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Abstract: Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-
related mortality worldwide, with growing evidence linking risk to lifestyle and dietary
factors. However, nutrition-related exposures have rarely been integrated into existing CRC
risk prediction models. This study aimed to develop and validate a lifestyle-based 10-year
CRC risk prediction model using longitudinal data from a large-scale population-based
screening cohort to facilitate early risk stratification and personalized screening strategies.
Methods: Data were obtained from 21,358 individuals participating in a CRC screening
program in Shanghai, China, with over 10 years of active follow-up until 30 June 2021.
Of these participants, 16,782 aged ≥40 years were used for model development, and
4576 for external validation. Predictors were selected using random survival forest (RSF)
and elastic net methods, and the final model was developed using Cox regression. Ma-
chine learning approaches (RSF and XGBoost) were additionally applied for performance
comparison. Model performance was evaluated through discrimination, calibration, and
decision curve analysis (DCA). Results: The final model incorporated twelve predictors:
age, gender, family history of CRC, diabetes, fecal immunochemical test (FIT) results, and
seven lifestyle-related factors (smoking, alcohol use, body shape, red meat intake, fried
food intake, pickled food intake, and fruit and vegetable intake). Compared to the base-
line demographic-only model (C-index = 0.622; 95% CI: 0.589–0.657), the addition of FIT
improved discrimination, and further inclusion of dietary and lifestyle variables signifi-
cantly enhanced the model’s predictive accuracy (C-index = 0.718; 95% CI: 0.682–0.762;
∆C-index = 0.096, p = 0.003). Conclusions: Incorporating dietary and lifestyle variables
improved CRC risk stratification. These findings highlight the value of dietary factors in
informing personalized screening decisions and providing an evidence-based foundation
for targeted preventive interventions.

Keywords: colorectal cancer; risk prediction; lifestyle factors; dietary patterns; risk stratification

1. Introduction
Colorectal cancer (CRC) ranks as the third most common malignancy and the second

leading cause of cancer-related mortality worldwide, with over 1.9 million new diagnoses
and approximately 935,000 deaths attributed to it annually [1]. China currently bears the
highest burden of CRC incidence and mortality worldwide. Concerningly, this burden
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is projected to increase, driven by the rising incidence among younger populations and
continued aging of the overall population [2,3]. Population-based screening has been
shown to be effective in reducing both the incidence and mortality of CRC, primarily
through the early detection and removal of premalignant adenomas, as well as the early
diagnosis and treatment of cancers at more treatable stages [4–6]. However, despite being
the gold standard for CRC detection, colonoscopy is invasive, costly, and time-consuming,
presenting substantial challenges for its large-scale implementation. A risk-tailored ap-
proach has been proposed to reduce medical costs by targeting colonoscopy for high-risk
individuals identified through either a positive fecal immunochemical test (FIT) result
or an elevated integral risk score, which has the potential to improve cost-effectiveness,
particularly in resource-limited settings [7,8]. Moreover, a better understanding of cancer
risk may enhance informed consent and increase screening participation rates.

A variety of factors are associated with the incidence of CRC, including inherent factors
like age, gender, genetics, and modifiable lifestyle behaviors, such as smoking and alcohol
consumption [1,9–11]. Recent studies have increasingly highlighted the link between
dietary intake and CRC risk. High consumption of red and processed meats has been
consistently associated with an elevated risk of CRC, with a dose–response relationship
observed for each additional 30 g/day of intake [12,13]. Conversely, diets rich in calcium,
dairy products (e.g., milk and yogurt), whole grains, and fiber have demonstrated protective
effects, reducing CRC risk by up to 17% for calcium and 14% for dairy products [14,15].
Integrating these factors into personalized CRC risk scores could help identify high-risk
individuals and encourage the adoption of healthier lifestyle changes.

