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OBJECTIVEdTo define a panel of novel protein biomarkers of renal disease.

RESEARCH DESIGN AND METHODSdAdults with type 1 diabetes in the Coronary
Artery Calcification in Type 1 Diabetes study who were initially free of renal complications (n =
465) were followed for development of micro- or macroalbuminuria (MA) and early renal func-
tion decline (ERFD, annual decline in estimated glomerular filtration rate of$3.3%). The label-
free proteomic discovery phase was conducted in 13 patients who progressed toMA by the 6-year
visit and 11 control subjects, and four proteins (Tamm-Horsfall glycoprotein, a-1 acid glyco-
protein, clusterin, and progranulin) identified in the discovery phase were measured by enzyme-
linked immunosorbent assay in 74 subjects: group A, normal renal function (n = 35); group B,
ERFD without MA (n = 15); group C, MA without ERFD (n = 16); and group D, both ERFD and
MA (n = 8).

RESULTSdIn the label-free analysis, a model of progression to MA was built using 252
peptides, yielding an area under the curve (AUC) of 84.76 5.3%. In the validation study, ordinal
logistic regression was used to predict development of ERFD, MA, or both. A panel including
Tamm-Horsfall glycoprotein (odds ratio 2.9, 95% CI 1.3–6.2, P = 0.008), progranulin (1.9, 0.8–
4.5, P = 0.16), clusterin (0.6, 0.3–1.1, P = 0.09), and a-1 acid glycoprotein (1.6, 0.7–3.7, P =
0.27) improved the AUC from 0.841 to 0.889.

CONCLUSIONSdA panel of four novel protein biomarkers predicted early renal damage in
type 1 diabetes. These findings require further validation in other populations for prediction of
renal complications and treatment monitoring.
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D espite tremendous progress in
treatment, patients with type 1 di-
abetes still live 15 years shorter,

experience excess morbidity, and have
medical costs over 10 times higher than
the general population (1). Modification
of traditional risk factors has made only
limited impact on development of renal
complications in these patients (2). Im-
provedglycemic control reducesprogression
to early stages of microvascular complica-
tions in type 1 diabetes even years later

(2), but the risk of diabetic nephropathy is
not completely abolished by improved
glycemic control (3) or lowering blood
pressure (4). Whereas rates of end-stage
renal disease have declined over recent
years, after 30 years of diabetes duration,
the cumulative incidence of end-stage re-
nal disease is 7.8% among patients with
type 1 diabetes (5). Further, the presence
of microvascular complications is associ-
ated with increased risk of developing car-
diovascular disease (6,7), which remains

the leading cause of death in people with
type 1 diabetes.

The development of renal compli-
cations and eventual end-stage renal dis-
ease in people with diabetes has been
thought to follow a linear path involving
the development of microalbuminuria,
progressing to frank proteinuria. It was
thought that renal function only declines
once proteinuria is present and that re-
gression of microalbuminuria indicates
reversal of the disease progress. However,
clinical trials have recently demonstrated
that this dogma may be incorrect (4,8,9).
First, renal function asmeasured by glomer-
ular filtration rate (GFR) declines before
the development of proteinuria, demon-
strating that there is an earlier phase of
kidney damage that could be detected and
targeted with interventions. Second, kid-
ney damage can progress even when mi-
croalbuminuria has regressed (10). The
identification of novel biomarkers for early
renal disease is therefore a high priority.

Urine is an easily accessible biological
matrix for which to identify new biomark-
ers. The urinary proteome is very complex,
containing 1,000 of proteins and peptides
that are derived from filtration/secretion/
reabsorption processes within the kidney
(11,12). Many of these proteins are sensi-
tive to alterations in the kidney, and urinary
proteomics provides a platform from
which to simultaneously quantify hun-
dreds of urinary proteins.

