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Abstract

The interactions of brain regions with other regions at the network level likely provide the 

infrastructure necessary for cognitive processes to develop. Specifically, it has been theorized 

that in infancy brain networks become more modular, or segregated, to support early cognitive 

specialization, before integration across networks increases to support the emergence of higher­

order cognition. The present study examined the maturation of structural covariance networks 

(SCNs) derived from longitudinal cortical thickness data collected between infancy and childhood 

(0–6 years). We assessed modularity as a measure of network segregation and global efficiency 

as a measure of network integration. At the group level, we observed trajectories of increasing 

modularity and decreasing global efficiency between early infancy and six years. We further 

examined subject-based maturational coupling networks (sbMCNs) in a subset of this cohort with 

cognitive outcome data at 8–10 years, which allowed us to relate the network organization of 

longitudinal cortical thickness maturation to cognitive outcomes in middle childhood. We found 

that lower global efficiency of sbMCNs throughout early development (across the first year) 

related to greater motor learning at 8–10 years. Together, these results provide novel evidence 

characterizing the maturation of brain network segregation and integration across the first six 

years of life, and suggest that specific trajectories of brain network maturation contribute to later 

cognitive outcomes.
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1. Introduction

Multiple theoretical frameworks have been proposed to explain how neurodevelopment 

underlies the emergence of cognitive ability in childhood. Traditionally, maturational 

frameworks of brain development have proposed that through the maturation of individual 

brain regions, related cognitive abilities emerge (for a review, see: Johnson, 2001). For 

example, early sensory cortex maturation leads to early sensory abilities, while later 

association cortex maturation supports the gradual emergence of more complex cognition, 

such as executive functions – a set of higher order skills needed for goal-oriented behavior 

(Best and Miller, 2010; Girault et al., 2020; Huttenlocher, 1990; Johnson, 2001, 2011). 

However, individual brain regions are highly interconnected, and recent literature has begun 

to characterize the maturation of interactions across brain regions at the network level (Cao 

et al., 2017; Geng et al., 2017; Grayson and Fair, 2017; Morgan et al., 2018; Zhao et al., 

2019). Thus, focusing on the maturation of individual brain regions without taking network 

structure into account likely limits our ability to fully understand the complex relationship 

between brain and cognitive development.

Extant literature supports the premise that cognitive development relies on brain network 

development. Brain network organization is hypothesized to develop first with increases 

in network segregation – the strength of local connections within networks – followed 

by increases in integration – the strength of long-range connections that span discrete 

brain networks (Cao et al., 2017; Johnson and Munakata, 2005; Zhao et al., 2019). 

Cognitive development is thought to proceed in parallel to this pattern of neurodevelopment 

(Johnson and Munakata, 2005). Specifically, fundamental work across several cognitive 

domains (e.g., sensorimotor, language, working memory) has revealed specialization, or the 

dissociation and refinement of specific cognitive processes, early in development, followed 

by improvement of cognitive abilities that require integrated processing of multiple sensory 

and cognitive domains (D’Souza et al., 2017; for reviews, see Johnson 2001; Johnson and 

Munakata, 2005). This pattern of increased specialization, followed by increased integration, 

is evident for both sensorimotor processes and for executive functions, albeit on different 

timeframes (e.g., sensorimotor development occurs over the first years of life, while the 

development of executive functions is more protracted and extends throughout childhood 

and adolescence; D’Souza et al., 2017; Johnson and Munakata, 2005; Luna et al., 2015; 

Marrus et al., 2018; Metcalfe et al., 2005).

1.1. Structural covariance and maturational coupling during early childhood

Brain networks derived from cortical thickness data, commonly referred to as structural 

covariance networks (SCNs), are well-suited to study early structural brain development, 

a time during which rapid changes in cortical thickness occur (Gilmore et al., 2018; Li 

et al., 2014, 2015a). SCNs are obtained by correlating the cortical thickness of pairs 
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of regions across subjects (for a review, see: Alexander-Bloch et al., 2013a). SCNs 

thus measure how cortical regions covary in thickness at the group level. Accordingly, 

SCN network segregation represents how regions cluster into distinct networks whose 

regions have similar levels of cortical thickness across subjects, whereas SCN network 

integration represents the similarity of cortical thickness levels across subjects for regions 

distributed more widely across the brain. SCNs quantify coordinated cortical growth at 

the group level, therefore reflecting group-level neurodevelopmental processes underlying 

coordination across groups of brain regions (i.e., networks), with a focus on gray matter 

networks. This is in contrast to structural brain networks based on tractography data, which 

assess network organization based on white matter tracts at the individual level. Therefore, 

SCNs provide information that is complementary to that obtained via other structural brain 

networks. Prior work relating SCNs and tractography networks has revealed similar values 

of network organization between these two types of structural networks at 1 and 2 years 

(Nie et al., 2014). In adults, positive, but not negative, cortical thickness correlations 

have been shown to correspond to tractography connections (Gong et al., 2012). Finally, 

there are strong similarities between SCNs and brain networks derived from functional 

connectivity estimates (Alexander-Bloch et al., 2013b; Smith et al., 2019) that become 

more similar across infant development (Geng et al., 2017), thus it has been proposed 

that similarity in cortical thickness across regions may reflect coordinated development 

through synchronized brain function and functional connectivity (Alexander-Bloch et al., 

2013a,b; Geng et al., 2017). Together, this work suggests that SCNs partly reflect underlying 

functional and structural connectivity and provide additional information about coordinated 

cortical maturation.

Similar to both infant tractography networks (Ratnarajah et al., 2013; Yap et al., 2011) and 

resting-state networks of the fetal (Turk et al., 2019) and infant brain (De Asis-Cruz et al., 

2015; Gao et al., 2011; van den Heuvel et al., 2015), small world topology of SCNs has been 

found to be present at birth, with dense clusters of local connections and sparser, long-range 

connections across clusters (Fan et al., 2011). When assessed at 0, 1, and 2 years, both 

segregation and integration of SCNs have been shown to increase over the first two years of 

life (Fan et al., 2011). While on the surface this appears to contradict the theory that early 

segregation is followed by later integration (Cao et al., 2017; Johnson and Munakata, 2005; 

Zhao et al., 2019), there are two possibilities for these findings. First, these annual intervals 

may miss rapid changes within the first year of life. Second, the divergence may occur later 

in childhood. Thus, densely-sampled intervals during infancy that extend through childhood 

are needed to investigate how the trajectories of network segregation and network integration 

may differ across this time frame.

