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Abstract: This study evaluates essentially mean annual runoff (MAR) information gain/loss for
tertiary catchments (TCs) in the Middle Vaal basin. Data sets from surface water resources (WR) of
South Africa 1990 (WR90), 2005 (WR2005) and 2012 (WR2012) referred in this study as hydrological
phases, are used in this evaluation. The spatial complexity level or information redundancy associated
with MAR of TCs is derived as well as the relative change in entropy of TCs between hydrological
phases. Redundancy and relative change in entropy are shown to coincide under specific conditions.
Finally, the spatial distributions of MAR iso-information transmission (i.e., gain or loss) and MAR
iso-information redundancy are established for the Middle Vaal basin.

Keywords: Shannon entropy; complexity; mean annual runoff; water resource; tertiary catchment;
iso-information redundancy; iso-information transmission

1. Introduction

Hydrological systems are characterised with a level of uncertainty [1,2], dispersion or compactness [3,4],
uniformity or concentration [5]. For example, higher entropy is associated with higher dispersion [3,4].
From information theory perspective, Shannon entropy is the average uncertainty of a random variable
and gives on average the minimum number of bits needed, to characterise the random variable [6].
In other words, entropy is the expected value of a random variable called information and is based
in the event’s probability [1,2]. The expected surprise about the truth can be an interpretation of
entropy-measure for uncertainty [7] or ignorance [8]. Since entropy relates to measuring uncertainty,
information relates to measuring the certainty of a system. A system generally moves to a less orderly
phase from an orderly phase and from less probable phase to more probable phase, in this way entropy
is maximized and a probability set defines the entropy magnitude [9]. Less credible predictions about
a system are usually associated with higher entropy [2].

Entropy is a measure of complexity [10], hence high entropy relates to high complexity and
relates to more information [11,12] of hydrological systems. Unpredictable, unstructured and complex
systems can be described by information entropy [12]. The distribution of water resources over a basin
is associated with entropy and usually present some dispersed configuration [5,13].

Since a basin is a complex hydrological system due to the interactions of variables such as
streamflow, evaporation, rainfall, system physical features, etc. [14], these variables are associated
with spatial and temporal information over the basin. Runoff (e.g., mean annual runoff (MAR)) on its
own has been considered as the result of a complex combination of precipitation, land use/change,
evaporation, physical catchment characteristics, etc. and plays an immense role in the planning
and operation of water resources [15,16]. Hence the “variability” of representative observed data,
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i.e., streamflow, reflects hydrological system “complexity” [14]. Hydrological adaptive complex systems
are generally characterised by diversity, connectedness, dispersion, concentrating, resilience and
resistance [17] and could be basins for instance. Entropy theory was shown to be a good tool to
understand water and land resources as adaptive complex systems, i.e., involving many units with
multidimensional functions and benefits [18]. These units are defined at three levels: system-level
agents, sector-level agents and user-level agents [18].

There is no doubt Shannon entropy has been used widely in hydrology and water
resources, specifically for measuring information content of variables and information transmission
(i.e., gain or loss) among variables [19,20]. These variables characterise the hydrological system.
The reduction of uncertainty of a hydrological system is indirectly the gain of information of the
system [1,20]. Conversely, the increase of uncertainty is indirectly a measure of the loss of information
of the hydrological system. This shows the equivalence between information and the reduction of
uncertainty [6]. Hence an information gain or loss can express the difference between two uncertainty
values [8]. In the perspective of Shannon entropy, three main aspects of hydrological information gain
or loss could be considered:

• Information transfer/transmission among hydrological variables, which belong to different sites,
e.g., rainfall stations or streamflow gauges. This is usually done via models [1,20,21]. For instance,
information transfer among rainfall data sets, was defined spatially and temporally, via univariate
and multivariate models [22,23] and streamflow modelling [24]. Information gain or loss is defined
by the informational correlation or transferrable information between observed and simulated
streamflow (rainfall). The directional information transfer index (DIT) was derived as a measure
of information transfer between two given hydrological stations [21] and normally varies between
0 and 1. Generally, the DIT decreases for stations situated far away from the central stations [4].
There is information gain from the sending station to the receiving station and information loss
for the opposite. The transferable information is referred to as transinformation, e.g., [25,26],
mutual or overlapped information [26] and shared or redundant information [27]. In this way,
it refers to common information among variables [28]. Information redundancy was shown to
be very important in rainfall network optimization, i.e., the first rainfall site selected has the
highest entropy and the last one having the least redundancy in a way to reduce uncertainty in the
network [27,29]. This implies that the first station with the minimum overlapped information is
added first to the station having highest entropy [26]. The ultimate goal is to maximise information,
hence minimise redundancy [30]. Redundancy relates to repetitive information, which does not
bring essentially new knowledge about the system. Other than information theory, information
redundancy can be determined from a set of hydrologic statistics such as K-means, standard
deviation, self-organising map (SOM) clustering to categorise flow regimes [31], which are not
covered in the scope of this study.

