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E-Cadherin/β-catenin complex plays an important role in maintaining epithelial integrity and disrupting this complex affect not
only the adhesive repertoire of a cell, but also the Wnt-signaling pathway. Aberrant expression of the complex is associated with a
wide variety of human malignancies and disorders of fibrosis resulting from epithelial-mesenchymal transition. These associations
provide insights into the complexity that is likely responsible for the fibrosis/tumor suppressive action of E-cadherin/β-catenin.

1. Introduction

Cell-cell junctions are important to maintain cell and tissue
polarity and integrity. In general, vertebrate animals possess
three intercellular junction systems: gap junctions, which
serve as intercellular channels that permit direct cell-cell
transfer of ions and small molecules; tight junctions, the
primary cellular determinant of epithelial barrier func-
tion; anchoring junctions, which includes desmosomes and
adheren junctions (AJs) that associate with the cortical
cytoskeleton to mediate cell and tissue behavior [1]. Among
constituent structural molecules that assemble to form AJ,
cadherin/catenin-based anchoring junctions organize and
tether microfilaments to maintain cell adhesive properties
and integrate intra- and intercellular signaling, including
regulation of nuclear functions and transcription pathways
[2, 3]. This paper focuses on the role of E-cadherin/β-
catenin protein complexes in forming the epithelial barrier
and discusses the effects of dysregulating the assembly of the
E-cadherin/β-catenin adhesion complex in fibrotic diseases
and cancer.

2. The Cadherin/Catenin Complex

Cadherins constitute a large family of cell surface pro-
teins, including E (epithelial)-, N (neural)-, VE (vascular-

endothelial)-, P (placental)-, R (retinal)-, and K (kidney)-
cadherins [4]. Classical cadherins are single-pass trans-
membrane proteins which participate in Ca2+-dependent
cell adhesion that is necessary to form solid tissues [2,
5]. E-cadherin is functionally linked to the generation of
a polarized epithelial phenotype [6, 7]. The extracellular
region of E-cadherin extends from the cell surface and
bind to cadherins present on adjacent cells [8] whereas its
intracellular region contains binding sites to interact with
catenins and other regulatory proteins (Figure 1) [9]. Im-
munoprecipitation of detergent-solubilised cell extracts with
anticadherin antibodies identified major proteins involved
in the formation of cadherin: p120-, α-, β-, and γ-catenin
(plakoglobin) [10, 11]. P120 catenin acts to bind to the
juxtamembrane portion, and β-catenin or plakoglobin binds
to the carboxy-terminal 100 amino acids of the cadherin
cytoplasmic region [12]. α-catenin links β-catenin to actin,
which in turn has the ability to promote AJ protein clustering
and stabilization of cell adhesion [13]. To allow for a
continuous assembly of cadherin/catenin complexes in AJs,
cadherins can be constitutively endocytosed and recycled
to the cell surface [14, 15]. In Drosophila epithelial cells,
exocyst components Sec5, Sec6, and Sec15 directly regulate
the trafficking of E-cadherin to AJs via interactions with
β-catenin [16]. Images from time-lapse microscopy using
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Figure 1: E-cadherin/β-catenin complex in epithelial cell-cell adhesion and Wnt signalling.

photoactivatable-GFP-tagged β-catenin in A431 cells show
that β-catenin, internalised with E-cadherin, accumulates
at the perinuclear endocytic recycling compartment (ERC)
upon AJ dissociation [17].

3. E-Cadherin/β-Catenin-Mediated
Signaling Pathways

Other than their structural role in stabilizing cell-cell contact,
components of cadherin-catenin complex serve a role in
activating several key signal transduction networks. β-
catenin is a key regulator in the canonical Wnt signaling,
where cytoplasmic β-catenin translocates to the nucleus and
functions as an activator for T-cell factor (TCF)/lymphoid
enhancer factor (LEF) transcription factors that result in a
subset of cellular effects involving cellular adhesion, tissue
morphogenesis, and tumor development (Figure 1) [18, 19].
In the absence of Wnt signals, a multiprotein destruction
complex including axin and the adenomatous polyposis
coli (APC) facilitates phosphorylation of serine residues
in the N terminus of cytosolic β-catenin, which leads to
its ubiquitination and proteosomal destruction (Figure 1)
[20]. Wnt signaling inhibits this degradative process by
binding to Frizzled receptors and signaling through the

associated low-density lipoprotein-related proteins, LRP5/6,
thereby allowing β-catenin to accumulate in the cytosol and
enter the nucleus (Figure 1) [21–23]. Dissociation of AJ can
influence E-cadherin endocytosis, β-catenin levels in the
ERC, and β-catenin substrate levels available downstream
for the Wnt pathway. One potential determinant in the
structural integrity of the cadherin/β-catenin complex may
lie in its phosphorylation status. Phosphorylation of E-
cadherin or β-catenin by Ser/Thr kinase CK II stabilizes the
complex [24, 25]. However, tyrosine 654 phosphorylation of
β-catenin by an intracellular signaling event disrupts the E-
cadherin/β-catenin complex and cell adhesion [26, 27]. The
phosphorylation of β-catenin at tyrosine 489 or 142 strength-
ens Wnt signaling [28, 29]. Tyrosine phosphorylation can
release β-catenin from E-cadherin, decrease cell-cell junction
adhesion, and increase cell migration and invasiveness [30].