Since SCNs are constructed on the group level, they cannot assess how structural 

network organization relates to individual differences in cognitive functioning. However, 

two previous cross-sectional studies have observed on the group level that children 

and adolescents (aged 6–18) with higher intelligence quotient (IQ) had more integrated 

SCN organization (i.e., higher global efficiency) as compared to those with lower IQ 

(Khundrakpam et al., 2017; Solé-Casals et al., 2019), although results were inconsistent 

regarding whether the higher IQ group was more modular (Khundrakpam et al., 2017) or 

less modular (Solé-Casals et al., 2019). This is mostly consistent with studies observing that 
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both greater integration and greater segregation of resting state (Sherman et al., 2014; Wu et 

al., 2013) and tractography networks (Keunen et al., 2017; Kim et al., 2016) are related to 

higher IQ in children.

A recent methodological advancement allows for subject-level analysis of change across 

time in structural brain features, such as cortical thickness, to quantify how pairs of brain 

regions mature in tandem within an individual. This approach is referred to as subject­

based maturational coupling (Khundrakpam et al., 2019). If two brain regions have strong 

maturational coupling, this indicates that their cortical thickness varies similarly across 

time (e.g., increases or decreases at the same rate). In contrast, if two brain regions have 

weak maturational coupling, this indicates that changes in cortical thickness across time 

are not related (e.g., the cortical thickness of one may increase rapidly while the cortical 

thickness of the other may remain stable, increase slowly, or decrease). Subject-based 

maturational coupling networks (sbMCNs), therefore, describe the coupling of cortical 

thickness maturation on a network level for a given subject. When comparing the average 

of individual sbMCN matrices in typically developing subjects aged 5–25 to a single group­

level SCN matrix of the same subjects, regions with similar within-subject maturational 

trajectories also had similar group-level structural covariance (Khundrakpam et al., 2019). 

This suggests that regions that mature similarly lead to similar levels of cortical thickness. 

No study has yet to quantify sbMCNs across early development (i.e., before age 5), nor have 

any studies assessed how sbMCNs relate to cognition.

The goals of the current study are two-fold. First, we aim to characterize trajectories of early 

structural brain network development using group-level SCNs from infancy to childhood 

using a densely-sampled design (i.e., six timepoints within the first two years of life). The 

design of the dataset allows us to quantify the rapid changes in gray matter observed over the 

first two years of life in addition to more protracted development into childhood (Gilmore 

et al., 2018). Previous literature characterizing processes of change in cognitive and brain 

development (Cao et al., 2017; Johnson and Munakata, 2005; Luna et al., 2015; Zhao et 

al., 2019) cover infancy and childhood separately, not together. Our unique dataset, with six 

timepoints within the first two years of life and additional annual timepoints extending to 

age six, allows us to characterize network segregation and integration with higher temporal 

resolution and across a longer time frame than prior studies. Using the metrics of modularity 

to index network segregation and global efficiency to index network integration, we predict 

that across the first six years of life we will observe early increases in network segregation 

followed by later network integration increases.

Second, we aim to relate individual differences in structural network maturation to 

cognitive outcomes in middle childhood using sbMCNs. Based on previous research that 

has documented earlier motor specialization and protracted development of higher order 

cognitive processes such as working memory (D’Souza et al., 2017; Best and Miller, 2010), 

in addition to literature in functional and tractography networks observing relationships 

between network organization and both motor ability and working memory (Bassett et 

al., 2015; Cohen and D’Esposito, 2016; Murphy et al., 2020), we hypothesized that early 

maturational trajectories across the first year of life that have a segregated network structure 

(i.e., high modularity) would be related to increased motor learning performance, while 
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protracted maturational trajectories across the first six years of life that have an integrated 

network structure (i.e., high global efficiency) would be related to increased working 

memory performance.

2. Materials and methods

2.1. Participants

The Institutional Review Board of the University of North Carolina (UNC) School of 

Medicine approved this study. Pregnant mothers were recruited during their second trimester 

of pregnancy from the UNC hospitals registry to enroll their infants in a longitudinal 

MR imaging study of early brain development. Informed consent was obtained from both 

parents. As described in a previous paper with this sample (Gao et al., 2015), inclusion 

criteria required birth between gestational age of 35 and 42 weeks, appropriate weight for 

gestational age, and the absence of major pregnancy and delivery complications. Exclusion 

criteria included prenatal or congenital anomalies, or presence of any major medical or 

mental illness in the mother. 93 healthy infants (45 females) were recruited. 5 subjects 

with neuroimaging data that could not successfully be processed with the imaging pipeline 

described below were excluded from analyses, leaving a total of 88 subjects (43 females). 

Sample demographics include the following ethnicities (2010 U.S. Census estimates of 

North Carolina demographics reported for comparison): 97.7% non-Hispanic (90.2%), 2.3% 

Hispanic (9.8%); and the following races: 64.8% White (70.6%), 25.0% Black (22.2%), 

2.3% Asian (3.2%), 1.1% Native American (1.6%), and 6.8% multiple races or other (2.4%).

2.2. Study procedure

Neuroimaging sessions occurred every 3 months between 2 weeks to 12 months (0, 3, 6, 

9, and 12 months), at 18 months, and then annually between 2 and 6 years. This resulted 

in a total of 11 possible timepoints (i.e., 0, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months). 

Not all subjects participated in all timepoints due to subject dropout or unavailability when 

scheduling a visit. See Fig. 1 and Table 1 for the distribution of and specific ages during 

existing subject timepoints. The mean number of timepoints per subject was 5.14 (SD = 

2.87, range: 1–11). All subjects were imaged during natural sleep without the use of sedation 

when they were infants and toddlers (ages 0–2). The protocol for conducting asleep scans 

was similar to that of other infant neuroimaging studies (Dean et al., 2014). When subjects 

returned for later timepoints at age three and beyond, subjects underwent scans either asleep 

or awake.1 During awake scans, subjects watched a video inside the MRI scanner.

2.3. Behavioral measures

39 of the 88 subjects returned for an additional timepoint between the ages of 8 and 10 

years old (mean age = 9.3, SD = 0.56, range: 8.2–10.6, 22 females). During the additional 

timepoint, subjects completed two behavioral tasks as part of a larger study: a serial reaction 

time (SRT) task that probed motor learning and an n-back task that probed working memory. 