• Information gain can be understood in the like context of Kullback Leibler (KL) divergence,
which characterises the classic information difference [11]. It is a measure of the relative
entropy when comparison is carried out on two distributions; one is assumed close to the true
uncertainty and the other is an estimated uncertainty [7]. In the context of KL information, the
distance between two probability distributions can be measured by the relative entropy [32].
For the classic information difference that will apply to this study, KL defines the proportion
of information that a hydrological system would require to adjust itself to the maximum
state of uncertainty [11]. In this sense, KL is related to the relative entropy as a measure of
complexity [12,19]. Spatial variation of relative entropy was found to be a good measure of
the complexity of streamflows since the results obtained were consistently produced and were
independent of the magnitude of the data [11]. KL is known as the complexity ratio called
also redundancy [11]. Low values of complexity ratio are associated with complex systems
(high uncertainty) while its high values are associated with low complex systems (low uncertainty).
Redundancy (R) varies between 0 and 1, which correspond to a system of high uncertainty
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and low uncertainty respectively. These 2 values relate to complete unknown information
(i.e., high ignorance) and known information (i.e., low ignorance) about a hydrological system.

• The relative change in entropy (RCE) of a hydrological system could be defined from one phase
to the other and these phases occur in different periods of time. Information gain/loss between
sets of data [13] was implicitly approached as the relative change of marginal entropy between
two phases. In essence, the difference in entropies between two consecutive phases [3] is compared
with the entropy of the initial phase.

The current study is specifically aligned with the last two aspects of information gain or loss.
Firstly, to account for the information transmission associated with MAR of tertiary catchment (TCs)
of the Middle Vaal basin, RCE is evaluated between consecutive phases. In hydrology of South Africa,
a TC is divided into quaternary catchments (QCs) which are the basis for the estimation of MAR in
water resources management. A quaternary catchment is the foundational areal unit of the river basin
and it is considered preferable to vary the catchment area according to runoff, i.e., the bigger the runoff
volume, the smaller the QC. TC is a catchment formed by sub-catchments, i.e., QCs sharing similar
hydrological characteristics. In a similar way, a specific group of TCs yields a secondary catchment.
It implies that the primary catchment is composed of a group of secondary catchments with similar
hydrological properties. The nomenclature of a QC has 4 characters. The first and last characters are
letters; the intermediate characters are numeric values. For example in the quaternary catchment C23A,
C is the primary catchment, in this case the Vaal region, 2 relates to the secondary catchment, 3 is the
tertiary catchment and A characterises the quaternary catchment. This nomenclature was initiated by
the Department of Water and Sanitation (DWS) as well as the Water Research Commission (WRC) of
South Africa, which operate under the South African government. In South Africa, water researchers,
consulting firms and other entities have adopted this nomenclature.

The Lower Vaal together with the Upper Vaal and Middle Vaal basins forms the current
Vaal management area. Like [13,15], surface water resources (WR90) of South Africa 1990 (WR90),
2005 (WR2005) and 2012 (WR2012) data sets were used for MAR, specifically for the Middle Vaal.
WR90, WR2005 and WR2012 data sets were considered in this study as the different phases of the
water resources of South Africa. It should be noted that, in the history of hydrological appraisals of
South Africa, studies are commissioned by WRC and the first comprehensive data set in its kind was
WR90. This data set was commissioned in 1990 and completed in 1994. It provided valuable data and
information for water resources planning and development [33], since then it has been adopted by
users from different categories, such as students, researchers, engineering practitioners and consultants,
government institutions, and water industry users [16]. In a period of 15 years later, another study of
surface water resource appraisal was commissioned to update the first data set and yielded the WR2005,
which was completed in 2011. In 2012, WRC initiated an update of WR2005 to give birth to WR2012,
which was finalised in 2016. So far WR90, W2005 and WR2012 are the well documented hydrological
phases and are freely ready available from WRC. Updating hydrological data is common since data
and information impact on the decision making for the operation, planning and management of water
resources. The MAR spatial distribution impacts on water resources management and development.
Secondly, information redundancy is evaluated to establish the necessary information contained in
each phase. The study also established a relationship between RCE and R, under specific conditions.
Finally, a spatial distribution of information redundancy associated with MAR was also derived for
the Middle Vaal basin, i.e., areas of the same redundancy called iso-information redundancy could be
identified. The spatial distributions of information transmission derived specifically from RCE were
also established. In this way, iso-information transmission zones can be determined.

