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Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism
via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the
immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The
nervous system can be affected in infections caused by both Mycobacterium leprae and
SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by
these infectious agents are not fully understood. In recent years KP has received greater
attention due the importance of kynurenine metabolites in infectious diseases, immune
dysfunction and nervous system disorders. In this review, we discuss how modulation of
the KP may aid in controlling the damage to peripheral nerves and the effects of KP
activation on neural damage during leprosy or COVID-19 individually and we speculate its
role during co-infection.

Keywords: kynurenine pathway, peripheral neuropathy, leprosy, COVID-19, tryptophan
INTRODUCTION

During severe COVID-19, there is an increase in the inflammatory status caused by a cytokine
storm (Hu et al., 2021; Yang et al., 2021). In leprosy, acute inflammatory episodes, named reactional
episodes, are characterized by a sudden increase in pro-inflammatory mediators and an
intensification of neural damage (Serrano-Coll et al., 2018). The increase in pro-inflammatory
mediators in COVID-19 and in leprosy may increase the activity of the enzyme Indoleamine 2,3-
dioxygenase 1 (IDO1), which results in the production of kynurenine metabolites (Belladonna and
Orabona, 2020; Turski et al., 2020). The catabolism of tryptophan (TRYP) to the
immunosuppressive and neuroactive kynurenines is a key metabolic pathway, known to regulate
immune responses and neurotoxicity (Harden et al., 2016; Sundaram et al., 2020; Siska et al., 2021).

Leprosy is an infectious disease caused by the intracellular bacteria Mycobacterium leprae or by
M. lepromatosis. These bacteria exhibit an affinity for Schwann cells, leading to peripheral nerve
damage (Hess and Rambukkana, 2019; Rambukkana, 2000; Rambukkana, 2001). Although the new
coronavirus, SARS-CoV-2, and the disease it causes, COVID-19, is associated with respiratory
gy | www.frontiersin.org February 2022 | Volume 12 | Article 8157381
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system damage, it can also be associated with disorder of the
central (CNS) and peripheral nervous system (PNS) (Andalib
et al., 2021; McFarland et al., 2021).

Some PNS manifestations observed in patients with COVID-
19 are as follows: Guillain-Barré syndrome, cranial polyneuritis,
neuromuscular junction disorders, neuro-ophthalmological
disorders, neurosensory hearing loss, and dysautonomia
(Andalib et al., 2021). Neuropilin-1 and -2 (NRP1 and NRP2)
are entry factors for SARS-CoV-2, which could induce changes
in nociceptor (‘pain receptor’) excitability (McFarland et al.,
2021). Pain is also a symptom that may occur in leprosy
patients. Pain may be nociceptive, neuropathic or mixed
(Angst et al., 2020). There is evidence that the cytokine profile
in COVID-19 contributes to the promotion of pain and also
improves pain states (McFarland et al., 2021; Weng et al., 2021),
and that SARS-CoV-2 infection may worsen neural damage or
neural pain in leprosy patients.
HOST–CELL INTERACTION IN THE
CONTEXT OF LEPROSY NEUROPATHY

Leprosy neuropathy is considered the most common chronic
peripheral degenerative disease of infectious origin, as M. leprae is
one of the few bacterial pathogens with the ability to enter the
hemato-nerve, invade thePNS, and establish infection (Scollard et al.,
2015; Serrano-Coll et al., 2018). M. leprae accesses the PNS by
preferentially invading glial cells, such as Schwann cells (SCs)
(Scollard, 2008; Brown et al., 2012) and induces nerve damage by
direct and indirect mechanisms (Serrano-Coll et al., 2018) (Table 1).

Previous studies have shown that cell reprogramming occurs
during the interaction between M. leprae and SCs. Masaki et al.
(2013) found that M. leprae adult SCs undergo reprogramming
to be converted into cells that are similar to those of the neural
crest, known as progenitor/stem-like cells (pSLCs), contributing
to the systemic spread of the bacillus. Moreover, Petito et al.
(2013) showed that SCs transdifferentiate into the extracellular
matrix (ECM)-producing myofibroblasts under the stimulus of
transforming growth factor beta-1 (TGF-b1). M. leprae has been
reported to induce this event, since the bacillus has the ability to
increase the expression of TGF-b1 and its receptors in SCs
(Oliveira et al., 2005), which can lead to the progression of
neural damage by promoting the fibrosis process. Despite these
findings, the details of the signaling pathways involved in host
cell reprogramming by the pathogen have yet to be elucidated.

The literature has provided us with some evidence indicating
a strong relationship between host cell metabolism and the
inflammatory response against M. leprae, and how they can
influence each other (de Macedo et al., 2020; Oliveira J. A. P.
et al., 2021). In vitro studies demonstrated that M. leprae is able
to induce lipid body biogenesis in macrophages and SCs,
favoring bacilli survival inside these host cells, by a mechanism
that is dependent on the innate immune receptors, Toll-like
receptor 6 (TLR6) and TLR2 (Mattos et al., 2010; Mattos et al.,
2011). Furthermore, the abundant M. leprae surface molecule,
phenolic glycolipid 1 (PGL-1), can induce the expression of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
mannose receptor (MR/CD206) in infected SCs by a mechanism
that is dependent on proliferator-activated receptor gamma
(PPARg). Lipid droplets are associated with mycobacterial
survival and are pivotal in bacterial pathogenesis (Dıáz Acosta
et al., 2018). In addition, Medeiros et al. (2016) observed thatM.
leprae is able to subvert SC metabolism in vitro by modulating
glucose uptake, increasing the generation of reducing power and
controlling the production of free radicals, which led to increased
intracellular viability in the bacillus. Furthermore, M. leprae
amino acids are derived from host glucose pools, which
provide the carbon source (Borah et al., 2019).

M. leprae infection induces demyelination after contact with
myelinated fibers, leading to the breakdown of the myelin sheath,
the fatty tissue that protects the nerves (Rambukkana et al., 2002;
Tapinos et al., 2006). Mietto et al. (2020) demonstrated that M.
leprae infection in SCs of mice is capable of inducing myelin
sheath breakage viamyelinophagy, with the formation of myelin
ovoids. These data reinforce the importance of the lipid
metabolism for the persistence and maintenance of the bacillus
in the peripheral nerve, consequently favoring the destruction of
nerve fibers.

In the neuroinflammatory context, SCs have important
immune functions in response to infection and in the
production of mediators secreted by inflammatory cells present
in the lesion. Pattern recognition receptors (PRRs), such as
TLR2, are known to be expressed in the SCs of skin lesions of
leprosy patients. Furthermore, M. leprae and its ligands induce
SC death via apoptosis, by a mechanism dependent on TLR2 and
tumor necrosis factor (TNF) (Oliveira et al., 2003; Oliveira et al.,
2005). TNF and M. leprae, synergistically, can change the SC
phenotype in vitro, leading to the production of proteases such as
metalloproteinase 2 and 9 (MMP2 and MMP9). It was observed
that nerves from patients with leprosy neuropathy have a higher
expression of these proteases, in addition to TNF (Oliveira et al.,
2010). These proteases contribute to myelin degradation and
increase the extent of neural damage, contributing to the fibrosis
process. TNF involvement was also seen in reactive patients with
neuritis, who showed an increased expression of TNF, the TNF
receptor, and TNF-converting enzyme in nerve biopsies
(Andrade et al., 2016).