The behavioral data was acquired during fMRI scanning; the fMRI data collection is still 

ongoing and will not be discussed here. As no prior research has examined maturation of 

1Awake status of each subject was not consistently recorded.
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cortical thickness networks across this entire age range, nor related sbMCNs to outcome 

measures, our initial goal is to relate sbMCNs to behavior. Future studies will report the 

results from the fMRI data after data collection is complete.

2.3.1. Serial reaction time (SRT) task—For the SRT task, subjects were told to 

indicate the location of an ‘X’ presented on the screen by a button press using the 

index through pinkie fingers of their right hand (Fig. 2a). There were two conditions 

in this task: 1) a sequence condition, which consisted of a repeating 12-item pattern 

(i.e. 1-2-3-1-4-3-4-2-1-3-2-4); and 2) a random condition, which consisted of items in a 

pseudorandom order. The pseudorandom order was constrained such that items could not be 

a repeat of the previous item, nor could a random block begin or end with the same item 

with which the sequence block began or ended. For each trial, the letter ‘X’ was presented 

for 1000 milliseconds with an inter-stimulus interval of 250 milliseconds. This trial timing is 

consistent with prior work (Cohen and Poldrack, 2008) and this task has successfully been 

administered to children of this age range (Hodel et al., 2014; Thomas and Nelson, 2001; 

Thomas et al., 2004). Each block contained 24 trials. Each run contained 4 blocks each 

of sequence and random conditions in an interleaved order for a total of 8 blocks. Across 

subjects, the interleaved order was counterbalanced. A 24 s crosshair was presented at the 

start, middle and end of each run. Two runs of 5.2 min each of the SRT task were collected.

Prior to the MRI scan, subjects completed an initial practice session of 12 trials to ensure 

that they could correctly map stimulus locations to the correct buttons, and then a second 

practice session of the same length inside an MRI simulator.

The SRT task probes motor sequence learning such that subjects become faster on sequence 

trials as compared to random trials with practice (Cohen and Poldrack, 2008; Robertson, 

2007; Thomas et al., 2004). Average response time (RT) on correct trials for the sequence 

condition, as well as the average RT difference between sequence and random conditions 

(average correct random RT – average correct sequence RT), were used as measures of 

motor learning. Paired t-tests comparing performance on run 1 versus run 2 assessed 

learning on the SRT task using the behavioral measures of interest. T-tests were corrected 

for two comparisons using the false discovery rate (FDR) correction. 12 subjects were 

excluded based on poor task performance inside the MRI machine (less than 50% accuracy 

on all responded trials), which resulted in 27 subjects (18 females) for subsequent behavioral 

analysis of the SRT task.

2.3.2. N-back task—For the n-back task, subjects were told to respond with a button 

press using the index and middle fingers of their right hand whether the current stimulus 

was the same as (a ‘match’; index finger) or different from (a ‘non-match’; middle finger) 

the stimulus seen n previously (Fig. 2b). 0- and 2-back conditions of the n-back task were 

administered to examine low and high working memory loads respectively. For the 0-back 

condition, ‘X’ was used as a ‘match’ and any other letter was a ‘non-match’. For the 2-back 

condition, subjects responded whether the current stimulus was a ‘match’ or a ‘non-match’ 

to the letter presented two previously. For each trial, a letter stimulus was presented for 1000 

milliseconds with an inter-stimulus interval of 1000 milliseconds. Each block contained 20 

trials that included 4 match trials and 16 non-match trials. There were 5 null event trials 
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lasting 2000 ms each that were randomly interspersed throughout each block. Each task 

block began with a 6 s presentation of instructions (‘Not X or X’ for 0-back blocks or ‘No 

Match or Match’ for 2-back blocks). Jittered intervals lasting either 2 (50%), 3 (25%), or 

4 (25%) seconds were presented between the block instruction text and the start of trials, 

and again at the end of each block of trials. A 10 s crosshair was presented at the start of 

each run. Each run contained four task blocks (two each of 0- and 2-back conditions) in 

a randomized order. Rest blocks were presented after every two task blocks. Rest blocks 

consisted of a 6 s presentation of ‘REST’ followed by 24 s of crosshair presentation. Two 

runs lasting 5.2 min each were acquired.

Prior to the MRI scan, subjects completed an initial practice session of 10 trials that 

progressed when they pressed the correct button, followed by 24 trials that progressed with 

the same timing as the actual task. They then completed a second, identical practice session 

inside an MRI simulator.

Accuracy on 2-back target trials and d’ were used as measures of n-back performance, which 

is consistent with previous literature administering the n-back task to children (Roussotte 

et al., 2011; Schleepen and Jonkman, 2009; Stollstorff et al., 2010). D’ was calculated 

as the difference between z-transformed hit rate (correct matches) and z-transformed false 

alarm rate (incorrect non-matches). Paired t-tests were used to test for differences of these 

behavioral measures between 0-back and 2-back conditions. T-tests were corrected for two 

comparisons using the FDR correction. 14 subjects were excluded based on poor task 

performance inside the MRI machine (responding to fewer than 50% of 0-back trials and 

accuracy less than 50% on 2-back trials), which resulted in 25 subjects (16 females) for 

subsequent behavioral analysis of the n-back task.

2.3.3. Effects of age on task performance—Given the potential contribution of age 

to performance on the SRT task (Hodel et al., 2014; Thomas and Nelson, 2001; Thomas 

et al., 2004) and the n-back task (Schleepen and Jonkman, 2009), we also correlated age 

with task performance. For the SRT task, sequence RT and RT difference of the second run 

were correlated with age to focus on when motor sequences should be most learned. For the 

n-back task, 2-back target accuracy and d’ were correlated with age. Correlations between 

age and task performance were corrected for 4 comparisons using the FDR correction 

(4 behavioral metrics [SRT task: sequence RT, RT difference; n-back task: 2-back target 

accuracy, 2-back d’]).

2.4. Image acquisition

For each timepoint in this study from 0 to 6 years, T1-weighted (T1w) and T2-weighted 

(T2w) images were acquired at the UNC Biomedical Research Imaging Center using a 

3T Siemens scanner (TIM TRIO) with a 32-channel head coil. The two structural brain 

images were acquired for optimal distinction of gray and white matter throughout infancy 

and early childhood. The tissue boundaries during this age range are not as clear when using 

intensity-based segmentation, thus both structural images are needed for optimal processing 

(Shi et al., 2010). T1w images were acquired with the following parameters: 144 sagittal 

slices, repetition time (TR) = 1900 ms, echo time (TE) = 4.38 ms, flip angle = 7°, acquisition 
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matrix = 256 × 192, and voxel size = 1 × 1 × 1 mm3. T2w images were acquired with 

the following parameters: 64 axial slices, TR = 7380 ms, TE = 119 ms, flip angle = 150°, 

acquisition matrix = 256 × 128, and voxel size = 1.25 × 1.25 × 1.95 mm3 . Additionally, in 

a subset of subjects, resting-state fMRI data was acquired. For the purposes of this study, 

resting-state data was used to calculate motion during the scanning session to ensure that 

results were not due to changes in subject motion with age. See Supplementary Material for 

data acquisition parameters.