It should be noted that in the old configuration of 19 water management areas (WMAs)
of South Africa, Middle Vaal was categorised as a WMA [16,34], which is essentially a basin.
The old configuration was based on practical considerations (hydrological, economical, etc.), unlike
the new configuration which has nine WMAs was determined on a bias of political considerations.
Moreover, no publication of surface water resources exists yet with reference to this new configuration.
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WR90, WR2005 and WR2012 data sets were published within the context of 19 WMAs and the same
data are currently used. Hence the new configuration does not impact on hydrological data in the
Middle Vaal basin. This study will use the word “basin” more than “WMA”, with respect to Middle
Vaal. The words complexity ratio and information redundancy will be used interchangeably. Often the
word information before ”gain” or “loss” will be omitted to mean information gain or loss. Change
between WR90 and W2005 phases will be written as WR90-W2005. The same applies to change between
WR2005 and WR2012. Information transmission will be understood as loss or gain of information,
specifically when referring to the relative change in entropy between phases. Information transfer and
information transmission will mean the same.

The rest of the paper is organised as follows: Section 2 presents an overview on the Middle Vaal
basin and data used in the study. Section 3 deals with the methodology used to determine ultimately
the spatial configuration of information transmission among phases and information redundancy
contained in each phase. The complexity measure of hydrological systems from a theoretic information
aspect is critical in this section. The equivalence between R and RCE is also derived. Section 4 gives
results and discussion of the application of the methodology on Middle Vaal basin. Conclusions and
suggestions are presented in Section 5.

2. Study Area and Data Availability

The Middle Vaal basin is located in South Africa, specifically between the Upper Vaal and Lower
Vaal basins. It shares borders with the Crocodile (West) and Marico and the Upper Orange basins [34].
The Vaal River plays a major role as the main river in the Vaal region (Upper, Middle and Lower
basins), which is the economic hub of Gauteng Province and of South Africa at large. Figure 1 shows
the location of Middle Vaal basin, which is between 25◦30’ and 28◦30’ E longitudes and between 25◦30’
and 29◦30’ S latitudes. The map of Africa in Figure 1 has been added to give a context of the study area
in the continent. Noticeable spatial fluctuations in climatic conditions, water availability, economic
development and population distribution charasterise the Middle Vaal water management area.Entropy 2019, 21 5 

 

 
Figure 1. Tertiary catchments comprising quaternary catchments in the Middle Vaal basin of South Africa (ZA) 
shown at the left. The African map has been extracted from Aquastat [35], as presented at the right. 

Grassland is the main vegetation. Middle Vaal basin has relatively a flat topographic feature 
with the occurrence of hilly feature in the South-East. The geologic formation is largely dolomite 
from Orkney towards the northern area of the basin. Mainly gold mining around Welkom and 
Klerksdorp, agriculture and trade are the economic activities. The basin contributes 4% 
approximately to the gross domestic product (GDP) of South Africa. The basin has a temperate 
climate, which is generally semi-arid since South Africa is a semi-arid country with its mean annual 
rainfall of 400 mm generally below the world average mean annual rainfall. Due to aridity, a high 
proportion of water is lost through evaporation due to excessive temperatures experienced in 
summer for most regions of the country [34,36]. In Middle Vaal, precipitation is generally in the 
form of rainfall, which occurs in summer time, i.e., from October to December, with December and 
January as the hottest months. In January alone, the highest Class A-pan evaporation varies 
monthly between 180 mm to 260 mm, whereas the month of June experiences the lowest 
evaporation between 80 mm and 110 mm [36]. The mean annual precipitation (MAP) ranges from 
700 mm to 400 mm in the South-East and in the West of Middle Vaal respectively. There is 
occurrence of thunder storms during summer rainy season. The mean annual evaporation (MAE) is 
approximately 1900 mm, which is greater than the MAP [34]. Hence there is evidence from the 
different studies led by WRC and compiled in the form of data sets, i.e., WR90, WR2005 and 
WR2012 that the mean annual evaporation is well above the mean annual rainfall [37]. This 
situation led South Africa in the past to build more water storage capacities, in particular hydraulic 

Figure 1. Tertiary catchments comprising quaternary catchments in the Middle Vaal basin of South
Africa (ZA) shown at the left. The African map has been extracted from Aquastat [35], as presented at
the right.
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To strategise the water resource management, three sub-areas were considered in the Middle
Vaal [34], i.e., the Rhenoster-Vals sub-area comprising TCs C24 and C25, the Middle Vaal sub-area
formed by C60 and C70 and the Sand-Vet sub-area covering C41, C42 and C43.