Many colorectal cancer (CRC) risk prediction models have been developed over the
years, among which the Asia-Pacific Colorectal Screening (APCS) score is one of the most
widely validated in Asian populations [16–18]. This model, incorporating age, gender,
smoking status, and family history of CRC, provides a simple yet practical approach for risk
stratification. However, its discriminatory ability remains limited, with an AUC of only 0.64.
Additionally, many recently developed models rely on binary outcomes derived from cross-
sectional or short-term follow-up data, which do not account for the long latency period of
CRC development and may introduce biases in prediction accuracy [11,19,20]. Although
some studies have analyzed long-term survival distributions, they often fail to incorporate
time-to-event machine learning (ML) models, despite their potential advantages [21–23].
Unlike traditional approaches such as Cox proportional hazards (CPH) regression, machine
learning models can flexibly capture complex nonlinear relationships and interactions
among variables without requiring predefined assumptions, offering improved adaptability
and predictive performance [24–26].

We attempted to develop a prediction model that incorporates dietary habits along-
side established factors, using data from a prospective cohort with a median follow-up of
11 years. Both traditional CPH and time-to-event ML methods were applied to compare the
performance and obtain reliable estimates. Finally, we displayed the models’ risk stratifica-
tion capabilities and net benefit across the entire population to access their generalizability
and potential clinical utility in guiding screening referrals. To our knowledge, few studies
have integrated long-term follow-up dietary data with time-to-event machine learning
models for CRC risk prediction, particularly in Asian populations. By addressing this gap,
our study offers novel insights into personalized screening strategies and highlights the
potential for more efficient allocation of colonoscopy resources.

2. Materials and Methods
We used the APCS model as the base model. To evaluate the incremental predictive

value of additional risk factors, we first incorporated FIT results into the model. Sub-
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sequently, a comprehensive model was developed by integrating APCS variables, FIT
outcomes, and dietary factors. All models were trained to predict the 10-year risk of col-
orectal cancer among individuals within the recommended screening age range. Model
performance was evaluated using standard discrimination and calibration metrics.

2.1. Data Source

The dataset was obtained from a subset of participants in the Shanghai Community-
based Colorectal Cancer Screening Program (SHcsp), a large-scale, government-funded
initiative designed to promote the early detection of CRC among urban residents in
China [27–29]. We used information from Minghang Area, a representative district of
Shanghai. Between 2008 and 2012, residents aged 50–74 were invited as the target popula-
tion to complete a two-sample qualitative FIT, alongside a structured risk assessment (RA)
via face-to-face interviews at enrollment. The RA included demographic, lifestyle, and
medical history information collected by trained investigators. Dietary intake was assessed
using a structured food frequency questionnaire (FFQ), where participants reported the
frequency and approximate quantity of consumption over the past 7 days. Visual aids,
such as standardized bowls and gram reference charts, were provided to support estima-
tion. Anthropometric measurements, including height, weight, waist circumference, and
hip circumference, were measured in light clothing by trained staff using standardized
protocols in accordance with WHO guidelines [30]. Diabetes status was obtained from the
local electronic health record (EHR) system and defined as a documented diagnosis by a
licensed physician, in accordance with national clinical guidelines.

Since the program was delivered as part of the public health services, individu-
als outside the target age range were also permitted to participate on a voluntary basis.
Throughout the follow-up period, community physicians actively monitored participants
by routinely collecting examination results from designated hospitals and maintaining
regular participant contact. CRC diagnoses were continuously identified through linkage
to the Shanghai Cancer Registry. Follow-up for cancer outcomes was last updated on
30 June 2021. The study received ethical approval from the Shanghai CDC (EC-P-2012-002),
and written informed consent was obtained from all participants.