2.5. Image processing and cortical surface construction

Structural brain images were processed with the infant Brain Extraction and Analysis 

Toolbox (iBEAT; Dai et al., 2013; Li et al., 2015b) for volume-based and cortical surface­

based analysis that was specifically developed for pediatric MRI scans matching the data 

acquisition parameters used in this study. First, the intensity inhomogeneities of both 

the T1w and T2w images were corrected using the nonparametric nonuniform intensity 

normalization (N3) method (Sled et al., 1998). Second, the T2w image was linearly aligned 

onto the T1w image for each subject and then resampled with the T1w resolution using 

FLIRT (Smith et al., 2004). The skull, brainstem, and cerebellum of the aligned images 

were further removed based on a learning-based infant-specific method (Shi et al., 2012). 

Third, the cortex was further segmented into white matter, gray matter and cerebrospinal 

fluid (CSF) based on T1w and T2w structural images using a learning-based infant-specific 

method (Wang et al., 2015). Fourth, the segmented cortex was further separated into the 

left and right hemispheres; non-cortical structures were removed and filled with white 

matter. To correct the topological defects in tissue segmentation images, a topologically­

preserving surface method was utilized (Han et al., 2004). Fifth, the topologically correct 

and geometrically accurate inner cortical surface was reconstructed, which was further 

smoothed and deformed to the interface between the gray matter and CSF for reconstructing 

the outer cortical surface (Li et al., 2012, 2014). Based on the reconstructed cortical 

surfaces, for each vertex we computed the cortical thickness as the minimum distance 

between the reconstructed inner and outer cortical surfaces (Fischl and Dale, 2000; Li et al., 

2015a). To construct the structural brain network, we used the 146 regions of interest (ROIs) 

from the Destrieux atlas (Destrieux et al., 2010). To register the atlas to each subject’s and 

each timepoint’s cortical surface, we first mapped the inner cortical surface onto a sphere 

using FreeSurfer (Fischl, 2012), then aligned the mapped spherical cortical surface onto 

the UNC 4D Infant Cortical Surface Atlas (Wu et al., 2019; https://www.nitrc.org/projects/

infantsurfatlas/) using Spherical Demons (Yeo et al., 2010). This established the vertex-wise 

correspondence between the individual surface and the Destrieux ROI labels in the infant 

surface atlas space. Finally, each ROI’s cortical thickness was computed by averaging 

the cortical thickness for all vertices within that region. To guarantee the quality of the 

reconstructed cortical surfaces for the subsequent analysis, an expert rater manually checked 

two aspects of each surface: a) whether the reconstructed cortical surface was accurately 

located at the gray/white matter tissue interfaces; and b) whether the reconstructed cortical 

surface was accurately parcellated. Any surfaces with inaccurate locations or inaccurate 

parcellations were removed, since they may introduce bias for the network construction (33 

scans from 5 subjects). Cortical surfaces were also removed from subsequent analysis if they 

were beyond two standard deviations from the overall mean thickness of that timepoint (21 
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scans from 10 subjects). Therefore, a total of 50 subjects (24 females) with 318 good quality 

longitudinal cortical surfaces were used for analysis in this study based on the criterion that 

each subject has at least three timepoints of good quality data.

2.6. Structural covariance networks

For group level SCNs, each of the 11 timepoints was considered separately. For each 

timepoint, correlation matrices were constructed based on the across-subject correlations 

of cortical thickness between all pairs of regions (Fig. 3a). Similar to previous work (Fan 

et al., 2011; Khundrakpam et al., 2013), linear regression was used to remove effects of 

sex, age in days from birth, and mean overall cortical thickness. Permutation tests were 

used to investigate the differences between two contiguous timepoints, for a total of 10 

tests. Each permutation sample was obtained by randomly assigning each subject’s 1 × 146 

vector of data (residuals of cortical thickness of each region) from the two contiguous age 

groups to one or the other without replacement, resulting in a permutation sample with 

the same sample size as the original group. If a subject had data from both timepoints, 

the two data series were assigned to different timepoints. For each permutation test, 1000 

permutation samples were obtained for each timepoint. Each permutation sample was used 

to calculate across-subject correlations, again controlling for sex, age in days, and mean 

cortical thickness between each pair of brain regions, which resulted in a 146 × 146 

structural covariance matrix for subsequent graph metric calculation.

Network segregation and network integration were quantified from each structural 

covariance matrix for each of the 10 permutation tests using the Brain Connectivity 

Toolbox, a MATLAB-based toolbox for structural and functional MRI network analysis 

(brain-connectivity-toolbox.net; Rubinov and Sporns, 2010). We calculated modularity as 

our measure of network segregation and global efficiency as our measure of network 

integration. The graph metrics were calculated with weighted and undirected correlation 

matrices using the below equations (Rubinov and Sporns, 2010, 2011). Only positive 

weights were included.

Modularity is a measure of the number of intra-network connections as compared to 

the number of intra-network connections expected in a random graph, and quantifies the 

strength of segregation into distinct networks. Higher modularity values represent stronger 

network segregation. Modularity of positive edges only (Q+) is defined as follows:

Q+ = 1
υ+ ij

ωij
+ −

si
+sj

+

υ+ δ mi mj

where v+ is the sum of all the graph’s positive edge weights, ωij
+ is the positive edge weight 

between two nodes i and j, si
+ and sj

+ are the sums of positive edge weights connected to 

nodes i and j respectively, and δ mi mj = 1 if i and j are in the same module and δ mi mj = 0 

if i and j are in different modules.
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Global efficiency is the average inverse of the weighted shortest path length of each node 

to all other nodes. Higher global efficiency is indicative of faster information transfer, or 

greater network integration. Weighted global efficiency Eglobal
w  is defined as follows:

Eglobal
w = 1

n i ∈ N
j ∈ N, j ≠ i dijw

−1

n − 1

where n is the number of nodes in the graph, N is the set of all nodes in the graph, and dij
w is 

the weighted shortest path length between nodes i and j. The weighted shortest path length is 

the smallest sum of the weights of the edges across all possible paths between nodes i and j.

