𝑁

0
(X
𝑛
)]
𝑇

∈ 𝑅
𝑛
,

Φ
𝐷0

= [𝐷
0
(X
1
), 𝐷
0
(X
2
), . . . , 𝐷

0
(X
𝑛
)]
𝑇

∈ 𝑅
𝑛
,

Φ
𝑁

=

[
[
[
[
[

[

𝜑
𝑁

(X
1
)

𝜑
𝑁

(X
2
)

...
𝜑
𝑁

(X
𝑛
)

]
]
]
]
]

]

∈ 𝑅
𝑛×𝑝𝑁 ,

Φ
𝐷

=

[
[
[
[
[

[

𝜑
𝐷

(X
1
)

𝜑
𝐷

(X
2
)

...
𝜑
𝐷

(X
𝑛
)

]
]
]
]
]

]

∈ 𝑅
𝑛×𝑝𝐷 ,

Φ
𝑃

=

[
[
[
[
[

[

𝜑
𝑃
(X
1
)

𝜑
𝑃
(X
2
)

...
𝜑
𝑃
(X
𝑛
)

]
]
]
]
]

]

∈ 𝑅
𝑛×𝑝𝑃 ,

Ψ (𝛽
𝐷
) = diag

[
[
[
[
[

[

𝐷
0
(X
1
) + 𝜑
𝐷

(X
1
)𝛽
𝐷

𝐷
0
(X
2
) + 𝜑
𝐷

(X
2
)𝛽
𝐷

...
𝐷
0
(X
𝑛
) + 𝜑
𝐷

(X
𝑛
)𝛽
𝐷

]
]
]
]
]

]

∈ 𝑅
𝑛×𝑛

.

(24)

To estimate parameters in the improper rational function
(22), as in [11], we form a sum of the weighted squared errors
(the cost function) with the notions above as follows:

𝐽 (𝛽) = 𝐽 (𝛽
𝑃
,𝛽
𝑁
,𝛽
𝐷
)

= ∑(𝐷
0
(X
𝑡
) + 𝜑
𝐷

(X
𝑡
)𝛽
𝐷
)
2

× (
𝑁
0
(X
𝑡
) + 𝜑
𝑁

(X
𝑡
)𝛽
𝑁

𝐷
0
(X
𝑡
) + 𝜑
𝐷

(X
𝑡
)𝛽
𝐷

+ Φ
𝑃
𝛽
𝑃
− 𝑦
𝑡
)

2

.

(25)

Minimizing 𝐽(𝛽) with respect to 𝛽 = [𝛽𝑇
𝑃
,𝛽𝑇
𝑁
,𝛽𝑇
𝐷
]
𝑇

can
give the nonlinear least squares estimation of parameters 𝛽

𝑃
,

𝛽
𝑁
, and𝛽

𝐷
.We rewrite the objective function (22) as follows:

𝐽 (𝛽) = ∑[(𝐷
0
(X
𝑡
) + 𝜑
𝐷

(X
𝑡
)𝛽
𝐷
)Φ
𝑃
𝛽
𝑃
+ 𝜑
𝑁

(X
𝑡
)𝛽
𝑁

−𝜑
𝐷

(X
𝑡
) 𝑦
𝑡
𝛽
𝐷

− 𝐷
0
(X
𝑡
) 𝑦
𝑡
+ 𝑁
0
(X
𝑡
)]
2
.

(26)
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Table 1: The true value (from [4]), estimated value, and relative estimation errors.

Parameter name True value Estimated value REE (%)
𝑉max,2 (mM⋅min−1) 50.2747 50.2447 0.0001
𝐾ATP,1 (mM) 0.10 0.10000 0.0399
𝑘
2
(mM−1⋅min−1) 2.26 2.2599 0.0049

𝑉
𝑓

max,3 (mM⋅min−1) 140.282 139.4917 0.5633
𝑉
𝑟

max,3 (mM⋅min−1) 140.282 141.3623 0.7701
𝐾Gluc6P,3 (mM) 0.80 0.7999 1.3884
𝐾Fruc6P,3 (mM) 0.15 0.1499 0.0930
𝑉max,4 (mM⋅min−1) 44.7287 44.6664 0.1372
𝐾Fruc6P,4 (mM2) 0.021 0.0206 1.8457
𝑘 0.15 0.1526 1.7447
𝑘
5
(min−1) 6.04662 6.0466 0.0007

𝑘
6
(min−1) 68.48 68.4837 0.0054

𝑘
7
(min−1) 3.21 3.20797 0.0078

𝑘
8𝑓

(min−1) 432.9 432.8408 0.0137
𝑘
8𝑟
(min−1) 133.33 133.314 0.0120

In the objective function (26), for a given parameters 𝛽
𝐷
in

the first term, we have

𝐽 (𝛽) = 𝐽 (𝛽
𝑃
,𝛽
𝑁
,𝛽
𝐷
,𝛽
𝐷
)

= [A (𝛽
𝐷
)𝛽 − b]

𝑇

[A (𝛽
𝐷
)𝛽 − b] ,

(27)

where

𝐴(𝛽
𝐷
) =

[
[
[

[

Ψ(𝛽
𝐷
)Φ
𝑇

𝑃

Φ
𝑇

𝑁

− diag (𝑌)Φ
𝑇

𝐷

]
]
]

]

∈ 𝑅
𝑛×𝑝

, (28)

b = (Φ
𝐷0

diag (𝑌) − Φ
𝑁0

) ∈ 𝑅
𝑛
. (29)

Then for given parameters 𝛽
𝐷
, we can estimate the param-

eters 𝛽 = [𝛽𝑇
𝑃
,𝛽𝑇
𝑁
,𝛽𝑇
𝐷
]
𝑇

by linear least squares method as
follows:

𝛽 = [A𝑇 (𝛽
𝐷
)A (𝛽

𝐷
)]
−1

A𝑇 (𝛽
𝐷
) b. (30)

Based on the above discussion, we propose the following
iterative linear least squares method.