4. E-Cadherin/β-Catenin and
Epithelial-Mesenchymal Transition (EMT)

E-cadherin/β-catenin protein complexes are involved actively
in epithelial to mesenchymal (EMT) and mesenchymal
to epithelial (MET) transitions, which play a particularly
important role in embryo development, tissue fibrosis, and
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cancer progression. The process of EMT is characterized
by differentiated epithelial cells that undergo a phenotypic
conversion that gives rise to the matrix-producing fibroblasts
and myofibroblasts. Epithelial cells lose their marker proteins
such as E-cadherin, zonula occludens-1 (ZO-1), and cytok-
eratin, and gain of a mesenchymal phenotype with expres-
sion of mesenchymal proteins including vimentin, α-smooth
muscle actin (α-SMA), and fibroblast-specific protein-1
(FSP1), and production of interstitial matrix components
type I collagen and fibronectin [31, 32]. Cell contacts are
critical determinants of EMT. Loss of E-cadherin likely
promotes β-catenin release and facilitates EMT, whereas
the expression of E-cadherin can reverse the transformed
phenotype [33–36]. β-catenin plays an important role in the
TGF-β1- and cell contact-dependent, synergistic induction
of EMT [37]. In the absence of TGF-β1, both E-cadherin and
β-catenin are rapidly degraded following contact disassem-
bly. However, TGF-β1 induces β-catenin dissociation from
epithelial contacts and stabilizes β-catenin in the cytoplasm,
making it available for nuclear import [38, 39]. So the loss
of cell-cell adhesion triggers EMT and is associated with
diseases involving EMT.

5. The Role of E-Cadherin/β-Catenin in Fibrosis

Fibrosis is an active extracellular matrix (ECM) biosynthetic
process and represents the final pathway of chronic failure of
many organs. Evidence of EMT has been reported in kidney,
lung, liver, eye, and serosal membranes suggesting that EMT
can be closely associated with the pathogenesis of fibrotic
disorders in those organs [40]. E-cadherin downregulation
responsible for the loss of cell-cell adhesion and β-catenin
upregulation for the subsequent transcriptome program of
EMT are two important changes in the process of fibrosis.
Iwano et al. found that 36% of renal fibroblasts, the main
effector cells in kidney fibrosis responsible for ECM produc-
tion, originate from renal tubular epithelial cells via EMT
[41] despite conflicting evidence about the relative impor-
tance of various sources of myofibroblasts was reported [42].
Decreased expression of E-cadherin and early expression
of EMT-related markers as well as β-catenin cytoplasmic
translocation have been detected in kidney specimens from
patients with glomerulonephritis and diabetic and chronic
allograft nephropathies [43–46]. Similar changes appear in
lung epithelial cells of patients with idiopathic pulmonary
fibrosis and usual interstitial pneumonia [47, 48], and
in biliary epithelial cells of patients with primary biliary
cirrhosis, primary sclerosing cholangitis and alcoholic liver
disease [49]. The transition of retinal pigment epithelial cells
into myofibroblasts is observed in patients with proliferative
vitreoretinopathy, and peritoneal mesothelial cells from fluid
effluents of dialyzed patients show a mesenchymal pheno-
type with reduced E-cadherin expression [50–52]. Nuclear
β-catenin immunoreactivity suggests aberrant activation
of Wnt/β-catenin signaling and subsequent EMT in the
pathogenesis of a number of fibrotic disorders. In addition
to the nuclear translocation of β-catenin, we previously
reported that matrix metalloproteinase (MMP)-mediated E-
cadherin disruption led directly to tubular epithelial cell

EMT via Slug and that MMP-9 secreted by macrophages is
capable of initiating tubular cell EMT by disruption of the
E-cadherin/β-catenin complex [45, 53].

6. The Role of E-Cadherin/β-Catenin in Cancer

EMT is an important mechanism for the cancer development
and initial step of metastasis [54, 55]. Disruption of E-
cadherin/β-catenin might contribute to tumor aberrant
morphogenetic effects. Loss of E-cadherin expression or loss
of its normal localization at cell-cell contacts is consistently
observed at sites of EMT during tumor progression. E-
cadherin expression level is often inversely correlated with
the tumor malignancy [56–58]. Cases of invasive lobular
carcinoma have been associated commonly with the loss of
E-cadherin expression as a result of E-cadherin gene mu-
tation and promoter hypermethylation [59, 60]. Evidence
from animal models has shown that conditional deletion
of E-cadherin in p53-deficient mouse mammary epithelium
promoted tumor initiation and progression to invasion and
metastasis [61]. β-catenin is a critical element in the canon-
ical Wnt signaling of tumorigenesis. Activating mutations of
β-catenin or inactivating mutations of APC or Axin have
been found to be associated with a wide variety of human
malignancies, such as colorectal, ovarian endometrial, hep-
tocellular, desmoid and pancreatic tumors [62, 63]. Cancer
studies suggest that deregulated β-catenin signaling pro-
motes tumorigenesis by inducing expression of oncogenes
such as c-myc and cyclin D1 [64–66]. Stabilizing mutations in
the β-catenin N-terminal sequence have been found in 25%
of metaplastic breast cancers [67]. Increased cytoplasmic
and nuclear β-catenin levels have been observed in 40% of
primary breast cancers and correlated with poor prognosis
and worse patient survival [68–73].