Trajectories of these graph metrics were plotted to qualitatively depict changes in 

network organization from infancy to childhood. For timepoints that were included in two 

permutations tests (i.e., the 3 month timepoint was included in the 0–3 month and the 

3–6 month comparisons), their distributions were combined and plotted for visualization 

purposes for a total of 2000 observations. For modularity and global efficiency, two-tailed 

two-sample t-tests were used for each contiguous pair of age groups for the 10 permutation 

tests and were corrected for 10 comparisons using the FDR correction, similar to previous 

SCN studies (Fan et al., 2011; Khundrakpam et al., 2013). To examine the nonrandom 

modular organization of SCNs, 1000 random graphs with the same degree distributions as 

actual non-permuted SCNs were generated for each timepoint (Maslov and Sneppen, 2002), 

and the means of the graph metrics for the random graphs were calculated and plotted for 

comparison.

2.7. Subject-based maturational coupling

For each individual subject, the similarity of cortical thickness trajectories across pairs 

of regions was quantified by adapting the maturational coupling index introduced by 

Khundrakpam et al. (2019). Only subjects with at least three timepoints were included in 

this analysis to be consistent with the measurement of longitudinal change by Khundrakpam 

et al. (2019). All timepoints with good quality data for each subject were used, thus the 

number of timepoints and which specific timepoints were included varied across subjects. 

Thus, the original maturational coupling index, calculated as the product of cosines across 

time, was adapted to be calculated as the average of cosines across time for the current study 

(Fig. 3c). Here, the maturational coupling index for each subject is defined as follows:

MCIij =
cos θ12 + cos θ23 + … + cos θ n − 1 n

n − 1

where i and j are two nodes, n is the number of timepoints available for a given subject, 

and cos(θt1t2) is the cosine of the angle of maturational slopes between each pair of adjacent 

timepoints (i.e., between timepoints 1 and 2, then between timepoints 2 and 3, and so on 

for all possible timeframes for a given subject). Two sets of analyses were conducted. First, 

maturation across the first year of life (0, 3, 6, 9, and 12 months), during which the largest 

developmental changes occur, was assessed (Gilmore et al., 2018; Li et al., 2014, 2015a). 48 
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subjects had at least three timepoints, including a first timepoint at either 0 or 3 months and 

a final first-year timepoint at either 9 or 12 months, and were thus included in this analysis 

(mean number of timepoints = 4.06, SD = 0.73, range: 3–5). Next, maturation across all 

6 years (0, 3, 6, 9, 12, 18, 24, 36, 48, 60, 72 months) was assessed, to characterize more 

prolonged maturation. 32 subjects had at least three timepoints, including a first timepoint at 

either 0 or 3 months and a final timepoint at either 60 or 72 months, and were thus included 

in this analysis (mean number of timepoints = 7.34, SD = 1.84, range: 4–10). These two 

sets of sbMCN analyses were used to determine the relevance of early brain development 

(first year) versus more protracted brain development through childhood (first six years) to 

cognitive outcomes. For each set of sbMCN analyses, a 146 × 146 maturational coupling 

matrix for each subject was constructed. Following the method used by Khundrakpam et al. 

(2019), we applied a cumulative distribution function kernel to each individual maturational 

coupling matrix to distinguish real and spurious connections between regions, essentially 

normalizing each individual sbMCN. As described above, modularity and global efficiency 

were calculated from each sbMCN to assess network segregation and network integration 

respectively.

Task performance measures on the SRT and n-back tasks at 8–10 years were correlated 

with modularity and global efficiency from sbMCNs. These task performance measures 

included sequence RT and RT difference from the SRT task, and 2-back target accuracy 

and 2-back d’ from the n-back task. Of those included in the early development sbMCN 

analyses, 22 subjects had SRT task data of sufficient quality and 19 subjects had n-back 

task data of sufficient quality. Of those included in the protracted development sbMCN 

analyses, 20 subjects had SRT task data of sufficient quality and 18 subjects had n-back task 

data of sufficient quality. Correlations between sbMCN modularity and global efficiency 

and task performance were corrected for 8 comparisons for each task separately using the 

FDR correction (2 brain metrics [modularity, global efficiency] x 2 sets of sbMCN analyses 

[early, protracted] x 2 behavioral metrics [SRT task: sequence RT, RT difference; or n-back 

task: 2-back target accuracy, 2-back d’]).

2.8. Sensitivity analyses

We conducted three supplementary analyses to investigate the robustness of our results. 

First, we estimated motion during each scan session using resting-state fMRI data in a subset 

of subjects who had such data to ensure that results were not due to motion in the scanner. 

Supplementary analyses controlled for the effects of motion, in addition to sex, age in days, 

and mean cortical thickness. Motion increased across timepoints, specifically at age three. 

Critically, supplementary results controlling for motion were generally consistent with the 

main results (see Supplementary Material, Fig. S2 and Tables S3–S4). Second, to ensure 

that results were not due to spurious weak connections, we thresholded SCN matrices at 

correlation values of 0.1 and 0.2 and found that results were consistent across thresholds 

(see Supplementary Material, Fig. S3 and Tables S5–S6). Third, to ensure that results were 

not due to our choice of atlas, we replicated our analyses using the Desikan-Killiany atlas 

(Desikan et al., 2006), which includes 64 cortical ROIs (see Supplementary Material, Fig. 

S4 and Tables S7–S8). The same trajectories of modularity and global efficiency were 

observed across parcellations. Supplementary analyses additionally examined the effects 
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of atlas on the sbMCN analyses. Replication of sbMCNs with the Desikan-Killiany atlas 

revealed similar relationships between sbMCN organization and task performance as with 

the Destrieux atlas, although the significant finding reported in the main text between 

early development (0–1 year) sbMCNs and RT difference on the SRT task did not reach 

significance for the Desikan-Killiany atlas (see Supplementary Material, Figure S5).

3. Results

3.1. Task behavior

Performance on the SRT task was assessed using sequence RT (run 1: mean = 679.8 ms, SD 

= 85.7 ms; run 2: mean = 647.9 ms, SD = 75.7 ms) and RT difference between sequence and 

random blocks (run 1: mean = 21.7 ms, SD = 44.4 ms; run 2: mean = 31.5 ms, SD = 42.7 

ms). These measures were analyzed to examine motor learning between the first and second 

runs of the SRT task. Subjects became significantly faster on sequence blocks between 

run 1 and run 2 (t(26) = 4.169, p-adjusted < 0.001; Fig. 4a). However, the RT difference 

between the random and sequence conditions did not change across the runs (t(26) = −0.898, 

p-adjusted = 0.377; Fig. 4b).