In this analysis, we have performed a
longitudinal label-free protein expres-
sion study to discover early biomarkers
of diabetic kidney damage before the onset
of disease. Here we describe a label-free
protein expression analysis in adults with
type 1 diabetes who developed micro-
albuminuria or a significant decline in es-
timated glomerular filtration rate (eGFR)
over 6 years of follow-up. The purpose of
this study was to define a panel of proteins
that can serve as novel biomarkers of early
development of renal disease. In addition,
we verified a selected panel of proteins
identified from the discovery analysis
via enzyme-linked immunosorbent assay
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(ELISA) in a larger cohort of patients with
type 1 diabetes who developed MA and/or
early renal decline.

RESEARCH DESIGN AND
METHODS

Study participants
Between April 2000 and April 2002, the
Coronary Artery Calcification in Type 1
Diabetes (CACTI) study enrolled 652
type 1 diabetic patients meeting the fol-
lowing criteria: age 19–56 years; no history
of myocardial infarction, angioplasty, cor-
onary artery bypass graft, or angina; cur-
rently on insulin therapy; diagnosed before
age 30 year or a clinical course consistent
with type 1 diabetes; on insulin therapy
within the first year after diagnosis; and
longstanding type 1 diabetes (range of
duration 4–52 years). This cohort repre-
sents nearly 40% of eligible patients in the
Denver metro area. Study participants
were examined at baseline, 3 years, and
6 years.
Label-free analysis. There were 465
study participants with type 1 diabetes
who were normoalbuminuric at baseline.
Over 6 years of follow-up, 25 study
participants with type 1 diabetes who
were initially normoalbuminuric devel-
oped micro- or macroalbuminuria (MA),
defined by albumin excretion rate (AER)
$20 mg/min or albumin-to-creatinine ra-
tio $30 mg/g in two overnight urine col-
lections at the 6-year visit. We randomly
selected half (n = 13) of these study partic-
ipants to conduct a proteomic discovery
phase. Participants with type 1 diabetes
who remained normoalbuminuric (AER
,7.5 mg/min) at all three study visits in
both overnight urine samples were fre-
quency matched on age and diabetes du-
ration (n = 11). A total of 72 samples for
the 24 study participants were included in
this study, where each visit was consid-
ered an individual sample.
ELISA validation study. This validation
study analyzed urine from 74 patients
with type 1 diabetes at the baseline visit
(visit 1). All subjects with the develop-
ment of new MA from baseline to either
visit 2 or visit 3 who were not previously
included in the label-free analysis (n = 24)
and all subjects with early renal func-
tion decline (ERFD) from baseline to
visit 2 or visit 3 were included in the
validation study. ERFD was defined us-
ing the method outlined by Perkins and
Krolewski (13), defined as a decline in cys-
tatin C–based eGFR of $3.3% per year.
There were 23 subjects in the CACTI

study who experienced ERFD, and all
were selected for the ELISA validation
study. There were 35 subjects with type
1 diabetes who completed all three study
visits, had baseline urine samples avail-
able, and remained normoalbuminuric
(AER ,7.5 mg/min) and did not experi-
ence ERFD over the course of the study.
All of these subjects were included as a
control group with normal renal function.
Study participants were categorized into
groups as follows: group A, normal renal
function (n = 35); group B, ERFD but no
MA (n = 15); group C, MA but no ERFD
(n = 16); and group D, both ERFD andMA
(n = 8).

Urine samples
Overnight urine collections. Study sub-
jects were asked to collect two overnight
timed urine collections at each visit. Sub-
jects were asked to record the time at
night that they last voided their bladder
and to collect all urine produced over-
night and first thing in the morning. The
total time of the collection and the volume
were recorded, and AER was calculated.
In the event that subjects were unable to
complete both timed samples, a spot urine
sample was collected and albumin-to-
creatinine ratio was calculated as an esti-
mate of AER.