Grassland is the main vegetation. Middle Vaal basin has relatively a flat topographic feature with
the occurrence of hilly feature in the South-East. The geologic formation is largely dolomite from
Orkney towards the northern area of the basin. Mainly gold mining around Welkom and Klerksdorp,
agriculture and trade are the economic activities. The basin contributes 4% approximately to the
gross domestic product (GDP) of South Africa. The basin has a temperate climate, which is generally
semi-arid since South Africa is a semi-arid country with its mean annual rainfall of 400 mm generally
below the world average mean annual rainfall. Due to aridity, a high proportion of water is lost
through evaporation due to excessive temperatures experienced in summer for most regions of the
country [34,36]. In Middle Vaal, precipitation is generally in the form of rainfall, which occurs in
summer time, i.e., from October to December, with December and January as the hottest months.
In January alone, the highest Class A-pan evaporation varies monthly between 180 mm to 260 mm,
whereas the month of June experiences the lowest evaporation between 80 mm and 110 mm [36].
The mean annual precipitation (MAP) ranges from 700 mm to 400 mm in the South-East and in the
West of Middle Vaal respectively. There is occurrence of thunder storms during summer rainy season.
The mean annual evaporation (MAE) is approximately 1900 mm, which is greater than the MAP [34].
Hence there is evidence from the different studies led by WRC and compiled in the form of data
sets, i.e., WR90, WR2005 and WR2012 that the mean annual evaporation is well above the mean
annual rainfall [37]. This situation led South Africa in the past to build more water storage capacities,
in particular hydraulic structures such as dams and to establish water transfer schemes among basins
in a way to balance water demand and supply.

Table 1. Depicts tertiary catchments including their number of quaternary (QCs), catchment area, MAR
(mean annual runoff), MAE (mean annual evaporation) and MAP (mean annual precipitation) in the
Middle Vaal basin, as obtained from [37].

Tertiary
Catchment

Catchment
Area (km2)

MAE
(mm)

MAP
(mm)

MAR (WR90)
× 106 m3

MAR (WR2005)
× 106 m3

MAR (WR2012)
× 106 m3

Number
of QCs

C24 7512 1291 418 174 154 153 9

C25 7055 1475 418 36 27 37 6

C41 6994 1431 514 317 199 193 9

C42 7555 1418 618 226 197 181 11

C43 2765 1119 306 11 10 22 4

C60 6765 1352 503 166 178 178 9

C70 6157 1496 555 192 147 155 10

Data for tertiary catchments were extracted from WR2012 reports [37] and are displayed in Table 1.
Details of data on QCs can be obtained from these reports, which are the recent publications for
water resources of South Africa and include the previous ones, i.e., WR90 and WR2005. In principle
hydrological data from 1920 to 1989, 1920 to 2004 and 1920 to 2012 are included in WR90, WR2005 and
WR2012 respectively. In Table 1, the values of MAE and MAP are based on WR2012. It is observed that
despite similar TC areas, the huge difference in MAR between C24 and C25 can be due to catchment
characteristics other than area. Such characteristics are, for instance, geology, soil texture, topography,
vegetation, etc. The topography in C25 is predominantly flat as compared with C24 [38], with soil
depths generally moderate in the Middle Vaal basin. From the geological formation, there are more
sedimentary and exclusive rocks in C24 than in C25 [38]. For instance the topography of C24 is
relatively higher than that of C25 and can favor more runoff in C24. The geology of C24 may lead to
lower infiltration rate and higher runoff as opposed to C25. The combined effect of the abovementioned
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characteristics may contribute to the higher net MAR for C24 as opposed to C25. The data from WR90
show clearly that the dimensionless parameter related to the reduction in runoff volume events is
lower in C24 than in C25 [39]. In this case, the parameter for C24 is approximately half of that of C25
and expresses also the average infiltration rate [39], which should be higher for C25 than for C24.
A similar observation can be made between C42 and C43, in terms of their MAR.

3. Methods

In this section, entropy is explored as a measure of complexity of hydrological systems.

3.1. Relative Entropy

In its discrete form, the Shannon marginal entropy index S(X)j of a hydrological variable X
(e.g., runoff) in the j-th TC catchment (j = 1, . . . , q) is determined by Equation (1):

S(X)j =
k

∑
i=1

S(xi) (1)

where q is the number of TCs in a basin and S(xi) is the marginal entropy of the event xi and is given
by Equation (2) below:

S(xi) = − xi
XT

log
xi
XT

(2)

The variable X takes on event value xi (i = 1, 2, 3, . . . , k) and the total value of events is XT;
i.e., XT = ∑k

i=1 xi. The value xi can be MAR for a specific i-th QC in a given TC of a basin, i.e., the Middle
Vaal. The MAR of a TC is made of the MAR contribution from each QC. The base of the logarithm is
the unit of S(xj). The unit is in bits, in Napiers, and in decibels (dB) for bases 2, e and 10 respectively.
Equations (1) and (2) show that entropy can be bound generally between 0 and Sj,max (maximum
entropy in the j-th TC). Sj,max corresponds to the equi-probable outcomes of the hydrological variable
and is equal to logN (N is the number of QCs in the j-th TC). The distribution of values closer to 0 is
compact as opposed to values closer to Sj,max showing an evenly dispersed or spread distribution [3].