Step 1. Choose the initial guess for 𝛽0
𝐷
.

Step 2. Iteratively construct matrix A(𝛽𝑠
𝐷
) and vector b by

(28) and (29), respectively, and then solve the linear least
squares problem:

𝐽 (𝛽
𝑠+1

) = [A (𝛽
𝑠

𝐷
)𝛽
𝑠+1

− b]
𝑇

[A (𝛽
𝑠

𝐷
)𝛽
𝑠+1

− b] , (31)

which gives the solution

𝛽
𝑠+1

= [A𝑇 (𝛽𝑠
𝐷
)A (𝛽

𝑠

𝐷
)]
−1

A𝑇 (𝛽𝑠
𝐷
) b (32)

until the stopping criterion is met, where 𝛽𝑠 = [𝛽𝑠𝑇
𝑃

,𝛽𝑠𝑇
𝑁

,

𝛽𝑠𝑇
𝐷

]
𝑇 is the estimation of parameters 𝛽 at step 𝑠.

From (31), if the estimation sequence 𝛽1,𝛽2, . . . is con-
verged to𝛽∗, the objective function (26) reaches itsminimum
value at 𝛽∗. That is, 𝛽∗is the estimation of parameters in
model (22).

There are several ways to set up a stopping criterion. In
this paper the stopping criteria are chosen as

󵄩󵄩󵄩󵄩󵄩
𝛽𝑘 − 𝛽𝑘−1

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝛽𝑘−1

󵄩󵄩󵄩󵄩󵄩
+ 1

≤ 𝜀, (33)

where ‖ ⋅‖ is the Euclidean norm of the vector and 𝜀 is a preset
small positive number, for example, 10−5.

4. Application

To investigate the method developed in previous sec-
tions, this study generates artificial data from the dynamic
metabolic system in the running example with the biochem-
ically plausible parameter values [4] listed in column 2 of
Table 1 and initial values: Gluc6P(0) = 1mM, Fruc6P(0) =
0mM, Fruc1,6P

2
(0) = 0mM, ATP(0) = 2.1mM, ADP(0) =

1.4mM, and AMP (0) = 0.1mM.The trajectory of this system
is depicted in Figure 2. From Figure 2, the concentrations of
all molecules except for Frucose-1,6-biphosphate reach their
its steady states after about 0.1 minutes while Frucose-1,6-
biphosphate after 0.5 minutes. Therefore, we do not use the
data simulated after 0.5 minutes.

Although no noise is added to the artificial data in the
simulation, noises are introduced in numerically calculating
the derivatives by finite difference formulas. In general, the
higher the sampling frequency and more data points are
used, the more accurate the numerical derivatives are. On the
other hand, we may not obtain data with the high frequency
because of experimental limitations in practice. In this study,
the sampling frequency is 100 data points per minute. In
numerically calculating the concentration change rate at each
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Figure 2: Trajectory of system (3).

time point from concentration 𝑥, we adopt the five-point
central finite difference formula as follows:

𝑥̇ (𝑡
𝑛
) =

1

12Δ𝑡
[𝑥 (𝑡
𝑛−2

) − 8𝑥 (𝑡
𝑛−1

) + 8𝑥 (𝑡
𝑛+1

) − 𝑥 (𝑡
𝑛+2

)] .

(34)

The estimation accuracy of the proposed method is
investigated in terms of relative estimation error which is
defined as

REE =
‖estimate value − true value‖

‖true value‖
. (35)

As all parameters to be estimated are nonnegative, initial
values are chosen as 0 or 1 in this study. The experimental
results are listed in columns 3 and 4 in Table 1. From column 3
in Table 1, the estimated parameter values are very close to the
corresponding true values. Actually the relative estimation
errors calculated from (29) for all estimated parameters
except for two are less than 1%. This indicates that the
proposed method can accurately estimate the parameters in
this system.

5. Conclusions and Future Work

In this study, we have first described a method to analyze the
complexity of metabolic systems for parameter estimation,
based on the stoichiometric matrix of the metabolic systems.
As a result, the estimation of parameters in the metabolic
systems has been reduced to the estimation of parameters
in the improper rational functions or polynomial functions.
Then we have developed an iterative linear least squares
method for estimating parameters in the improper rational
models. The results from its application to a metabolism
system have shown that the proposed method can accurately
estimate the parameters in metabolic systems.

We do not consider the noises in the data except those
introduced by numerical derivatives in this study. One direc-
tion of future work is to investigate the influence of noises in
the data to the estimation accuracy. In addition, low sampling
frequency is expected, particularly for molecular biological
systems as in practice measurements from them may be
very expensive or it is impossible to sample measurements
with high frequencies. Another direction of future work is
to improve the estimation accuracy of the proposed method
with low sampling frequencies.
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