Label-free expression
Sample preparation. Four milliliters of
urine from the CACTI study subjects was
desalted using a Microcon concentrator.
Each sample was buffer exchanged three
times using 3 mL of 50 mmol/L Tris, pH
8.8, to a final volume of ;100 mL, and
protein concentrations were determined
by a 2D Quant Kit (GE Healthcare, Piscat-
away, NJ). Ten micrograms of each sample
was loaded onto a one-dimensional SDS-
PAGE gel (4–20% Tris-HCl) as a quality-
controlmeasure for the desalting step. Sub-
sequent to digestion, each sample was
adjusted to 10mg in 50mL. Tenmicroliters
of 0.2% Rapigest (Waters, Milford, MA)
and dithiothreitol was added to a final con-
centration of 5 mmol/L. The samples were
reduced at 808C for 15 min and cooled to
room temperature before alkylation with
iodacetamide at a final concentration of
10 mmol/L for 30 min. Proteolytic diges-
tion was performed with endopeptidase
Lys C (Wako Chemicals, Richmond, VA)
with a final enzyme-to-protein ratio of 1:10
(w/w) for 18 h at 378C.
Liquid chromatography and mass
spectrometry. A total of 100 nanograms
of each sample was analyzed by liquid

chromatography/mass spectrometry/
mass spectrometry (LC/MS/MS), and the
order of sample injections was random-
ized over all samples. Separation and de-
tection of peptides was performed as
previously published (14). Raw LC/MS/MS
data were processed via Proteomarker soft-
ware (Infochromics, Toronto, Canada).
Data processing: qualitative and quan-
titative. The raw data for each run were
first extracted to provide MS/MS peak
lists for identification- and intensity-
based profile peak lists for quantification.
The MS/MS peak lists were subsequently
searched by Mascot version 2.2.0 (Matrix
Science, London, U.K.). The database used
was the human International Protein In-
dex (68,020 sequences). Search settings
were as follows: no enzyme specificity,
mass accuracy window for precursor ion,
10 ppm; mass accuracy window for frag-
ment ions, 0.8 Da; and variable modifica-
tion, including only carbamidomethylation
of cysteines and oxidation of methionine.
The criteria for peptide identification were
a mass accuracy of #10 ppm and an ex-
pectation value of P # 0.05. Proteins that
had two or more peptides matching the
above criteria were considered confirmed
assignments, whereas proteins identified
with one peptide regardless of the Mascot
score were highlighted as tentative as-
signments. Automated differential quan-
tification of peptides in a set of samples
was accomplished with Proteomarker as
previously described (14).
Data quality control: prefiltering, im-
putation, and normalization. Subsequent
to raw data acquisition and processing,
data quality control and prefiltering were
done for this study as previously described
(14). In brief, three-step prefiltering was
performed to resolve some of the peak
misalignment issues and remove those
peptides in the abundance matrix that
received poor quality identifications or
no qualitative identification at all. A pep-
tide was rejected if 1) its consensus se-
quence was not assigned at all or 2) the
consensus peptide sequence score was
below the 74th percentile of all scores
(Mascot score of #21.125). Next, inten-
sity summaries of identical sequence pep-
tides were integrated with annotations
retained from the diffset with the least
number of missing values (including re-
tention time, charge/mass ratio, sequence,
score, and protein annotation). A final
prefiltering procedure was carried out to
retain those peptides only for which the
observed missing count per peptide was
strictly,50% per experimental unit while
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maximizing the total number of peptides
remaining after selection. The final num-
ber of peptides retained was P = 2,584
(1,360 proteins).
Missing value imputation. Missing val-
ues in LC/MS data arise because of imper-
fect detection and alignment of peak
intensities or by true absence of expres-
sion. To account for the nonrandom na-
ture of the “missingness mechanism” at
play (nonignorable left-censoring) and
its extent in this type of data (nonignora-
ble left-censoring), we used a probability
model adapted fromWang et al. (15) that
describes “artifactual missing events.”
This model makes inferences on the miss-
ing values of one sample on the basis of
the information from other similar samples
(technical replicates or nearest neighbors).
It substitutes a missing measurement of in-
tensity with its expected value of the true
intensity, given that it is unobservable. Es-
timation of the imputation parameters was
done to minimize the percentage of re-
mainingmissing values. The initial number
of missing values after the above prefilter-
ing was 60.8%. Remaining missing values
after imputation (42.2%) represent truly
absent peptides in the samples and were
typically imputed by taking an estimate of
the background noise.
Variance stabilization of the data fea-
tures. To remove sources of systematic
variation due to experimental artifacts in
the measured intensities and to ensure
that the usual assumptions for statistical
inferences are met (normality, homosce-
dasticity), we applied a variance stabili-
zation and normalization transformation
on the variables (peptides). We used the
joint adaptive mean variance regulariza-
tion procedure recently introduced by
Dazard and Rao (16). This method over-
comes the lack of degrees of freedom and
issues with variance-mean dependency
common in high-dimensional proteomics
datasets where the number of variables
dominates the number of samples.