Innate immune response components, such as cytokines and
chemokines, are widely associated with peripheral nerve damage in
leprosy (Oliveira et al., 2003; Medeiros et al., 2015; Andrade et al.,
2016). Masaki et al. (2014) showed that M. leprae induces the
expression of a variety of genes related to innate immunity in SCs in
the early stage of infection, even before the gene modifications
associated with reprogramming in pSLC. According to Madigan
et al. (2017), infected macrophages produce nitric oxide synthase
(iNOS) leading todemyelinationand axondamagebyamechanism
mediated by mycobacterial surface molecule PGL-1.
CO-INFECTION LEPROSY AND COVID-19

COVID-19 brought additional challenges to the health system of
several countries and may have had effects on other prevalent
February 2022 | Volume 12 | Article 815738
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TABLE 1 | Cellular and molecular mechanisms of M. leprae interaction with peripheral nerve cells.

Reference Study
Type

Objectives Experimental
Model

Results Conclusion

1. (Díaz
Acosta et al.,
2018)

In vitro PGL-1 help in M. leprae entry
and survival in Schwan cell.

ST8814
Human
Schwann cells
line

PGL-1 induced the expression of MR/CD206 and PPARg in
infected cell that may help in M. leprae recognition, entry and
survival. CD206/PPARg crosstalk also induce lipid droplet
production and accumulation in Schwan cell.

PGL-1 of live M. leprae
induces more adherence
and internalization then
dead M. leprae.

2.(Nogueira
et al., 2018)

In vitro
and In
vivo

Effect of M. leprae on
neurotrophins expression and
their role in leprosy neuropathy.

Human
Schwann cells
and Mice
model

Downregulation of neurotrophins such as NT-4, NGF and
BDNF mRNA in M. leprae treated hSC while upregulation of
NT-3 in M. leprae treated mice. Imbalance of these factor
may have role in nerve impairment.

M. leprae may involve in
neurotrophins regulation
that may induce nerve
degeneration or repair.

3. (Hagge et
al., 2002)

In vitro Maintaining viability of M. leprae
in Schwan cells, Schwann cells
and Schwann cell–axon
interactions in co-cultures.
Effect of temperature on the
viability of M. leprae.

Rat Schwann
cells

Schwan cell maintain 56% viability at 33˚C for 3 weeks and
altered morphology and genes expression that encoding
cellular adhesion molecules but were capable of cellular
interaction. Schwann cell neuron cocultures, infected after
myelination and no morphological changes were found in
myelin architecture at 33 ˚C after 30 days of incubation with
53% viability of M. leprae.

This model will be helpful to
study the effects of M.
leprae on Schwann cells
and Schwann cell-neuron
interactions and maintain
the culture for long time at
33˚C.

4. (Oliveira
et al., 2003)

In vitro Human Schwann cells are
susceptible to cell death by
activation of Toll-like receptor 2
(TLR2).

ST8814
Human
Schwann cells
line

TLR2 were expressed at moderate levels in comparison to
MHC-I but at higher levels to MHC-II. The 19-kDa lipoprotein
of M. leprae trigger apoptosis and promote inflammation. The
frequency of apoptotic cells increases in presence of TLR2
and 19-kDa lipoprotein of M. leprae.

TLR2 ligation induce
apoptosis of human
Schwann cell and cause
nerve damage by host
immune response.

5. (Madigan
et al., 2017)

In vivo Macrophage responses to M.
leprae specific PGL-1 trigger
demyelination and nerve
damage in leprosy.

Zebra fish larva
model

Infected macrophages patrolling toward and come in close
contact with axon, cause demyelination. PGL-1 confer the
macrophage neurotoxic response by inducing RNS and ROS
production, causing axonal and mitochondrial damage that
leads to demyelination.

M. leprae PGL-1 induce
macrophage response that
are greatly involve in
demyelination and nerve
damage.

6. (Mietto
et al., 2020)

In vitro Myelin breakdown favor M.
leprae survival.

Mice Schwann
cells

M. leprae infect Schwan cell and accelerate myeline
destruction via mechanism called myelinophagy that leads to
increase lipid droplet formation which are major contributor for
M. leprae persistence in Schwann cells.

Myelin breakdown induces
lipid droplet production,
providing protective lipid-
enriched shelters for M.
leprae inside Schwan cell.

7. (Masaki
et al., 2013)

In vitro
and In
vivo

Understood how initial
colonization of M. leprae in
Schwann cells subsequently
could lead to the spread of
infection to other tissues.

Mouse primary
Schwann cells
and Mice
model

The leprosy bacterium hijacks this property to reprogram
adult Schwann cells, its preferred host niche, to a stage of
progenitor/stem-like cells (pSLC) of mesenchymal trait by
downregulating Schwann cell lineage/differentiation-
associated genes and up- regulating genes mostly of
mesoderm development. Reprogramming accompanies
epigenetic changes and renders infected cells highly plastic,
migratory, and immunomodulatory.

pSLC promotes bacterial
spread by two
mechanisms: direct
differentiation to
mesenchymal tissues,
including skeletal and
smooth muscles, and
formation of gran- uloma-
like structures and
subsequent release of
bacteria-laden
macrophages.

8. (Masaki
et al., 2014)

In vitro The role of innate immune
response in cellular
reprogramming and the
initiation of neuropathogenesis
during M. leprae infection.

Mouse primary
Schwann cells

M, leprae hijacks induce a large number of immune-related
genes comprising mostly innate immunity and chemokine-
associated genes right from the very early stage of Schwann
cell infection and peaking in their expression when Schwann
cells have changed their cell identity to pSLCs.

M. leprae induces the
expression of a variety of
genes related to innate
immunity in Schwann cells
strains in the early stage of
infection, even before there
were gene modifications
associated with
reprogramming in pSLC.

9. (Petito
et al., 2013)

In vitro
and Ex
vivo

Effects of M. leprae on
Schwann cells TGF-b1
transcription and secretion, the
effects of exogenous TGF-b1on
a-SMA expression,
morphology, and matrix-
producing myofibroblasts
deposition in vitro and
correlated the findings with
those in nerve biopsies of
leprosy patients.

ST8814
Human
Schwann cells
line

Schwann cells transdifferentiates into extracellular matrix-
producing myofibroblasts under the stimulus of TGFb-1, by a
mechanism in which M. leprae is the inducer of this event.