Task performance on the n-back task was assessed using accuracy of target trials (0-back: 

mean = 0.767, SD = 0.200; 2-back: mean = 0.627, SD = 0.116) and d’ (0-back: mean = 

2.834, SD = 0.863; 2-back: mean = 1.653, SD = 0.693). Accuracy of target trials and d’ 

were significantly lower for the 2-back condition as compared to the 0-back condition (target 

accuracy: t(24) = 3.4802, p-adjusted = 0.00193; d’: t(24) = 6.1595, p-adjusted < 0.001; Fig. 

4c and d).

3.2. Effects of age on task performance

For the SRT task, age was not significantly correlated with sequence RT on the second 

run (r = −0.407, p-adjusted = 0.140) or the RT difference on the second run (r = −0.058, 

p-adjusted = 0.773). For the n-back task, age was not significantly correlated with 2-back 

target accuracy (r = 0.265, p-adjusted = 0.399) or 2-back d’ (r = −0.128, p-adjusted = 0.719).

3.3. Structural covariance networks

At the group level, qualitatively modularity increased between 0 and 72 months (Fig. 5a; 

Table 2). Changes across all timepoints were significant after permutation at FDR-corrected 

p < .05 except between 6 and 9 months. Qualitatively, global efficiency decreased between 

0 and 72 months (Fig. 5b; Table 2). Changes across all timepoints were significant after 

permutation at FDR-corrected p < .05 except between 24 and 36 months. These results 

were consistent across thresholds (see Supplementary Material, Fig. S3 and Tables S5–

S6) and with the Desikan-Killiany atlas (see Supplementary Material, Fig. S4 and Table 

S7–S8). Modularity and global efficiency of SCNs were negatively correlated across time 

(non-permuted SCNs: r = −0.754, p = .007).

3.4. Subject-based maturational coupling

Next, we assessed the relationship between network organization of longitudinal cortical 

thickness maturation within individual subjects and task performance at 8–10 years using 
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sbMCNs. For the SRT task, global efficiency of the early development (0–1 year) sbMCNs 

was negatively correlated with RT difference of the second run (r = −0.54, p-adjusted = 

0.022; Fig. 6). No other correlations between sbMCNs and SRT task performance were 

significant for either the early development or the protracted development sbMCNs (all 

p-adjusted values > 0.145). Additionally, there were no significant correlations between 

sbMCNs and n-back task performance for either the early development or the protracted 

development sbMCNs (all p-adjusted values > 0.971). Replication of sbMCNs with the 

Desikan-Killiany atlas revealed a similar relationship between global efficiency of early 

development sbMCNs and RT difference on the SRT task, although this did not reach 

significance (p-adjusted = 0.223; see Supplementary Material, Fig. S5).

4. Discussion

Here, for the first time, we characterized SCN organizational changes between infancy and 

childhood within a longitudinal sample of subjects and related individual-level network 

maturation to cognitive outcomes in childhood. At the group level, modularity of SCNs 

increased and global efficiency decreased between two weeks and six years. We additionally 

found that decreased global efficiency of sbMCNs during early development (0–1 years) 

was associated with better motor learning. We did not find a significant correlation 

between organization of sbMCNs during either early or protracted development and working 

memory.

Behaviorally, we observed faster motor execution across runs of the SRT task and reduced 

accuracy and d’ during higher working memory conditions of the n-back task in our sample 

of children aged 8–10 years. These findings are largely consistent with previous studies 

examining motor learning (Hodel et al., 2014; Thomas and Nelson, 2001; Thomas et 

al., 2004) and working memory (Roussotte et al., 2011; Schleepen and Jonkman, 2009; 

Stollstorff et al., 2010) during childhood. With regard to motor learning on the SRT task, 

subjects were faster for the sequence condition on the second run as compared to the first 

run. However, we did not observe the expected increase in RT difference between sequence 

and random blocks on the second run compared to the first run. While other studies have 

observed sequence-specific motor learning in children of this age range as operationalized 

by a significant difference between sequence and random RT on final SRT task runs (Hodel 

et al., 2014; Thomas and Nelson, 2001; Thomas et al., 2004), there are a few key differences 

in task design between prior literature and our study that may account for our lack of 

sequence-specific motor learning. First, we included fewer sequence trials during task runs 

(384 trials as compared to 420–960; Hodel et al., 2014; Thomas and Nelson, 2001; Thomas 

et al., 2004). Second, prior work has trained subjects with more practice sessions before 

task runs (Thomas et al., 2004). It is possible, therefore, that our subjects were still early 

in the motor learning process. Additionally, we used a fixed-paced version of the SRT task, 

in which the trial stimuli were presented for constant intervals of time, as opposed to a 

self-paced version, in which the trial duration is dependent upon the time it takes for a 

subject to correctly respond (Hodel et al., 2014). Fixed-paced versions have been shown to 

result in reduced sequence learning effects as compared to self-paced versions in children 

(Hodel et al., 2014). Generally, for both tasks we excluded approximately 1/3 of subjects for 

poor performance (less than 50% trials responded to or 50% accuracy on responded trials). 
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This may be due to the fact that the trials were too fast for a large portion of our subjects and 

as such we observed poorer performance than is typically reported on these tasks in subjects 

of this age range.

With regard to our findings related to group-level SCN trajectories, extant literature mainly 

investigates structural network organization in infancy and toddlerhood (e.g., 0–2 years) 

separately from later in childhood (Fan et al., 2011; Yap et al., 2011; Zhao et al., 2019). 