Equation (1) satisfies the following condition:

k

∑
i=1

xi
XT

= 1 (3)

The relative entropy is the ratio between uncertainty and maximum entropy [1,11,12,19],
as defined in Equation (4) with respect to the j-th TC:

rj =
Sj

Sj,max
(4)

The bigger the ratio, the higher the uncertainty of a system. Hence hydrological systems having
entropy close to the maximum entropy will display higher uncertainty that characterises higher
dispersion of the variable distribution. Relative entropy is sometime called information discrimination
or information divergence between two distributions and relates to information increase, or decrease [6].
In the relative entropy expression, the maximum entropy is a normalising factor for marginal
entropy [10,11]. For this study, relative entropy is defined for a given phase; however it makes
a comparison between the actual entropy and the maximum entropy of the phase [40,41]. In principle,
entropy assessment of complex systems should involve more than one variable.

3.2. Complexity Ratio or Information Redundancy

Redundancy consists in repeating the signal that does not generate new information [42] for
a given system. That is to say, redundant information does not change the usefulness of the existing
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information contained in the system. However, it is cautioned that redundant information may
be helpful to detect errors in the system and possibly correct them [43]. Redundancy is generally
considered to be the complement of relative entropy and shows the complexity of a system [11],
i.e., one minus relative entropy defines information theoretic redundancy [43]. The redundancy Rj of
the j-th TC in a basin is given by Equation (5) below:

Rj =
Sj,max − Sj

Sj,max
(5)

Rj = 1 − rj (6)

where rj is the relative entropy for j-th TC and the remaining terms have been defined previously.
The more complex is the hydrological system, the lower the redundancy and vice versa. Referring

to [11,42], complex hydrological systems could be of interest since they contain useful information and
minimum redundancy. Otherwise the information in the system is relatively low. This is a consequence
of the principle of maximum entropy. Like relative entropy, the upper bound in the information
redundancy equation is the maximum entropy, which is the common denominator for both relative
entropy and redundancy. It can be viewed as a normalised or standardized indicator of the information
gain [11]. Thus, like relative entropy, redundancy is defined for a given phase (at a given time); however
it makes a comparison between the information gain and the maximum entropy. Since it is almost
impossible to have idealised systems (i.e., error free), information redundancy will always be part
of any system; i.e., it can be part of the system without losing information of the system or it can be
deleted in a structured way without loss of information [43].

3.3. Relative Change in Entropy (RCE) as a Measure of Information Gain (Loss)

RCE differs essentially from relative entropy and redundancy in the sense that it is defined
between 2 hydrological phases occurring respectively at different times. The concept was used
by [13,15] and a similar concept was used by [3]. RCE shows the uncertainty change involved when
a system moves between phases 1 and 2. Mathematically, the expression of RCE(∆j,2−1) for the j-th TC
that moves from 1 (initial phase) to 2 (final phase) is given by Equation (7):

∆j,2−1 =

[
Sj,2 − Sj,1

Sj,1

]
× 100 (7)

Unlike R and r which are always positive, RCE can be positive or negative depends on the
uncertainty levels that characterise the two phases. Positive and negative changes in RCE correspond
to loss of information and gain of information respectively. Moreover, the common denominator in the
expression of RCE is not necessarily the maximum entropy, unlike for R and r. The rest of Section 3
gives the steps undertaken to compute relative entropy, redundancy, relative change in entropy and to
determine the maps related to iso-information transmission/redundancy:

3.4. Determination of Relative Entropy and Information Redundancy

For a particular phase, relative entropy and information redundancy of a hydrological system
were computed by Equations (4) and (6), respectively. Based on its function on water resources
sustainability and resilience [13,15], hydrological system (phase) was mainly characterised by MAR.
When r approaches a value of 0, the spatial distribution of MAR will be concentrated in one TC or few
TCs. When r approaches 1, the MAR spatial distribution will be dispersed evenly across the TCs in the
Middle Vaal basin.

On the contrary, the information redundancy, as the complementary part of relative entropy,
will take 1 and 0 values respectively. Low R will have less repetition in the spatial configuration of MAR,
and will not necessarily bring new information about the hydrological system. R and r are approached
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in this study as intraphase information parameters, derived from their classic determination as
defined earlier.