M. leprae infected Schwann
cells undergo phenotypical
changes and even death as
a result of inflammatory
mediators, leading them to
secrete ECM that
contributes to progressive
nerve fiber loss and fibrosis.

(Continued)
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TABLE 1 | Continued

Reference Study
Type

Objectives Experimental
Model

Results Conclusion

10. (Oliveira
et al., 2005)

In vitro Determine if cytokines and M.
leprae were capable of
triggering human Schwann cell
apoptosis and, as such, of
contributing to nerve damage
in leprosy.

ST8814
Human
Schwann cells
line

Presence of TNF-Rs and TGF- RII on the Schwann cells
membrane and the shedding of TNF-Rs during the culture
period. TNFa/TGF-b1 combination as well as M. leprae
infection triggered an increase in the apoptosis rate in the
cultured Schwann cells. Moreover, qRT-PCR revealed that M.
leprae upregulated the expression of such cytokines and their
receptors on the Schwann cells line.

Induction of Schwann cells
death, can pro- vide an
effective mechanism of
ongoing tissue injury during
M. leprae infection, which,
in turn, may be further
modulated by cell–cell
interaction and cytokine
production both in vitro and
in vivo.

11. (Medeiros
et al., 2016)

In vitro
and Ex
vivo

Effect of M. leprae on Schwann
Cell Glucose Metabolism.

ST8814
Human
Schwann cells
line

M. leprae infection was able to modulate Schwann cell
glucose metabolism, generating a marked increase in glucose
uptake and the PPP oxidative cycle key enzyme G6PDH. In
addition, M. leprae infection also reduced mitochondrion
membrane potential and lactate release by Schwann cells.
These alterations resulted in free-radical control.

M. leprae could modulate
host cell glucose
metabolism to increase the
cellular reducing power
generation, facilitating
glutathione regeneration
and, consequently, free-
radical control.

12. (Borah
et al., 2019)

In vitro Measure carbon metabolism of
M. leprae in its primary host
cell, the Schwann cell.

ST8814
Human
Schwann cells
line

M. leprae utilizes host glucose pools as the carbon source to
biosynthesize the majority of its amino acids. The anaplerotic
enzyme phoenolpyruvate carboxylase is required for this
intracellular diet of M. leprae.

Intracellular Mycobacterium
leprae utilizes Host Glucose
as a Carbon Source in
Schwann Cells to
biosynthesize the majority
of its amino acids.

13. (Andrade
et al., 2016)

Ex vivo Envelopment of Inflammatory
Cytokines in Focal
Demyelination in Leprosy
Neuritis

Human model ML is capable of contributing to a TNF-mediated response by
inducing mTNF expression and upregulating TNFR1, thus
rendering Schwann Cells more sensitive to the exogenous
TNF levels in the nerve, which likely originates from resident
macrophages in the early stages of injury and, later, from
inflammatory cells. Moreover, M. leprae induces IL-23
secretion in Schwann Cells

M. leprae may contribute to
TNF-mediated inflammation
and focal demyelination by
rendering SCs more
sensitive to TNF within the
nerves of patients with
leprous neuropathy.

14.
(Rambukkana
et al., 2002)

In vitro
and In
vivo

Measure the functional
consequences of early M.
leprae interaction with
peripheral nerves.

Schwann cell -
DRG neuron
coculture

M. leprae induced rapid demyelination by a contact-
dependent mechanism in the absence of immune cells in an
in vitro nerve tissue culture model and in Rag1-knockout
(Rag12/2) mice. Myelinated Schwann cells were resistant to
M. leprae invasion but undergo demyelination upon bacterial
attachment, whereas nonmyelinated Schwann cells harbor
intracellular M. leprae in large numbers.

M. leprae propagates a
nonmyelinating phenotype
by inducing demyelination
and nerve injury in
myelinated Schwann cells in
the early phase of infection,
a novel bacterial survival
strategy in the nervous
system.

Mice model

15. (Tapinos
et al., 2006)

In vitro Identify the molecular events
that occur in the early phase
before the progression of the
leprosy.

Primary
Schwann cells
and myelinated
Schwann cell–
neuron
cocultures.

M. leprae, by directly binding to and activating ErbB2 without
ErbB3 heterodimerization, and thus bypassing neuregulin-
ErbB3–mediated ErbB2 phosphorylation, induces excessive
downstream Erk1/2 signaling and subsequently causes
demyelination.

Therapeutic interventions
targeted to block kinase
activity of ErbB2 may have
the potential to prevent
nerve degeneration in
leprosy and other
demyelinating diseases at
an early stage before the
progression of these
neurodegenerative
diseases.

16. (Oliveira
et al., 2010)

In vitro Effects of TNF and M, leprae in
leprous neuropathy.

ST8814
Human
Schwann cells
line and Ex
vivo

M. leprae and TNF induced upregulation of MMP-2 and
MMP-9 and increased secretion of these enzymes in cultured
ST88-14 cells. The effects of TNF and M. leprae were
synergistic. Nerves with inflammatory infiltrates and fibrosis
displayed higher TNF, MMP-2, and MMP-9 mRNA than
controls. Leprous nerve biopsies with no inflammatory
alterations also exhibited higher MMP-2 and MMP-9. The
biopsies with endoneurial inflammatory infiltrates and
epithelioid granulomas had the highest levels ofMMP-2 and
MMP-9 mRNA detected.

M. leprae and TNF may
directly induce Schwann
cells to upregulate and
secrete MMPs regardless of
the extent of inflammation
in leprous neuropathy.
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diseases around the world, such as leprosy (Rathod et al., 2020;
Matos et al., 2021). Despite many leprosy institutions remaining
open and offering services during the pandemic, providing
leprosy diagnosis, multidrug therapy (MDT), and leprosy
reaction medications, many patients were unable to travel to
these centers (de Barros et al., 2021). Mahato et al. (2020)
emphasized the impact of the current scenario on leprosy-
affected individuals in Nepal. Due the natural progress of
leprosy, affected individuals require long-term follow-up. The
measures that were recommended to reduce the transmission of
SARS-CoV-2 likely created barriers to health services for these
leprosy patients, disrupting the disease management.

A recent finding suggests that co-infection of COVID-19 and
leprosy, especially themultibacillary form of the disease, can lead to
serious conditions or even death in these patients, mostly in men,
the elderly, and those with non-communicable diseases (Santos
et al., 2021). However, epidemiological studies are needed to
determine the real impact of COVID-19 on leprosy patients.

Although the immunological responses to SARS-CoV-2
infection have been extensively studied, there is no consensus
regarding the mechanisms associated with its variations and
levels of severity, as well as its interaction with other diseases. As
in leprosy, COVID-19 is known to present with a variable
response according to the individual. The intense release of
inflammatory mediators resulting from the cytokine storm can
have negative impacts on leprosy patients; thus, it has been
suggested that cytokine responses in SARS-CoV-2 infection may
alter the clinical outcome of leprosy (Antunes et al., 2020).
Recently, Cerqueira et al. (2021) demonstrated that leprosy
patients are more vulnerable to COVID-19 because they have
more frequent contact with SARS-CoV-2-infected patients,
perhaps due to the social and economic aspects.