Statistical analysis
Unsupervised analyses. Potential groups
and outliers among the samples were
checked by a principal component analysis
(Supplementary Fig. 1) (17). Clustering
analysis was performed using complete
linkage hierarchical clustering and the gap
statistics to estimate the real number of
clusters in the data.
Predictive proteomics model. Patients
were relabeled at visit 1 with their MA
status at visit 3. This new response vari-
able was then regressed onto all peptide

expression levels at visit 1 by fitting a
generalized (logistic) linear model via
penalized maximum likelihood (elastic
net regularization) (18). Fitting was car-
ried out by fourfold cross-validation with
the help of the R implementation in the
“glmnet” CRAN package (http://cran.
r-project.org). This step allowed the se-
lection of peptide predictors as early as
visit 1 with best predictive value of pro-
gression toward MA at visit 3, as well as
the determination of individual probabil-
ity of MA progression by the patient.
ELISA verification of target urine bio-
markers. Four putative urine biomarkers
identified in the label-free proteomic anal-
ysis as having significant abundance at
visit 1were selected for verificationviaELISA,
and an additional protein progranulin was
examined, which was identified in the
analysis but not found significant at visit 1.
Urine samples collected at visit 1 from a
total of 74 study subjects were analyzed.
The five biomarkers were measured by
commercially available ELISA kits accord-
ing to the manufacturer’s instructions:
Tamms-Horsfall glycoprotein (THP) (MD
Biosciences, St. Paul, MN); human pro-
granulin (R&D Systems, Minneapolis,
MN); clusterin (BioVendor, Chandler,
NC); human a-1 acid glycoprotein (AGP)
(Assaypro, St. Charles, MO), and prosta-
glandin D synthase (ProstD) (BioVendor).
All kits have inter- and intra-assay coeffi-
cients of variation of ,15%.

RESULTS

Label-free expression analysis
Study participants in the label-free ex-
pression analysis who developed MA did
not differ from those who remained nor-
moalbuminuric over the 6 years of the
study in terms of age, diabetes duration,
sex, HbA1c, or baseline AER.

The sample preparation protocol was
reproducible across individual samples
and yielded sufficient protein concentra-
tions with ranges of 0.206 to 39 mg/mL.
Reproducible protein patterns via one-
dimensional SDS-PAGE were observed
across all samples (data not shown).
These samples were subsequently di-
gested and analyzed by LC/MS/MS as de-
scribed in RESEARCH DESIGN AND METHODS.
Distinct chromatographic differences
were observed in normoalbuminuric and
MA samples (Supplementary Fig. 2). Good
proteome coverage was observed with
1,115 tentative protein assignments (at
least one peptide sequenced with repro-
ducible chromatographic entities) and

246 confirmed protein assignments (at
least two or more peptide sequenced).
However, two samples were excluded
from subsequent analyses because of
poor LC/MS/MS data acquisition, leaving
22 samples for predictive model building.

To build a predictive model of the pro-
gression to MA among normoalbuminuric
patients, we used data from visit 1 (252
peptides corresponding to 183 proteins)
as predictors and the MA status at visit 3
as the outcome. This step formed the
basis of a predictive proteomics model,
which determines the individual proba-
bility of MA progression by the patient,
whether the patient has already been ob-
served or is incoming (new). The model
yielded an area under the receiver oper-
ating curve (AUC) of 84.7 6 5.3% with
a true positive rate of 84.7 6 12.7%,
which corresponded to 19 of 22 correctly
classified at visit 1. An equal distribution
of increasing and decreasing peptide
abundances was observed in patients
who progressed to MA compared with
patients who did not develop MA. Over-
all, 148 peptides decreased in abundance
in the MA group, while 104 peptides
increased.