7. Concluding Remarks

Taken together, these data show that in addition to their
adhesive functions, the E-cadherin/β-catenin complex also
plays a crucial role in modulating Wnt signaling. E-cadher-
in/β-catenin complex maintains integrity of epithelial cell-
cell contact and keeps Wnt/β-catenin signals in check. Loss
of cadherin-mediated cell adhesion can promote β-catenin
signaling. The E-cadherin/β-catenin complex is very impor-
tant in maintaining epithelial morphology, and high-affinity
E-cadherin/β-catenin interaction can be disrupted during
oncogenesis and fibrosis. This complex is dysregulated in
response to mediators of inflammation, including MMPs,
growth factors, and cytokines, suggesting that dysregulation
of E-cadherin/β-catenin association holds promise as a new
target for therapy of fibrotic disorders and cancer.

References

[1] K. J. Green, S. Getsios, S. Troyanovsky, and L. M. Godsel,
“Intercellular junction assembly, dynamics, and homeostasis,”
Cold Spring Harbor Perspectives in Biology, vol. 2, no. 2,
p. a000125, 2010.



4 Journal of Biomedicine and Biotechnology

[2] B. M. Gumbiner, “Regulation of cadherin-mediated adhesion
in morphogenesis,” Nature Reviews Molecular Cell Biology,
vol. 6, no. 8, pp. 622–634, 2005.

[3] H. Kurokawa and M. Ikura, “[Perspectives on structure eluci-
dation of the cadherin-catenin complex],” Seikagaku, vol. 78,
no. 7, pp. 595–600, 2006.

[4] p. Hulpiau and F. van Roy, “Molecular evolution of the
cadherin superfamily,” International Journal of Biochemistry
and Cell Biology, vol. 41, no. 2, pp. 349–369, 2009.

[5] U. Tepass, “Genetic analysis of cadherin function in animal
morphogenesis,” Current Opinion in Cell Biology, vol. 11, no. 5,
pp. 540–548, 1999.

[6] M. J. Wheelock and p. J. Jensen, “Regulation of keratinocyte
intercellular junction organization and epidermal morpho-
genesis by E-cadherin,” Journal of Cell Biology, vol. 117, no. 2,
pp. 415–425, 1992.

[7] A. Jeanes, C. J. Gottardi, and A. S. Yap, “Cadherins and cancer:
how does cadherin dysfunction promote tumor progression?”
Oncogene, vol. 27, no. 55, pp. 6920–6929, 2008.

[8] L. Shapiro and W. I. Weis, “Structure and biochemistry of
cadherins and catenins,” Cold Spring Harbor Perspectives in
Biology, vol. 1, no. 3, p. a003053, 2009.

[9] M. Perez-Moreno and E. Fuchs, “Catenins: keeping cells from
getting their signals crossed,” Developmental Cell, vol. 11,
no. 5, pp. 601–612, 2006.

[10] M. Ozawa, H. Barbault, and R. Kemler, “The cytoplasmic
domain of the cell adhesion molecule uvomorulin assoicates
with three independent proteins structurally related in differ-
ent species,” EMBO Journal, vol. 8, no. 6, pp. 1711–1717, 1989.

[11] M. Ozawa and R. Kemler, “Altered cell adhesion activity by
pervanadate due to the dissociation of α-catenin from the
E-cadherin·catenin complex,” Journal of Biological Chemistry,
vol. 273, no. 11, pp. 6166–6170, 1998.

[12] A. B. Reynolds and R. H. Carnahan, “Regulation of cadherin
stability and turnover by p120ctn: implications in disease and
cancer,” Seminars in Cell and Developmental Biology, vol. 15,
no. 6, pp. 657–663, 2004.

[13] S. Hirano, N. Kimoto, Y. Shimoyama, S. Hirohashi, and M.
Takeichi, “Identification of a neural α-catenin as a key regula-
tor of cadherin function and multicellular organization,” Cell,
vol. 70, no. 2, pp. 293–301, 1992.

[14] A. I. Ivanov, A. Nusrat, and C. A. Parkos, “Endocytosis of
the apical junctional complex: mechanisms and possible roles
in regulation of epithelial barriers,” BioEssays, vol. 27, no. 4,
pp. 356–365, 2005.

[15] A. S. Yap, M. S. Crampton, and J. Hardin, “Making and
breaking contacts: the cellular biology of cadherin regulation,”
Current Opinion in Cell Biology, vol. 19, no. 5, pp. 508–514,
2007.

[16] J. Langevin, M. J. Morgan, C. Rossé et al., “Drosophila exocyst
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