IL-6 is elevated in patients with COVID-19 (Santos Morais
Junior et al., 2021) and is positively correlated with the severity of
COVID-19 symptoms (Kirtipal and Bharadwaj, 2021). IL-6 is an
importantpro-inflammatorymediator, involved in the activationof
immune cells in the brain, which contributes to injury of the brain
tissue (Espıńdola et al., 2021), and is amarkerofneuropathicpain in
leprosy (Angst et al., 2020). IL-6 has beendescribed as an important
immunological stimulus triggering leprosy reactions, and thus
increase the risk of developing leprosy neuropathy (Sales-
Marques et al., 2017; Tió-Coma et al., 2019).

According to Morais et al. (2021), patients with M. leprae/
SARS-CoV-2 co-infection showed increased IL-6 gene
expression; moreover, the median disability grade was higher
forM. leprae/SARS-CoV-2-co-infected patients than for patients
with leprosy alone, even more than 30 days after the onset of
COVID-19. The World Health Organization (WHO) classifies
leprosy disability based on the WHO grading system, such as
grade 0: normal sensation, no visible impairments, grade 1:
impaired sensation, no visible impairments due to leprosy, and
grade 2: visible impairments/deformity. Thus, this result suggests
that SARS-CoV-2 co-infection may influence the development of
neuropathy in leprosy by a mechanism involving increased IL-6
expression. The IL-6 polymorphism was proposed for use as an
indicator of severity in COVID-19 patients in the Korean
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
population (Kirtipal and Bharadwaj, 2021). In addition, clinical
studies have shown that single-nucleotide polymorphisms
(SNPs) in the IL-6 gene are associated with leprosy reactions
(Sales-Marques et al., 2017). Thus, M. leprae/SARS-CoV-2 co-
infection may trigger a higher-grade pro-inflammatory state, and
the use of IL-6 inhibition to prevent neural damage might be a
promising treatment strategy.

SARS-CoV-2 infection in leprosy patients has raised
important questions about the incidence and/or severity of the
reactional episodes (Antunes et al., 2020; Santos et al., 2021). The
two main types of leprosy reaction are referred to as a type-1
reaction or reversal reaction (RR) and type-2 reaction or
erythema nodosum leprosum (ENL), each with its own distinct
characteristics. Cytokine storms and high levels of systemic
inflammatory mediators have been described in ENL patients.
Whether the M. leprae/SARS-CoV-2 co-infection could trigger
the onset of ENL by enhancing the neurological damage, leading
to physical disabilities, remains to be seen (Schmitz and Dos
Santos, 2021).

Despite concerns about the severity of M. leprae/SARS-CoV-2
co-infections, curiously, the drugs used in MDT have been
associated with a favorable outcome for COVID-19 patients
(Arora et al., 2021; de Barros et al., 2021; Saxena et al., 2021).
Clofazimine, an anti-leprosy drug, may have a role in the control of
SARS-CoV-2 and MERS-CoV in the Middle East since it has been
demonstrated to antagonize SARS-CoV-2 replication inmultiple in
vitro and ex vivo human systems, as well as in a hamster model of
SARS-CoV-2 pathogenesis (Yuan et al., 2021). However, Cerqueira
et al. (2021) described that the use of corticosteroids, thalidomide,
pentoxifylline, clofazimine, or dapsone or BCG vaccination did not
affect the occurrence or severity of COVID-19.
SARS-COV-2: HOST–CELL INTERACTION
AND IMMUNE MODULATION

COVID-19 has affected more than 200 million people worldwide
since the first case was detected. Although the pulmonary
complications are profound, neurological manifestations were
also observed (Bridwell et al., 2020; Andalib et al., 2021).

Previous findings have demonstrated that SARS-CoV-1,
MERS-CoV, and OC43 coronaviruses present neurotropism
(Iadecola et al., 2020). SARS-CoV-2 can reach the brain after
infecting nasal cells. A previous study demonstrated that it could
cause inflammation and demyelination in cells from CNS (Zoghi
et al., 2020).

Headache, epilepsy, and disturbances of consciousness are
observed in some patients with COVID-19, and loss of smell or
taste is a frequent related symptom (Guastalegname and Vallone,
2020; Hopkins et al., 2020).

There is evidence that the SARS-CoV-2 glycoproteins bind to
angiotensin-converting enzyme 2 (ACE-2) receptors to enter the
host cell. The binding of the viral spike (S) protein to ACE-2
receptors, accompanied by the proteolytic cleavage of the S protein,
mediated by transmembrane serine protease 2 (TMPRSS2),
facilitates cell entry (Mohammadi et al., 2020). NRP1 and NRP2
February 2022 | Volume 12 | Article 815738
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act as additional viral entry factors (Daly et al., 2020). After
replication, the cell disintegrates, and the virus is able to reach
other cells. Then, antigen-presenting cells (APCs) recognize these
viralparticles andpresent tocytotoxicTandnatural killer (NK)cells
via the major histocompatibility complex (MHC), thus causing the
production of pro-inflammatory cytokines and chemokines (Sarzi-
Puttini et al., 2020). The neurological commitment of SARS-CoV-2
is associated with the expression of ACE-2 receptor in the nervous
system (Iadecola et al., 2020).

One of the main causes of death from COVID-19 is acute
respiratory distress syndrome (ARDS), which is characterized by a
pro-inflammatory cytokine storm. Increased levels of cytokines and
chemokines have been detected in the blood of patients with
COVID-19; such factors include interleukin 1 beta (IL-1b), IL-6,
IL-17, IL-8, C-C motif chemokine ligand 2 (CCL2)/monocyte
chemoattractant protein-1 (MCP1), CCL3/MIP1a, CCL4/
macrophage inflammatory protein-1 beta (MIP1b), granulocyte-
macrophage colony-stimulating factor (GM-CSF), platelet-derived
growth factor beta (PDGFb), TNF, and vascular endothelial growth
factor (VEGF) (Nile et al., 2020). According to Soy et al. (2020),
patients with advanced age comorbidities are more likely to
progress to the severe form of the disease and this risk group has
a tendency towards monocytosis instead of lymphocytosis
(reduction in NK cells and cytotoxic T cells), high levels of serum
ferritin and D-dimer, liver dysfunction, thrombotic tendency, and
disseminated intracellular coagulation (DIC), which implies the
occurrence of macrophage activation syndrome (MAS). The main
problems in SARS-CoV-2 infection are as follows: impaired viral
shedding, low production of type I interferons (IFNs), increased
neutrophils and neutrophil extracellular traps (NETs) that can
contribute to viral pathogenesis, and pyroptosis, which helps in
the rapid disruption of the plasma membrane and release of
intracellular contents (Soy et al., 2020).