3.5. Determination of Relative Change in Entropy between Phases

The relative change in entropy between two consecutives phases 1 and 2 was computed by using
Equation (7). In the specific case of Middle Vaal, the expressions of RCE for WR90-WR2005 and
WR90-WR2005 in the j-th TC, were given by Equations (8) and (9), respectively:

∆j,WR2005−WR90 =

[
Sj,(WR2005) − Sj,(WR90)

Sj,(WR90)

]
× 100 (8)

∆j,WR2012−WR2005 =

[
Sj,(WR2012) − Sj,(WR2005)

Sj,(WR2005)

]
× 100 (9)

Normally smaller values of RCE implied that the distribution of the yield of water resources
remained almost unchanged when the basin changed from phase 1 to phase 2. Since a methodology
for the determination of thresholds values for the 2 entities, i.e., R and RCE is almost inexistent in the
literature, values less than 10% were arbitrarily considered to imply that these entities remain almost
constant. In the context of this study, RCE is an interphase information parameter unlike R and r.

3.6. Determination of Equivalence between RCE and R

When the initial phase approaches the maximum entropy, it can be shown that information loss
calculated from RCE between 2 successive phases can be simply determined from the information
redundancy of either phase 1 or 2 and vice-versa. Hence, at the limit when the initial phase is
characterised with higher entropy, e.g., close to the maximum entropy, Equation (10) can be obtained
as follows: [

Sj,2 − Sj,1

Sj,1

]
= −R (10)

Equation (10) can be viewed as a special case that establishes the equivalence between information
transmission and information redundancy. Strictly speaking, there is equivalence only when the
absolute value of information transmission between phases is considered. The above equation enabled
to compare relative change in entropy and information redundancy and to check the validity of the
special case.

3.7. Defining Iso-Information Transmission and Iso-Information Redundancy Maps

Iso-information transmission is defined as the same proportion of information transfer capability
that characterise two or more areas in a basin, between two hydrological phases. Hence it relates
to the same level of gain or loss of information between phases in such specific areas respectively.
Iso-information redundancy defines the same level of redundant information displayed by two or
more areas in a basin, when the actual entropy of such areas is compared to their maximum theoretical
entropy, for a specific phase.

The spatial representation of RCE gave the determination of iso-information transmission maps
for WR90-WR2005 and WR2005-WR2012. Hence the zones of the same RCE could be determined and
analysed. Similarly, the iso-information redundancy maps of TCs in the Middle Vaal was determined
and analysed for WR90, WR2005 and WR2012. There is no universal rule to define entropic zone values;
hence they are usually determined arbitrarily as far as entropy related studies are concerned [5,13,44].
For that, the range of RCE (R) was arbitrarily divided into intervals to define zones of the same
information transmission (information redundancy). The maps in this case could show the level of
dispersion or concentration of MAR over TCs, and be used as an indicator to monitor catchment yield
(MAR) distribution in terms of water resources.
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4. Results and Discussion

4.1. MAR Information Transmission in the Middle Vaal Basin between 1990 (2005) and 2005 (2012)

The computation of information transmission values between different phases presented in
Table 2, relate to RCE values. It was found out that positive or negative values occurred. Positive
values of information transmission mean loss while negative values yield gain. It can be observed
that the values in this table are relatively small and vary between −0.067 to 0.038, i.e., −6.7% and
3.8% respectively. This could mean that no new major hydrological changes with respect to water
resources occurred between the different phases in the Middle Vaal basin. Similar results were obtained
in the case of the Upper Vaal Catchment [15]. This could also support that the framework of water
resources management and development in the Middle Vaal region hasn’t undergone drastic changes;
nonetheless there has been an update in the water strategy at national level. In fact the new national
water strategy espouses fundamentally water management principles [45] similar to the old one.

It was also noticed that the values of information transmission derived for WR90-WR2005
and those for WR2005-WR2012 did not correlate significantly and the coefficient of correlation
was −0.3. Nonetheless this could mean that, given a specific TC, MAR information transmission for
WR90-WR2005 and WR2005-WR2012 varied slightly in opposite direction.

Table 2. Shows entropic calculations, i.e., marginal entropy in decibels (dB), information transmission
and redundancy for tertiary catchments (TC) in the Middle Vaal basin.

Tertiary
Catchment (TC) Entropy (S) (dB) Information Transmission

(RCE) Redundancy (R)

WR90 WR2005 WR2012 WR90-WR2005 WR2005-WR2012 WR90 WR2005 WR2012

C24 0.899 0.870 0.888 −0.033 0.022 0.0041 0.037 0.016

C25 0.776 0.724 0.745 −0.067 0.029 0.0022 0.069 0.042

C41 0.884 0.889 0.873 0.0060 −0.018 0.073 0.068 0.084

C42 1.020 1.025 1.024 0.0045 −0.0011 0.020 0.015 0.016

C43 0.584 0.565 0.587 −0.003 0.038 0.03 0.061 0.026

C60 0.854 0.870 0.892 0.018 0.026 0.104 0.088 0.064

C70 0.974 0.970 0.971 −0.0042 0.0010 0.026 0.030 0.029

RCE and R are defined on a unit scale, and can be converted into % by multiplying by 100.