Good correlation was observed be-
tween albumin peptide abundance and
label-free albuminmeasures at visit 1 with
values of AER measured previously in the
urine samples. The median AER value for
the control and MA groups was 5.64 and
9.42, respectively, whereas the label-free
median peptide intensities (normalized
and transformed scale) were 0.67 for the
control subjects and 0.85 for the MA
group. Additional example proteins that
were found to be significant in the MA
group at visit 1 were AGP, THP, clusterin,
and ProstD (Supplementary Fig. 3). In
addition, progranulin that was detected in
the LC/MS/MS analysis was included in
the verification analysis, since it has a
similar expression profile to THP in the
kidney tubule, and we detected changes
in abundances of this protein in type 1
diabetic patients with MA (data not
shown) (19).
ELISA protein analysis. Characteristics
of study participants at the baseline exam
were examined in patients with type 1 di-
abetes who remained normoalbuminuric
and had normal renal function (group A,
n = 35), patients with type 1 diabetes who
developed ERFD without MA (group B,
n = 15), patients with type 1 diabetes
who went on to develop MA but not
ERFD (group C, n = 16), and patients with
type 1 diabetes who went on to develop
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both MA and ERFD (group D, n = 8)
(Table 1). There were no differences in
age, diabetes duration, sex, systolic or di-
astolic blood pressure, total or HDL cho-
lesterol, or waist-to-hip ratio (WHR)
across groups. HbA1c was significantly
lower in group A than in group C, and
the use of antihypertensive medication
was significantly lower in group A than
in group D, whereas lipid medication use
was significantly lower in group A than in
group C. Baseline AER was significantly
lower in group A than in groups C and
D and in group B than in group D. There
were no differences in baseline cystatin C
or eGFR by group, but as per the study
design, follow-up eGFR was significantly
lower in the group with ERFD (group B)
than in patients with normal renal func-
tion and no albuminuria (group A), and in
the group with both ERFD and albumin-
uria (group D) than in the group with only
albuminuria (group C).

Levels of THP, progranulin, clus-
terin, AGP, and ProstD were compared
in groups A, B, C, and D, adjusted for
age and urine creatinine (Table 2). THP
was significantly higher in group D than
in all other groups. AGP and ProstD
were significantly higher in group B
than in group A.

Standardized z scores were calculated
for all proteins and were examined by
group, adjusting for baseline age, diabetes
duration, baseline AER, HbA1c, cystatin
C, and uric acid. Significant differences
were observed between groups A and D
for THP and progranulin and groups
A and B for AGP (Fig. 1). Both THP and
progranulin followed a stepwise pattern,
with the lowest levels in patients who
maintained normal renal function and
normoalbuminuria (group A), increasing
nonsignificantly in patients with either
ERFD (group B) or MA (group C) and
significantly increased in patients with
both ERFD and MA (group D). AGP was
also lowest among patients who main-
tained normal renal function (group A),
but was significantly increased only in pa-
tients who developed ERFD with nor-
moalbuminuria (group B). No group
differences were observed for clusterin
or ProstD (data not shown).

In multivariable ordinal logistic re-
gression modeling with study group as
the outcome, THP and progranulin were
significantly predictive of ERFD and MA
in patients with type 1 diabetes, adjusting
for baseline age, diabetes duration, uric
acid and cystatin C, total and HDL
cholesterol, and systolic blood pressure

as well as factors [baseline AER, BMI, ever
smoking, WHR 3 10, and log(HbA1c) 3
10] previously found to predict microal-
buminuria in multiple cohorts with type 1
diabetes (20) (Table 3). AGP was margin-
ally (P = 0.07) predictive of ERFD and
MA. In a model using stepwise selection
to determine the most parsimonious
model and including model 1, THP, pro-
granulin, and clusterin were selected.
Finally, a model was considered that in-
cluded THP, progranulin, clusterin, and
AGP. In this model, THP was signifi-
cantly associated with renal outcomes,
but clusterin, progranulin, and AGP
were not statistically significantly predic-
tive of the development of ERFD andMA.
The C-statistic, a measure of model fit,
increased from 0.841 in model 1 (with-
out any urinary proteins except for AER)
to 0.857 with progranulin, 0.871 with
THP, and 0.888 in the stepwise selection
model, which included model 1 + THP,
progranulin, and clusterin, and to 0.889
in the final model, which included also
AGP.