SARS-CoV-2 can also bind to TLRs, triggering their
activation (Conti et al., 2020). The activation of these receptors
may be followed by inflammasome activation. The activation of
the inflammasome pathway may be involved in both CNS and
PNS injury through the secretion of IL-1b and IL-18 (Cui et al.,
2020). IL-6 is another important pro-inflammatory mediator
that can be associated with damage in CNS by modulating the
immune response (Mamik and Power, 2017). Furthermore,
dysregulation of type I IFNs can affect both innate and
acquired immunity, resulting in inflammation and immune
system suppression (Conti et al., 2020). Higher levels of
inflammasome-derived products and IL-6 found in the sera of
the severe COVID-19 patients indicate that these factors might
be a marker of COVID-19 severity (Rodrigues et al., 2020).
COVID-19 AND NEUROLOGICAL
COMMITMENT

Previous studies found that peripheral neuropathy may develop
in patients with severe COVID-19 (Andalib et al., 2021). A
systematic review of 143 original publications found that a total
of 10,723 patients with a confirmed diagnosis of COVID-19
displayed features that were compatible with neurological
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
involvement. Among them, they found 43 patients with clinical
conditions affecting the PNS, mainly Guillain-Barré syndrome
(Guerrero et al., 2020). Guillain-Barré syndrome is a PNS-related
autoimmune condition. It has been associated with COVID-19,
but the immunopathogenic mechanisms are not fully understood
(Patnaik, 2021).

Pain is an important neurological symptom observed in
COVID-19 patients, both in the acute phase and at later stages of
the disease (McFarland et al., 2021). Studies have demonstrated that
the type I IFNs involved in antiviral responses may promote virus-
induced pain through actions on sensory neurons, which suggest
that type I IFNs are involved in the immunopathogenesis of pain
during COVID-19 (Barragán-Iglesias et al., 2020; McFarland et al.,
2021), Although type I IFN is associated with an anti-SARS-CoV-2
response, several recent studies have suggested that the virus evades
the type I IFN induction, which contributes to viral replication and
hyperinflammatory response, which are characteristic of severe
COVID-19 disease (Arunachalam et al., 2020; Zhang et al., 2020).

RNA-sequencing (RNA-seq) datasets for secretory ligands
with known human dorsal root glia (hDRG) receptors
demonstrated transcriptional changes modulated by SARS-
CoV-2, which are able to influence nociceptor sensitization
(McFarland et al., 2021). Some mediators that are modulated
in bronchoalveolar lavage fluid (BALF) from patients with severe
COVID-19 include the chemokines CCL2/3/4/7/8 and C-X-C
motif chemokine ligand (CXCL) 1/2/6, as well as the peptide
hormone epiregulin (EREG) and members of the ephrin A family
(EFNA1 and EFNA5). Analysis of single-cell RNAseq (scRNA-
seq) datasets also showed a significantly upregulated expression
of CCL2/3/4 and IL-1b, as well as several members of the tumor
necrosis factor superfamily (TNF, TNFSF10, TNFSF12, and
TNFSF13B), by macrophages from patients with severe
COVID-19 infection compared to those from patients with
moderate infection and/or healthy controls. Similar to the
BALF findings, the authors found that peripheral blood
mononuclear cells (PBMCs) from COVID-19 patients exhibit a
transcriptional upregulation of prototypical signaling ligands
with known hDRG receptors, including IL-1b and TNF (Singh
et al., 2021). Therefore, the influence of the cytokine storm must
also be considered a key factor in the development of
neuropathies after severe infection and could contribute to the
evolution of chronic pain after acute COVID-19 infection.
KYNURENINE PATHWAY AND COVID-19

The elucidation of the metabolic host response is important, as
some metabolites from catabolism are essential for viral infection
because theycontribute thenucleic acids, proteins (includingcapsid
proteins) and membrane that are necessary for virus replication
(Yan et al., 2019). Studies suggest that gut microbiota dysbiosis is
involved in COVID-19 severity in patients with extra pulmonary
conditions once SARS-CoV-2 infection disturbs the gutmicrobiota
and leads to immune dysfunction with generalized inflammation
disturbing the gut–brain axis (Aktas and Aslim, 2021). For this
reason, the breakdown of the homeostasis of the gastrointestinal
and the nervous system in response to the virus could lead
February 2022 | Volume 12 | Article 815738
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metabolites such as TRYP to decrease their availability to the
kynurenine pathway.

The TRYP-kynurenine pathway is altered in COVID-19
patients, as described in studies that demonstrated increased
serum and or plasma levels for kynurenine and its metabolites,
quinolinic acid and kynurenic acid, in COVID-19 patients
(Thomas et al., 2020a; Fraser et al., 2020; Shen et al., 2020;
Lawler et al., 2021). A previous study has demonstrated that an
elevated kynurenic acid: kynurenine ratio was associated with
increased disease severity in male patients (Cai et al., 2021).

Despite the lack of studies showing the role of the kynurenine
metabolites in COVID-19 pain, many studies have shown its
relationship with neuropathic pain and other painful conditions
(Rojewska et al., 2016; Rojewska et al., 2018; Staats Pires et al.,
2020; Jovanovic et al., 2020; Ciapała et al., 2021; Tanaka et al.,
2021). Some metabolites can act as immunomodulators
depending on the dose or the situation, perpetuating low-grade
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
inflammation (Tanaka et al., 2020). However, studies show that
the disturbance of the kynurenine pathway could increase the
oxidative compounds or neurotoxic ligands to receptors of the
excitatory glutamatergic nervous system, which damage the PNS
or CNS through the broken blood–nerve or blood–brain barrier,
respectively (Dantzer et al., 2008).