The spatial distribution of iso-information transmission between the different phases was
generated as shown in Figures 2 and 3.

These are maps for TCs of the same information gain or loss associated with MAR, between
phases. For instance TCs C60, C41and C42 could be considered to have the same level of hydrological
information transmission between WR90 and WR2005. A similar observation was made between
WR2005 and WR2012. In particular, Figure 2 showed that the East South had the highest information
loss while gain was concentrated more in East Northern part of the Middle Vaal for WR90-WR2005.
Between 1990 and 2005, East South has moved towards the highest degree of uncertainty of MAR as
opposed to East North.

Figure 3 showed that information gain was concentrated in the South part, i.e., C42 and C41 for
WR2005 and WR2012; hence information loss occurred in the rest of the Middle Vaal basin. The highest
loss of information was in the Central part with dominance towards the East part. It is believed
that areas of highest information loss could be an alarming situation for water managers, especially
when hydrological extreme events had to occur in those areas. It was observed that C43 and C70 was
the only TC pair to have the same sign of information transmission, i.e., positive and negative for
WR90-WR2005 and WR2005-WR2012 respectively.
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4.2. MAR Information Redundancy in the Middle Vaal

The information redundancy values were computed from relative entropy values, as presented
in Table 2. This table does include relative entropy since they were just used to derive redundancy.
Table 2 shows also that information redundancy varied between 0.041 and 0.104, i.e., 4% and 10%
respectively. The low values of information redundancy could mean that the uncertainty of MAR
contained in each TC for the different phases was generally relatively higher. This could suggest that
the MAR spatial distribution was associated with high dispersion or spread in the TCs of the Middle
Vaal basin. For each phase, the small values of redundancy, i.e., high complexity ratio suggested that
generally the MAR of TCs in the Middle Vaal were not concentrated in one or few areas.

High complexity could mean that more information could be needed to reduce the uncertainty
associated with MAR of TCs in Middle Vaal. Enhancing good decision making would be needed
for further development and operation of the water resources in this basin and could likely
lessen uncertainty.

The MAR spatial distribution of TCs of the same information complexity for each hydrological
phase was generated as shown in Figures 4–6. These figures depict the iso-information redundancy
of MAR in the TCs of Middle Vaal for WR90, WR2005 and WR2012 respectively. Although its values
were relatively small, the information redundancy was divided into 3 zones as displayed in the
above-mentioned figures. For the 3 phases, the spatial distribution of information redundancy did not
present exactly similar patterns.
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For instance, in Figure 4, it could be observed that TCs C24 and C25 needed the same amount of
information to reduce their uncertainty associated with MAR; similarly, for TCs C60 and C41; and C70
and C43. The first and last zones contained the same number of TCs, while more TCs were in the
second zone. The zone of relatively higher complexity included tertiary catchments C24 and C25,
which were situated mostly in the North West of Middle Vaal. The South East part had relatively high
information redundancy, which corresponded to relatively low information complexity. The North
West of the Middle Vaal could be believed to have relatively higher dispersed distribution of MAR
than the South East. In general, due to small values of information redundancy in the different zones,
the distribution of MAR was well dispersed across Middle Vaal for WR90.

In Figure 5, the zone of relatively high redundancy dominated WR2005 phase and covered the
Central and Southern parts of the basin; i.e., C60, C41, C43 and C25. These parts could be believed
to contain lower information associated with MAR as compared to the rest of the basin. TC C42
situated in East Southward displayed the lowest information redundancy followed by C24 and
C70. C42 had relatively the highest complexity and presented the most likely dispersed spatial
distribution of MAR. The West Southern and Central Eastern parts were dominated by relatively high
information redundancy. Hence their complexity associated with MAR was relatively lower. Unlike
WR90, the distribution of MAR was fairly spread across Middle Vaal for WR2005.
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In Figure 6, the spatial distribution of MAR was depicted for WR2012. The North Western and
North Eastern parts of Middle Vaal basin presented relatively low information redundancy, which
were believed to be more complex than other parts.

For both WR2005 and WR2012, the spatial distribution of information redundancy had a similar
pattern in South-East, i.e., C70, C60, C42 and C41. Although all 3 phases WR90, W2005 and W2012
had low level of information redundancy, their bottom Southern part, i.e., TC C41 had a high level of
information redundancy, hence associated with relatively low level of complexity.