CONCLUSIONSdIn this validation
study using ELISA, we were able to
confirm the value of several proteins pre-
viously identified through the label-free

Table 1dCharacteristics of ELISA study participants at baseline examination

Patients with normal
renal function and no
albuminuria (group A)

Patients with
only ERFD
(group B)

Patients who progressed
to only albuminuria

(group C)

Patients with both
ERFD and albuminuria

(group D)

n 35 15 16 8
Age (years) 34 6 9 36 6 10 37 6 9 36 6 9
Diabetes duration (years) 19 6 7 24 6 11 19 6 5 23 6 8
Sex (% male) 49 47 38 25
HbA1c (%) 7.7 6 0.9b 8.8 6 2.0 8.9 6 1.3 8.3 6 1.5
Systolic blood pressure (mmHg) 117 6 17 118 6 18 118 6 11 115 6 12
Diastolic blood pressure (mmHg) 76 6 9 76 6 11 79 6 8 73 6 7
Antihypertensive medication use (% yes) 17c 20 31 63
Total cholesterol (mg/dL) 167 6 33 173 6 44 180 6 43 170 6 33
HDL cholesterol (mg/dL) 57 6 22 56 6 19 56 6 18 54 6 13
LDL cholesterol (mg/dL) 94 6 28 98 6 38 100 6 31 98 6 25
Lipid medication use (% yes) 11b 0 38 13
WHR 0.82 6 0.09 0.80 6 0.09 0.83 6 0.12 0.81 6 0.07
BMI (kg/m2) 25.0 6 3.2b,c 25.4 6 3.8 27.6 6 6.0 28.4 6 5.2
Ever smoker (%) 14 7 13 0
Baseline AER (mg/min) 5.5 6 3.8b,c 7.0 6 4.2d 10.6 6 4.9 9.8 6 4.9
Final AER (mg/min) 5.0 6 2.8b,c 5.7 6 4.3d,e 61 6 71 483 6 809
Baseline cystatin C (mg/L) 0.66 6 0.08 0.64 6 0.16 0.65 6 0.10 0.33 6 0.14
Baseline eGFR (ml/min per 1.73 m2) 127 6 16 136 6 29 130 6 20 136 6 29
Final eGFR (ml/min per 1.73 m2) 133 6 16a 113 6 24d 135 6 20f 105 6 33
Uric acid (mg/dL) 4.7 6 0.9 5.0 6 1.4 5.2 6 1.2 5.1 6 1.5
aP, 0.05 group A vs. group B. bP, 0.05 groupA vs. groupC. cP, 0.05 groupA vs. groupD. dP, 0.05 group B vs. group C. eP, 0.05 group B vs. groupD. fP, 0.05
group C vs. group D.
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protein expression as potential predictors
of early diabetic nephropathy and that
added to the model fit above and beyond
previously identified riskmarkers.Discovery-
based quantitative proteomics provide a
powerful technique for identification and
quantification in large-scale protein pro-
filing for biomarker discovery, and mul-
tiple proteomic techniques are available
(21–23). To date, most proteomic ap-
proaches have used two-dimensional

gel electrophoresis or capillary electro-
phoresis–mass spectrometry to classify
type 1 diabetes and its complications
(24–26).