Kynurenines are collectively known by the differentmetabolites
that are produced during tryptophan catabolism, a metabolic
process that is mainly governed by tryptophan rate-limiting
enzymes such as IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2),
and tryptophan 2,3-dioxygenase (TDO) (Campbell et al., 2014)
(Figure 1). Tryptophan is an essential amino acid that is the
precursor of many physiologically important metabolites
produced during the curse of its degradation along four pathways.
The kynurenine pathway is responsible for approximately 95% of
overall TRYP degradation. Other pathways are hydroxylation,
decarboxylation and transamination (Bender, 1983). Tryptophan
FIGURE 1 | Kynurenine pathway of tryptophan degradation in leprosy and COVID-19. During the course of severe COVID-19 and leprosy immunological reactions
there is an increase in production of pro-inflammatory mediators such as TNF, IL-6 and IL-1b that may activate the enzymes that catabolize tryptophan and generate
neuroactive kynurenine metabolites that can contribute to peripheral nerve damage and the development of chronic pain. In addition, the cytokine storm that occurs
during COVID-19 can also trigger neuropathy and reactional episodes in leprosy patients. The main kynurenine pathway enzymes are shown in red. IDO, indoleamine
2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; KATs, kynurenine aminotransferases; KYNU, kynureninase; KMO, kynurenine 3-monooxigenase; 3HAO, 3-
hydroxyanthranilic acid dioxygenase; QPRT, quinolinic acid phosphoribosyltransferase; ACMSD, aminocarboxymuconate-semialdehyde decarboxylase; NAD,
nicotinamide adenine dinucleotide; CoA, coenzyme A.
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is converted to N′-formylkynurenine by the action of either TDO
mainly in liver or IDO extrahepatically (Bender, 1983; Badawy,
2017). Most previous studies on KP regulation have focused on the
first and most rate-limiting enzyme, hepatic TDO. Under normal
conditions the control of plasma tryptophan availability is exerted
mainly, if not exclusively, by hepatic TDO. However, under
conditions of immune activation, IDO assumes the major role,
althoughTDOmay also play a part. The induction of IDOby IFN-g
and other inflammatory mediators leads to depletion of TRYP and
increased Kynurenine formation in cultures of monocytes and
serum (Werner et al., 1988; Fuchs et al., 1990). There are two
kinds of IDO, IDO1 and IDO2, both convert TRYP to kynurenine
with different activity rates. IDO2 is more narrowly expressed than
IDO1 and has only 3-5% enzymatic activity of IDO1 (Ball et al.,
2007;Metz et al., 2007; Prendergast et al., 2014). The role of IDO2 in
normal immune function is not known and due to their homology,
IDO1 and IDO2 had been thought to play redundant roles in
immune responses; however, recent results suggest that IDO2may
play a role in immune function distinct from IDO1 (Merlo
et al., 2020).

IDO1 was described as a bactericidal effector mechanism and
linked to T cell immunosuppression and tolerance. However,
evidence has accumulated that suggests IDO1 also plays an
important role in infections, including HIV, influenza, hepatitis B
andC, and sepsis (Boasso et al., 2006; Boasso et al., 2007; Larrea et al.,
2007; Ito et al., 2010; Schmidt and Schultze, 2014). In peripheral
tissues, IDO1 expression takes place in dendritic cells (DCs) and
macrophages, as well as microglia in the CNS, and its expression is
also induced by pro-inflammatory cytokines, such as IL-6, IL-1b,
IFN-g, andTNF andby underlying infections (Campbell et al., 2014).
Kynurenine (KYN) is broken down into kynurenic acid and 3-
hydroxykyurenine by kynurenine aminotransferases and
kynurenine3-monooxygenase (Figure 1). KYN is the source of
different downstream metabolites of the kynurenine pathway,
leading to the formation of neuroactive metabolites including
kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), anthranilic
acid (ANA), picolinic acid (PA), and quinolinic acid (QUIN) for
example (Figure 1). It has been demonstrated that significant
behavioral effects are induced by the intracerebro-ventricular
administration of these metabolites in mice (Vamos et al., 2009).

The decline in tryptophan levels modulates the serotonin and
melatonin pathway, which leads to the development of neurological
disorders. Metabolites of the kynurenine pathway show diverse
properties that can cause contrasting effects in the nerve system
and has become an important research area in neurodegenerative
disorders such as Alzheimer’s disease (AD), Huntington’s disease
(HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)
and Parkinson’s disease (PD), due to the relationship between
abnormal KP metabolite levels and these neurological diseases
(Füvesi et al., 2012; Maddison and Giorgini, 2015). The
comorbidities that have been associated with severe COVID-19 are
aging, diabetes, hypertension, chronic lung disease, cancer, andHIV,
clinical conditions, whereby the TRYP-Kyn pathway is activated.

Serum metabolic analyses of patients with COVID-19 have
identified an altered tryptophan metabolism, and this change
correlates with IL-6 levels. The association between IL-6 in
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samples from patients and COVID-19 led to an increase in
KYNA, KYN, and PA (Thomas et al., 2020b). In addition,
tryptophan depletion and the generation of kynurenine generate
downstream signals through GCN2, WARS, mTOR and the aryl
hydrocarbon receptor (AhR). Tryptophan metabolites are
endogenous AhR ligands. AhR is a ligand-activated transcription
factor that integrates environmental, dietary, microbial, and
metabolic cues to control complex transcriptional programs in a
ligand-specific, cell-type-specific, and context-specific manner.
AhR plays an important role in several biological processes,
including immune responses and developmental and pathological
regulation (Jaronen and Quintana, 2014; Zhu et al., 2019).

AhR is involved in coordinating the entry and pathophysiology
of SARS-CoV-2 (Anderson et al., 2020). SARS-CoV-2 infection
activates AhR independently of IDO1, upregulating the expression
of pro-viral 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-
inducible poly-adenosine diphosphate (ADP)-ribose polymerase
(TIPARP) and modulating cytokines and factors such as TNF,
which, in turn, activate IDO1, while AhR also increases due to the
positive feedback of IDO1-AhR-IDO1 (Turski et al., 2020).

The activation of AhR induces the differentiation of IL-17-
producing CD4+ T cells. It has already been observed that in
severe SARS-CoV-2 infection there is an increase in Th17 cells
and a decrease in Tregs, via an activation mechanism involving
STAT3, JAK1, JAK2, and JAK3, and this is consequently followed
by an excessive release of cytokines that can lead to severe multiple
organ failure during the course of the disease (Engin et al., 2021).

Men andwomen showclear differences in the immune response
to COVID-19. At all ages, female patients have more robust T cell
activation thanmalepatients.Menof an advancedage showa loss of
T cell activation, leading to worse outcomes in the clinical course of
the disease (Turski et al., 2020). Gender-specific differences were
also observed in the correlations between metabolites and immune
response in patients with COVID-19, in which KYNA (an AhR
ligand) showed amore prominent connection to immune response
in men than in women (Cai et al., 2021).

A study involving 221 biomarkers showed that ceramide
metabolism, TRYP degradation, and reactions involving the
consumption of NAD+, steroids, and lipids are related to the
severity of COVID-19 (Marıń-Corral et al., 2021). The increase
in KP metabolites, such as 3-HK, seems to play a key role in
disease severity (Marıń-Corral et al., 2021). Further studies will
determine the association between peripheral nerve damage and
KYN metabolites in these patients.
KYNURENINE METABOLITES AND
NEUROIMMUNOMODULATION

From a therapeutic perspective, KYNA is an important metabolite
ofKP, as it has neuroprotective properties, preventingneuronal loss
following neuronal damage, and a high level of KYNA inhibits
ionotropic glutamate receptors. KYNA is mainly present in
astrocytes that exhibit neuroprotective property by blocking
ionotropic N-methyl-D-aspartate (NMDA), a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA), and kainate
February 2022 | Volume 12 | Article 815738

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Oliveira et al. Kynurenines in Leprosy and COVID-19
glutamate receptors (Perkins and Stone, 1982; Schwarcz et al., 1983;
Gigler et al., 2007; Vamos et al., 2009; Dantzer et al., 2011; Maes
et al., 2011; Schwarcz et al., 2012). Additionally, in laboratory
animals, the administration of even low amounts (nanomolar
range) of KYNA into the brain can reduce glutamate levels by up
to 30−40% (Zakrocka et al., 2019). Moreover, through agonistic
effects on the aryl hydrocarbonreceptor (AhR),KYNAregulates the
immune response (Flis et al., 2016), but due to its limited ability to
cross the blood–brain barrier (BBB), KYNA’s use as a
neuroprotective agent is restricted (López et al., 2014).