Thus, the group level changes in network segregation of SCNs reported here contribute to 

our understanding of how brain networks reorganize between infancy and childhood. In 

early infancy, we observed low modularity and high global efficiency. Further, the topology 

of SCNs were similar to that of random graphs throughout the first year of life. This 

suggests that SCNs are more randomly organized during infancy, and do not shift to a non­

random organization until after the first year of life. Though weak, network structure still 

exists even in early infancy, consistent with network organization derived from tractography 

and resting-state fMRI data (De Asis-Cruz et al., 2015; Gao et al., 2011; Yap et al., 2011; 

Zhao et al., 2019). The increase in modularity we observed between early infancy and six 

years suggests that cortical networks further differentiate across this time period. In other 

words, more distinct networks emerge as regions undergoing similar maturation cluster 

into networks that have similar levels of cortical thickness. This early reconfiguration of 

brain network organization may underlie the cognitive specialization that emerges over 

early infancy and early childhood, as has been observed for several cognitive processes, 

such as perception (Simion et al., 2007) and language (Blasi et al., 2011). Additionally, 

the Euclidean distance of within-network connections numerically decreased between 0 and 

72 months (see Supplementary Material, Figure S7). This provides initial support for the 

theory that the networks observed at early infancy become more differentiated between 

infancy and six years, though these distinct networks may emerge from local similarities in 

cortical maturation and then shift from local to distributed cortical network maturation later 

in childhood (Zielinski et al., 2010). Further research in larger samples that focuses on the 

specific nodal composition of networks is needed to better understand how the trajectory 

of graph metrics reported here fits in with existing literature and the degree to which 

networks present at birth reorganize across early childhood, as well as how the maturation of 

modularity may map onto behavioral trajectories of cognitive specialization.

With regard to network integration, we observed that global efficiency of SCNs 

decreased between birth and six years. Notably, modularity and global efficiency were 

negatively correlated during this period, suggesting that these trajectories may be in part 

capturing similar information. This is not surprising, as both increased modularity and 

decreased global efficiency are characteristics of reduced randomness in terms of network 

organization. The decrease in global efficiency of SCNs observed here between three and 

six years is consistent with a study characterizing SCN organization between three and 20 

years, which observed a decrease in global efficiency between three and six years, before 

an increase in later childhood (Nie et al., 2013). In contrast, decreased global efficiency 

over the first two years is inconsistent with prior literature assessing the maturation of 

network organization in infancy across neuroimaging modalities, including SCN (Fan et 

al., 2011), tractography (Huang et al., 2015), and resting-state (Gao et al., 2011) networks. 

The inconsistent results may be attributed to methodological differences between studies. 
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Specifically, data acquisition parameters may influence graph metric values of tractography 

networks (Zalesky et al., 2010), and may similarly influence measurement of SCNs. 

Further, we used weighted matrices to calculate graph metrics while prior studies have 

used binarized adjacency matrices. Prior research comparing the use of weighted matrices 

to binarized adjacency matrices from fMRI data revealed higher reliability for weighted 

networks than binarized networks (Xiang et al., 2020). This is likely because weighted 

matrices contain more information than binarized matrices, and this could be the case for 

SCNs as well.

Another difference between our study and previous work is the intensive sampling of data 

across the first two years of life. In early infancy, synaptogenesis is likely a primary factor 

driving measures of cortical thickness (Huttenlocher, 1990; Petanjek et al., 2011). Previous 

work with SCNs may not have had sufficient temporal resolution to observe the impact 

of this initial burst of synaptic activity on coordinated changes in gray matter thickness. 

This proliferation of synapses is followed by a rapid synaptic pruning, then a more 

gradual pruning accompanied by extensive myelination. The timing of the trade-off between 

proliferation and pruning differs across areas of cortex, but this initial burst in activity is 

complete between the 2nd and 5th years of life (Petanjek et al., 2011). Thus, processes 

driving early changes in global efficiency may differ from those driving later changes. Early 

changes in gray mater (proliferation and pruning) may explain the early shift toward a less 

random organization (i.e., increases in modularity and decreases in global efficiency). In 

contrast, the process of myelination, which strengthens long-range connections over the 

course of several years and continues well into childhood and adolescence (Huang et al., 

2015; Lebel and Deoni, 2018), likely allows for more efficient information transfer between 

networks (i.e., increased global efficiency; Zhao et al., 2019). The protracted process of 

myelination is likely why network integration is found to increase at six years and beyond 

in other SCN studies. In the context of cognitive development, the later increases in network 

integration observed during childhood (Khundrakpam et al., 2013; Nie et al., 2013) may 

support the emergence of higher order cognition that integrates multiple cognitive processes 

during this developmental stage (Johnson and Munakata, 2005; Luna et al., 2015).

Contrary to our hypothesis that increased modularity (i.e., increased segregation) of early 

development sbMCNs would be related to increased motor learning in middle childhood, 

we instead observed that lower global efficiency (i.e., decreased integration) was associated 

with better performance on the SRT task in middle childhood. We based our hypothesis on 

previous neuroimaging work reporting that greater functional network segregation assessed 

during task performance is related to increased motor task performance in healthy adults 

(Bassett et al., 2015; Cohen and D’Esposito, 2016). However, these studies assessed the 

execution of a motor sequence when it was well-learned, and as discussed above our 

subjects were likely still in the early stages of learning. Our finding is consistent with 

the finding of decreased functional network integration globally across the brain when 

learning motor sequences during task performance in adults (Bassett et al., 2015). Subject­

based maturational coupling that is more globally efficient during early infancy represents 

more similar changes in cortical thickness across the whole brain. However, less similar 

maturation across the brain (i.e., lower global efficiency) may indicate different brain 

regions that have developed differently in the first year of life allows for later decreased 
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integration and greater learning later in childhood. Additionally, it is intriguing that the 

global integration that occurs within the first year of life may be important for maturing 

motor systems and have long-lasting effects. Our finding should be interpreted with the 

limitations of our small sample size, lack of replication across parcellations, and low levels 

of learning in our subjects. Thus, further examination in larger samples with better learning 

outcomes is needed.

We did not observe a relationship between either early or protracted sbMCN organization 

and working memory. While prior literature has observed that increased functional 

connectivity strength between regions of different networks (i.e., the thalamus and the 

salience network) assessed at 1 year relate to working memory ability assessed at 2 years 

(Alcauter et al., 2014), no extant literature has assessed how early functional or structural 

network development relates to working memory ability later in childhood. It is possible that 

the increases in SCN network integration beyond age 6 that are reported in the literature 

(Khundrakpam et al., 2013; Nie et al., 2013) correspond to the cognitive integration needed 

for working memory assessed at 8–10 years. Working memory ability at 8–10 years, 

therefore, may better correspond to network maturation assessed after age 6. While our 

results indicate that whole-brain measures of subject-based maturational coupling do not 

predict later working memory ability, our lack of a statistically significant finding could be 

due to our small sample size and is therefore not conclusive.