Label-free protein expression is a
peptide-based proteomic technique that
capitalizes on the highly reproducible
chromatography and accurate mass accu-
racy available in current LC/MS systems.
This platform quantifies a peptide by its
intensity and groups each peptide across

individual samples on the basis of its
accurate mass and retention time (27,28).
These intensities associated with specific
mass and retention time values are orga-
nized into peptide array tables that may
be further processed using statistical tech-
niques. The label-free protein expression
analysis in the current studyprovided a com-
prehensive view of proteomic changes dur-
ing the development of microalbuminuria
from which predictive models could be

Table 2dUrinary protein levels by ELISA, adjusted for baseline age, urine creatinine, and group

Patients with normal
renal function and no
albuminuria (group A)

Patients with
only ERFD
(group B)

Patients who progressed
to only albuminuria

(group C)

Patients with both
ERFD and albuminuria

(group D)

n 35 15 16 8
THP (ng/mL) 5,490 6 1,455b 6,504 6 2,214c 5,737 6 2,147d 14,054 6 3,031
Progranulin (ng/mL) 4.23 6 0.81 4.79 6 1.23 4.67 6 1.19 7.60 6 1.69
Clusterin (ng/mL) 1.76 6 0.48 0.61 6 0.73 0.65 6 0.70 1.71 6 1.0
AGP (ng/mL) 416 6 144a 1071 6 219 830 6 830 827 6 299
ProstD (ng/mL) 296 6 49a 484 6 75 318 6 73 435 6 10
aP , 0.05 group A vs. group B. bP , 0.05 group A vs. group D. cP , 0.05 group B vs. group D. dP , 0.05 group C vs. group D.

Figure 1dLevels of proteins by ELISA by study group. A: Tamm-Horsfall protein levels by group. B: Progranulin protein levels by group.C: Alpha-
1-acid glycoprotein levels by group. D: Clusterin protein levels by group.
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derived. The models highlight a number of
clinically relevant proteins, as well as novel
indicators of disease.

THP, which is produced in the thick
ascending limb and the early distal con-
voluted tubule of the kidney, is the most
abundant protein in normal urine. THP
is the protein product encoded by the
uromodulin gene (UMOD), which has been
identified in genome-wide association
scans with chronic kidney disease and
GFR estimated from serum creatinine
(29). Urinary THP has been suggested as
a useful marker of renal damage and has
been reported to be decreased in patients
with type 1 diabetes (30–32) and in pa-
tients with kidney damage with and with-
out diabetes (33). In the current study,
we found that levels of THP were signifi-
cantly increased in patients who devel-
oped both ERFD and albuminuria.
Köttgen et al. (34) also found that higher
levels of THPwere associated with chronic
kidney disease in a case-control study,
with an odds ratio for chronic kidney dis-
ease of 1.72 per 1 SD increase in THP.

AGP has previously been reported as
increasing in patients with diabetic ne-
phropathy (35,36) and may serve as both
an early marker of diabetic nephropathy as
well as a marker of diabetic nephropathy
progression. Prostaglandin D synthase,
whichwas not predictive of renal outcomes

in the current study, was previously re-
ported to be increased in patients with
type 2 diabetes who had increased per-
meability of glomerular capillary walls,
and higher levels of prostaglandin D syn-
thase predicted albuminuria (37).

Other proteins included in the model
(clusterin and progranulin), while not
directly associatedwith diabetic nephrop-
athy, were observed to be associated with
renal toxicity and/or renal damage. Clus-
terin is a glycoprotein that may have a role
in repairing kidney damage, since low
levels of clusterin have been found to pre-
dict worse recovery from renal ischemia-
reperfusion injury in mice (38). Clusterin
may have a role in protecting organisms
from apoptosis because of oxidative stress
(39) and may prevent glomerulopathy as-
sociated with aging (40). Progranulin is a
growth factor involved in wound healing
and is known to have an anti-inflammatory
effect (41). On the other hand, when pro-
granulin is degraded into peptides by
proteases, it has been shown to have a
proinflammatory effect (42).

The current study provided impor-
tant preliminary data on a panel of pro-
teins that could be used to predict the
early signs of diabetic nephropathy, in-
cluding the development of micro- and
macroalbuminuria as well as significant
renal function decline. Further validation

of this protein panel is needed in other
populations to verify their predictive abil-
ity for the development of both renal
function decline and urinary albumin and
to determine whether these could be used
as biomarkers of disease progression and
response to treatment.
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