3-HK is another neuroactive metabolite of the KP, whose
production is catalyzed by kynureninemonooxygenase.3-HK from
KYNmay cause neuronal damage by generating free radicals. In the
mammalianbrain, 3-HKlevels are in thenanomolar range that rise to
micromolar levels in neuropathological conditions (Eastman and
Guilarte, 1989; Eastman and Guilarte, 1990; Colıń-González et al.,
2013; Walker et al., 2013). 3-HK can be further metabolized to 3-
hydroxyanthranilic acid (3-HAA), which is associated with
neurological complications such as Parkinson’s disease (PD),
Huntington’s disease (HD), and human immunodeficiency virus
(HIV)-1-associated dementia (Vamos et al., 2009; Sorgdrager et al.,
2019). The neurotoxic activity of 3-HKwith respect to cells is higher
in the striatumandcortex than in cells of the cerebral granule. InCNS
inflammatory disease, an elevated 3-HK level is commonly detected
(Colıń-González et al., 2013). 3-HK has both antioxidant and pro-
oxidant properties, whereas its neuropathic role is not clearly
understood, as limited in vivo studies have been carried out to
elaborate and understand its neuropathological mechanisms (Reyes
Ocampo et al., 2014). While 3-HK-mediated neurotoxicity is due to
hydrogen peroxide and superoxide anion production, it can also act
as a free-radical scavenger and have properties that reduce lipid
peroxidation (Leipnitz et al., 2007; Mithaiwala et al., 2021).

3-HAA is produced by the action of non-specific oxidases on
anthranilic acid (AA), or from the oxidative cleavage of 3-HK by
kynureninase. 3-HAA exhibits anti-inflammatory properties as
well as both anti- and pro-oxidant properties. Its levels are
elevated in patients with depression or HD (Darlington et al.,
2010). The copper-dependent-superoxide- and hydrogen-
peroxide-generating ability of 3-HK and 3-HAA enhance copper-
associated toxicity (Ramıŕez-Ortega et al., 2017). 3-HAA has been
found to promote apoptosis in monocytes stimulated by IFN-g
(Morita et al., 2001). Studies from human fetal nervous system
culture revealed anti-oxidant and anti-inflammatory properties of
3-HAA, which are associated with the inhibition of chemokine and
cytokine expression, as well as the increased expression of the
antioxidant enzyme heme oxygenase-1 (Krause et al., 2011).

QUIN, generated by the enzymatic breakdown of 3-HAA, is one
of the most important KP metabolites and is of huge scientific
interest. Of all the KP metabolites, QUIN has the strongest
evidence regarding its role in the pathology of neurological,
neurodegenerative, and neuropsychiatric complications. An agonist
action of QUIN toward NMDA receptors was reported (Stone and
Perkins, 1981; Mithaiwala et al., 2021). The QUIN concentration
generated by the KP is similar to KYNA in cerebrospinal fluid (50–
100 nM) or in low micromolar concentrations (Schwarcz and
Pellicciari, 2002; Vamos et al., 2009). Substantial neuronal loss is
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induced by intrastriatal QUIN administration (Vamos et al., 2009).
HigherQUIN levels are commonlydetected inpatients sufferingwith
neurodegenerative diseases such as Alzheimer’s disease (AD), PD,
andHD, and in patients withHIV infections. QUIN injections in the
striatum lead to a similar neurochemical and structural pathology as
that observed inHD,which suggestsQUIN’s potential use as amodel
for HD induction in laboratory settings (Heyes et al., 2001;
Mithaiwala et al., 2021). QUIN was also found to disturb actin-
cytoskeleton dynamics in astrocytes and neurons that perturb the
transport of protein required for synaptic homeostasis (Pierozan
et al., 2015). Additionally, QUIN also generates free radicals and
increases lipid peroxidation, leading to increasedoxidative stress, and
is believed to show neurotoxic activity via at least nine different
mechanisms, including disruption of the BBB, as well as the
generation of reactive oxygen species, death of oligodendrocytes,
destabilization of the cellular cytoskeleton, disruption of autophagy,
and promotion of tau phosphorylation (Santamarıá et al., 2001;
Rahman et al., 2009). It has been supposed that, through the NMDA
receptor, QUIN may trigger microglia pathways that lead to
apoptosis or programmed neuronal cell death. QUIN also induces
an inflammatory response by stimulating the production of pro-
inflammatory mediators in astrocytes (Jacobs and Lovejoy, 2018;
Pierozan and Pessoa-Pureur, 2018).

In inflammatory bowel disease, the kynurenine metabolites
may be involved in the regulation of neuronal activity. Glutamate
is a major excitatory neurotransmitter in the CNS and also has a
significant role in the regulation of peripheral tissue function,
probably by its neurotransmitter role in the enteric nerve system
(Gill et al., 2000; Forrest et al., 2002). While QUIN activates,
KYNA blocks the NMDA receptors present in the myenteric
plexus. The activation of these NMDA receptor subtypes
increases gut motility and secretion (Skerry and Genever, 2001;
Forrest et al., 2002).

The increase in KP activity in the PNS can be detected by the
elevated serum KYN/TRYP ratio, which is usually found in
several psychiatric and neurological disorders (Schwarcz et al.,
2012; Zunszain et al., 2012). Some metabolites, such as KYN, 3-
HK, and AA, cross the BBB, while KYNA, QUIN, and 3-HAA
cannot cross, or can only cross to a limited extent (Gobaille et al.,
2008; Schwarcz et al., 2012). Large neutral amino acid
transporter 1 (LAT-1), as well as organic anion transporters 1
and 3, play an important role in the transport of peripheral KYN
through the BBB. Over 60% of KYN in the CNS are transported
from the peripheral circulation (Gobaille et al., 2008; Sekine et al.,
2016; Walker et al., 2019). There is little information regarding
the involvement of the KP in the PNS, but recent findings in
leprosy pathogenesis have contributed new evidence of the
involvement of TRYP metabolites in neural damage in the PNS.
KYNURENINES IN PERIPHERAL
NEUROPATHY DURING COVID-19

Several studies have identified a number of neuropathologies
associated with SARS-CoV-2, including pain-related conditions
(McFarland et al., 2021) but recent evidence suggests that SARS-
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CoV-2 does not cause viral neuropathy (Finsterer et al., 2021). At
present, there is evidence that neural damage during COVID-19 is
associated with secondary immune mechanisms (Finsterer et al.,
2021). It is hypothesized that the systemic hyperinflammation seen
in severe COVID-19 has the potential to contribute to
nociceptor sensitization.