While there are certain unique strengths of this study, such as longitudinal data spanning 

infancy and childhood and densely sampled timepoints to capture early maturation, there are 

some limitations that should be addressed. Specifically, we are limited by a relatively small 

sample size, subject dropout for later timepoints, and poor task performance that reduced 

the number of subjects that could be included in our sbMCN analyses. Future longitudinal 

studies that cover the age range of infancy and childhood, such as the Baby Connectome 

Project, will be able to answer similar questions in a larger sample (Howell et al., 2019). 

Additionally, motion while in the MRI scanner may result in inaccuracies in our cortical 

thickness measurements (Madan, 2018; Savalia et al., 2017). While the impact of motion 

on functional connectivity measurements is becoming better understood (Grayson and Fair, 

2017; Satterthwaite et al., 2013), it still remains unclear how to best measure motion 

during structural brain scans (Rosen et al., 2018) and how precisely motion may influence 

structural covariance and maturational coupling in this and other studies. The structural 

data collected in this sample between three and six years when some subjects were awake 

in the scanner may be biased by motion artifacts that result in less accurate estimates of 

network organization (Grayson and Fair, 2017; Satterthwaite et al., 2013). However, motion 

is unlikely to account for all of our findings, since as reported in the Supplementary Material 

we observed similar trajectories for both modularity and global efficiency when controlling 

for motion. The slight differences in the supplementary analyses are likely due to noisier 

data after limiting our sample to subjects with available in-scanner motion estimates.

4.1. Conclusion

This study has furthered understanding of the cognitive relevance of early brain network 

development in several ways. Our finding of high global efficiency, low modularity, 
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and random network configuration in early infancy indicates that initially infants may 

process information in a global manner that is computationally redundant. The increase 

in modularity between 0 and 6 years supports the hypothesis that brain networks 

become specialized for certain cognitive computations throughout early development. Our 

observation of a decrease in global efficiency between 0 and 6 years, in combination with 

findings in the literature of increased global efficiency later in childhood (Khundrakpam et 

al., 2013; Nie et al., 2013), suggests that increases in integration between distinct networks 

beginning in middle childhood may serve to support complex executive functions such 

as working memory. These results support current models of brain network development 

that describe early increases in network segregation, however our subjects may not be old 

enough to determine whether this early segregation is followed by increases in network 

integration as hypothesized. Finally, network organization of longitudinal cortical thickness 

changes observed within individuals corresponded to later cognitive performance such that 

less integrated whole-brain structural maturation across the first year of life supported later 

motor learning during childhood. Importantly, this study demonstrates that a child’s early 

brain developmental trajectory is associated with current cognitive functioning, even many 

years later. More work is needed to better explicate what shapes early brain development to 

potentially constrain future cognitive development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A longitudinal plot demonstrating the distribution of timepoints per subject labeled by sex. 

Additional information regarding specific age in days for each timepoint is presented in 

Table 1.
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Fig. 2. 
Behavioral task design. a) Serial reaction time (SRT) task. Subjects were told to indicate the 

location of an ‘X’ presented on the screen by a button press. Trial stimuli were presented 

for 1000 ms, followed by an inter-stimulus interval consisting of a blank grid for 250 ms. 

b) An illustration of the paradigm used for the n-back task with 0-back (in blue) and 2-back 

(in yellow) conditions. Subjects were told to respond with a button press whether the current 

stimulus was the same as (a ‘match’) or different from (a ‘non-match’) the stimulus seen n 
previously. For the 0-back condition, ‘X’ was used as a ‘match’ and any other letter was a 

‘non-match’. For the 2-back condition, subjects responded whether the current stimulus was 

a ‘match’ or a ‘non-match’ to the letter presented two previously. Block instruction text was 

presented for 6 s. Trial stimuli were presented for 1000 ms, followed by an inter-stimulus 

interval consisting of a fixation cross for 1000 ms.
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Fig. 3. 
Steps to construct cortical thickness matrices both across and within subjects. a) Regions of 

interest (ROIs) from the Destrieux brain atlas (Destrieux et al., 2010). b) The construction 

of a structural covariance network (SCN), which estimates edge strength between nodes 

as the correlation of cortical thickness across subjects. The resulting matrix used for 

SCN analysis is a correlation matrix with correlation coefficients as the cells representing 

the edge strength between each pair of regions. c) The construction of a subject-based 

maturational coupling network (sbMCN), which estimates edge strength between nodes as 

the maturational coupling index (MCI) for a subject with available number of timepoints n. 

Steps to construct an sbMCN depicted here for a subject with 3 timepoints. The resulting 

matrix used for sbMCN analysis is a maturational coupling matrix with the MCI for a pair 

of regions as the cells representing the edge strength between each pair of regions. Panel C 

adapted from Khundrakpam et al. (2019) with permission.
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Fig. 4. 
Task Performance on the SRT and n-back tasks. For the SRT task, a) sequence RT 

significantly decreased across runs (t(26) = 4.169, p-adjusted < 0.001), while b) RT 

difference between random and sequence conditions did not significantly change (t(26) 

= −0.898, p-adjusted = 0.377). For the n-back task, c) target accuracy (t(24) = 3.480, 

p-adjusted = 0.002 and d) d’ (t(24) = 6.159, p-adjusted < 0.001) significantly decreased 

between 0-back and 2-back conditions. Error bars represent standard error. * p-adjusted < 

0.05, * * p-adjusted < 0.001.
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Fig. 5. 
Trajectories of SCN organization from two weeks to six years (0–72 months). a) Modularity 

of SCNs increased between 0 and 72 months. b) Global efficiency of SCNs decreased 

between 0 and 72 months. Solid circles represent actual values and solid line represents the 

loess smoothed fit curve for actual values. Open circles represent the mean of 1000 random 

networks with the same degree distribution and dashed line represents the loess smoothed 

fit curve for random values. c) Mean and observed distributions are plotted for modularity 

of SCNs from permutation tests. d) Mean and observed distributions are plotted for global 

efficiency of SCNs from permutation tests. Error bars represent the standard deviation of 

distributions. * indicates significant difference between adjacent timepoints at adjusted p < 

.05; ** indicates significant difference between adjacent timepoints at adjusted p < .001. 

Means from non-permuted graphs and statistics from permutation tests are reported in Table 

2.
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Fig. 6. 
Correlation between sbMCN graph metrics and task performance. There was a negative 

correlation between global efficiency of early development (0–1 year) sbMCNs and response 

time difference of the second run of the SRT task (r = −0.606, p-adjusted = 0.022) at 8–10 

years. Shading represents 95% confidence intervals, and the trend line represents the line of 

best fit for this correlation.
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