In general, it could be suggested that the existing information contained in MAR did not contain
much of unnecessary repetition with respect to its spatial distribution in Middle Vaal. This aspect
could be useful for efficiently developing, managing and operating water resources in this basin.
However, entropy theory does not specify exactly the magnitude of MAR that constitutes the redundant
information spatially and how it should be explored without impacting on the efficiency of water
resources management. Nonetheless, in the current situation of water resources of South Africa,
on a spatial distribution the overall picture at tertiary level could be that the information contained in
MAR tends to be high while the level of redundancy seems to be less.
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4.3. Comparison between Relative Change in Entropy and Information Redundancy of MAR

From the above results, C24 and C25 were the only TCs for which RCE and R values
almost coincide in magnitudes. For these specific TCs, the information transmission magnitude
for WR90-WR2005 could be seen as the equivalent of redundant information in WR2005. Therefore, for
C24 and C25 situated in the North-East, the knowledge of redundant information at WR2005 alone
could be sufficient to characterise the information transmitted between WR90 and WR2005.

This preliminary study was restricted only to entropy of MAR; however the inclusion of other
variables (such as economic indicators, population growth, evaporation, rainfall, land use/change and
many others) could affect the findings.

4.4. Hydrological Implications of Iso-Information Transmission/Redundancy

Referring to the previous section, for a specific tertiary catchment in a basin, iso-information
transmission can be translated into areas that display the same level of information gain or loss between
hydrological phases. For instance, loss of hydrological information in such areas would imply increase
in uncertainty, thus increase in entropy of the MAR spatial distribution. Beyond the zone of catchment
resilience, an increase of entropy in those specific areas could be exacerbated by the occurrence of
extreme hydrological events such as floods or droughts [15]. These events could be associated with high
costs, e.g., loss in human life, livestock and/or damage of water infrastructure. Hence high entropy
of MAR associated with high information complexity could be a warning sign for the management
and operation of water resources, which could be vulnerable. In this way, decision-makers could
use iso-information transmission maps in identifying likely areas of the same level of vulnerability,
resilience or sustainability in so far as water resources are concerned.

For areas in a tertiary catchment within the same hydrological phase, iso-information redundancy
depicts the same degree of information complexity associated with MAR. High information complexity
could show a high dispersion of MAR in areas of TCs, hence associated with relatively low redundancy.
Previous studies showed that the determination of the minimum redundant information was critical
for optimizing hydrological networks [27,29]. In this respect, hydrologists made use of adequate
information by reducing the minimum information redundancy contained in different hydrological
stations/gauges. Hence water managers could use iso-information redundancy maps to determine
areas depicting a certain proportion of unnecessary information. This information could not be of use
and could probably be costly in practice, e.g., for design, operation and optimisation of water resources.
From a theoretical aspect, threshold values for iso-information transmission and iso-information
redundancy remain still to be determined, with respect to MAR as a unique variable. The determination
of thresholds could be convoluted when additional climatic variables and anthropogenic factors could
be considered, besides runoff.

5. Conclusions

The development of the Middle Vaal basin catchment is instrumental to Gauteng, which is
the economic hub of South Africa. The information redundancy contained in MAR data as the
equivalent information complexity was evaluated to assess the level of dispersion of MAR in the
basin. Based on WR90, WR2005 and WR2012 datasets, the MARs in the TCs of Middle Vaal basin were
characterised by low redundancy (high complexity), hence they could contain useful information for
further development and management of water resources in the basin.

The study has also the merit to have derived the spatial iso-information transmission and
iso-information redundancy distribution of TCs between 1990 and 2012. The distributions of MAR
illustrated in the form of maps could be useful for water resources managers and planners to better
understand the evolution of MAR and monitor the catchment yield in the form of runoff. Information
transmission was translated into highest degree of uncertainty associated with MAR in the East
Southern part of the Middle Vaal between 1990 and 2005; and in the Eastern part between 2005
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and 2012. Water resources decision-makers should deal with care the situation of high entropy,
when approaching extreme events such as droughts and floods.

An assessment of information redundancy revealed that the proportion of relatively low
complexity was prevalent in the South part of the Middle Vaal for all 3 datasets. The pattern of
spatial distribution of information redundancy was not strictly the same everywhere; nonetheless there
was partially similarity between WR2005 and WR2012, specifically for the East South part of the basin.
In the South of Middle Vaal, the information complexity was relatively low to be likely associated with
low dispersed MAR in TCs. Generally information transmission and information redundancy were
relatively small and could not exceed 10%.

In a very specific case, it could be possible to determine directly information transmission between
2 phases from the information redundancy for only one phase. Although information redundancy
was shown to be minimal through the current state of water resources management in the Middle
Vaal, theoretic entropy concept does not give the magnitude of MAR that contributes to redundant
information and how this should be used or removed in order to maintain an acceptable level of
efficiency for managing water resources.

This preliminary study has the limitation of defining spatial complexity based on MAR only.
Further research could investigate the impact of hydrological variables (other than runoff) and
anthropogenic factors on the spatial distribution of information redundancy. The evaluation of
complexity in this multivariate configuration could be enlightening. It could be suggested that
the study be expanded to secondary catchments in the Middle Vaal and to basins other than Middle
Vaal. Updated publications beyond WR2012 data sets could be used when available.
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