IFN-g is, atpresent, seen in significantlyhigher concentrations in
sera from SARS-CoV-2-infected patients. The activation of IDO1
by interferons may help explain the observations of higher
concentrations of kynurenine and its catabolites in infected
patients. Proteomic analysis revealed that both QA and 3-HK are
increased in samples from infected patients (Lawler et al., 2021).
BothQAand3-HKshowneurotoxicproperties invitro. Inaddition,
the ratio between both metabolites (QA and 3-HK) and the
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neuroprotective KYNA was also found to increase in the SARS-
CoV-2 infected group, both ofwhich have specifically been referred
to as neurotoxic ratios in the literature.
KYNURENINES IN LEPROSY
PATHOGENESIS

A recent transcriptomic analysis demonstrated that IDO1
expression could be used as a biomarker to discriminate skin
lesions of leprosy patients from controls affected by other dermal
conditions, such as granuloma annulare (Leal-Calvo et al., 2021).
IDO1 expression and activity are increased in multibacillary
lepromatous when compared with the paucibacillary patients (de
FIGURE 2 | SARS-CoV-2 and Mycobacterium leprae infection in peripheral nerve Schwann cells. Peripheral nerves are composed offascicles delimited by the
perineurium and enveloped by the epineurium. Inside the nerve fascicles, surrounded by the endoneurium, the axons from each neuron are encircled by Schwann
cells (SCs) that form the myelin sheath. SARS-CoV-2 infection activates the transcription factor aryl hydrocarbon receptor (AHR), leading to TNF production. SARS-
CoV-2 can also bind TLRs triggering their activation and subsequent production of pro-inflammatory cytokines as IL-6 and IL-1b, cleaved by caspase-1 following
inflammasome activation. Recognition of M. leprae via TLRs in the SCs leads to the production of TNF. M. leprae infection in myelinating SCs can also induce
apoptotic cell death by a mechanism dependent on TNF and TLR2, degradation of myelin sheath and peripheral nerve fibrosis. TNF (as well as IL-6 and IL-1b)
activates the enzyme indoleamine 2,3-dioxygenase (IDO) that catabolizes tryptophan via kynurenine pathway. Formation of neuroactive metabolites of kynurenine
(KYN) such as kynurenic acid (KYNA) and picolinic acid (PA) can contribute to nerve damage. SARS-CoV-2 and M. leprae co-infection may trigger a higher pro-
inflammatory state leading to increased neuropathy and possibly triggering leprosy reactional episodes.
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Souza Sales et al., 2011). In vitro studies demonstrated that M.
leprae infection leads to an increase in IDO1 expression and
activity in human monocytes by an IL-10-dependent mechanism
(Moura et al., 2012) and that IDO1 activity is associated with
increased bacterial viability inside host cells (de Mattos Barbosa
et al., 2017).

The increase in IDO1 enzymatic activity has been described
to occur by different cytokines such as IFN-g, IL-6, IL-10, and
TGF-b (Orabona et al., 2008; Pallotta et al., 2011; Moura et al.,
2012; Andrade et al., 2015; Li et al., 2016). It has recently been
shown that TLR2 activation is necessary for IDO1 induction in
monocyte-derived dendritic cells (mDCs). Moreover,
mycobacterial fractions could differentially modulate IDO1
expression and activity. While the membrane fraction of M.
leprae induced the production of pro-inflammatory cytokines
TNF and IL-6, the soluble fraction induced an increase in IL-10
in mDCs. The co-culture of mDCs with autologous lymphocytes
induced an increase in regulatory T cell (Treg) frequency in
MLSA-stimulated cultures, showing that M. leprae constituents
may play opposite roles that could possibly be related to the
dubious effect of IDO1 in the different clinical forms of disease
(Oliveira J. A. P. et al., 2021).

Although the evaluation of sera from multibacillary patients
demonstrated greater IDO1 activity when compared with sera
from paucibacillary patients, there was higher variability in the
multibacillary group. Higher IFN-g-dependent IDO1 expression
and activity are observed in cells from multibacillary patients
who have developed an acute inflammatory episode (type-1 or
reversal reaction) (Andrade et al., 2015). Patients with a type 1
reaction show an improvement in neural damage, maybe due to
the higher levels of pro-inflammatory cytokines TNF and IFN-g.
These data suggest that, in multibacillary patients, IDO1 activity
and activation of the kynurenine pathway should not be
restricted to the induction of tolerance in skin cells but may be
involved in the pathogenesis of neural damage. Future studies
should elucidate whether the increased IDO1 activity and
increased levels of kynurenine metabolites in serum can be
correlated with leprosy neuropathy in multibacillary patients.
This could be important for the identification of a neuropathy
biomarker in multibacillary patients, since neuropathy in this
group frequently evolves as a silent neuropathy, and, therefore,
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early diagnosis is fundamental for avoiding disabilities
and incapacities.
CONCLUSION

Although there are no specific studies evaluating the
immunopathogenesis of leprosy-COVID-19 co-infection, in
both diseases, the KYN metabolites are associated with a
worsening in clinical conditions, which could contribute to
neural damage, since some KYN metabolites have been
described as neurotoxic agents (Figure 2). Determining the
role of KYN metabolites in the pathogenesis of both diseases,
individually and in co-infected patients, may contribute to the
development of new diagnostic and therapeutic strategies.

The identification of effective and non-toxic IDO1 inhibitors
designed to treat infectious diseases is an urgent need. In recent
years, enormous attempts have been made to advance the IDO1
inhibitors, resulting in a diverse range of selective and potent
IDO1 inhibitors. Research is still on-going, motivated by the fact
that these inhibitors have already been used in the treatment of
some types of cancers. The IDO1 inhibitors have therapeutic
utility in various diseases and, in the near future, may be of use in
the treatment of peripheral neuropathy observed in patients with
leprosy, COVID-19, or both.
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B., and Pérez de la Cruz, V. (2017). 3-Hydroxykynurenine and 3-
Hydroxyanthranilic Acid Enhance the Toxicity Induced by Copper in Rat
Astrocyte Culture. Oxid. Med. Cell. Longev. 2017, 2371895. doi: 10.1155/2017/
2371895

Rathod, S., Suneetha, S., Narang, T., Bhardwaj, A., Gupta, S. K., Kamoji, S. G., et al.
(2020). Management of Leprosy in the Context of COVID-19 Pandemic:
Recommendations by SIG Leprosy (IADVL Academy). Indian Dermatol.
Online J. 11, 345–348. doi: 10.4103/idoj.IDOJ_234_20

Reyes Ocampo, J., LugoHuitrón, R., González-Esquivel, D., Ugalde-Muñiz, P.,
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