2.2. Study Population

Of the initial 23,814 registered volunteers (aged 23–79 years), 21,634 participants
remained after excluding those with missing FIT results, a prior cancer diagnosis, or follow-
up durations shorter than three months. For model development and validation, we
focused on 20,277 participants aged over 40 years—aligned with CRC screening guidelines
by the Chinese CDC and international recommendations [31]. A training and internal
validation cohort (n = 16,872) comprised individuals enrolled from 2008 to 2010. External
validation was conducted on 3405 individuals recruited from 2011 to 2012. Additionally,
1081 participants under 40 years of age were included to ensure conservative model
validation and improve robustness given the lower CRC incidence in younger populations
(Figure 1).
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Figure 1. Flow diagram of the main steps in this study. The model was developed and internally
validated using participants aged ≥40 enrolled during 2008–2010. External validation included
those enrolled in 2010–2012 and participants <40 from the earlier cohort to increase sample size. All
participants were followed up for over 10 years. Cox proportional hazards model, Cox; random
survival forest, RSF; Extreme Gradient Boosting Accelerated Failure Time Model, XGB; Concordance
Index, C-index; integrated Brier score, I-BS; Receiver Operating Characteristics, ROC; Calibration
curve, Cal curve.

2.3. Outcomes

The primary outcome was incident CRC, identified via linkage to the Shanghai Tumor
Registration System. Cases of CRC were identified according to the International Classifi-
cation of Diseases, 10th Revision (ICD-10) codes C18.0, C18.2–C18.9, C19.9, C20.9, while
appendix cancer (C18.1) was excluded. For individuals with multiple primary CRC diag-
nosis, only the first occurrence was considered. Follow-up commenced at enrollment and
continued until the first occurrence of CRC diagnosis, death, emigration, or 30 June 2021.

2.4. Sample Size Calculation

To reduce the risk of overfitting and potential biases arising from an insufficient
sample size during variable selection and model training, we performed a preliminary
sample size calculation. Assuming 30 predictor parameters, an annual incidence rate of
23.9 per 100,000 person years, a conservative Cox–Snell R2 of 0.03, and a 10-year prediction
horizon with a mean follow-up time of 10.98 years, we estimated that the minimum
sample size required was 10,822, corresponding to 118,825.6 person-time of follow-up
(i.e., 10,822 × 10.98), with 29 outcome events and therefore an EPP (events per candidate
predictor parameter) = 0.97. According to the guidelines by Riley et al., this value ensured a
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sufficient precision, a small shrinkage of predictor effects and optimism in apparent model
fit [32–34].

2.5. Missing Data and Feature Processing

To mitigate multicollinearity and reduce model complexity, standardized BMI, waist
circumference, and hip circumference were subjected to principal component analysis
(PCA). The first principal component, which accounted for 93.6% of the total variance,
was used to construct a composite variable referred to as “Body shape”. The calculation
formula used in our study was as follows:

Body shape = 0.574 × BMI + 0.579 × Waist + 0.578 × Hip (1)

All input variables were standardized (z-score transformed) prior to PCA. These load-
ings were derived from the training dataset (n = 16,872) and were consistently applied
throughout model development and validation.

Features with more than 30% missing data were excluded from subsequent analysis
in the full dataset. For variables with less than 30% missingness, a total of 697 missing
values were assumed to be missing at random and imputed using multiple imputation
by chained equations (MICE) [35]. Continuous and nominal categorical variables were
imputed using random forest, while ordinal categories were handled with proportional
odds models. The imputation model included all preprocessed candidate predictors, the
event indicator, and the Nelson–Aalen estimator of the cumulative hazard. Five imputed
datasets were generated and subsequently used for model fitting and evaluation [35].
Details of missingness and imputation quality are provided in Supplementary Table S1 and
Figure S1.

2.6. Feature Selection

Feature selection was performed using a dual-method approach, integrating regression-
based elastic net regularization and tree-based random survival forest (RSF) [36]. The elastic
net regularization, a hybrid method combining LASSO (L1 regularization) and ridge re-
gression (L2 regularization), was implemented with optimal tuning parameters (λ and α)
determined through 10-fold cross-validation, minimizing the Cox partial likelihood loss
function [37]. Predictors with coefficient estimates shrinking to zero under these parameters
were removed.

In the RSF approach, an ensemble extension of random forest, survival trees were built
using bootstrapped samples, with survival functions estimated by averaging terminal node
statistics [38]. Variable importance was assessed via permutation-based importance scores,
with optimal number of features determined through 10-fold cross-validation targeting
minimal error rates. To ensure robustness and consistency, feature selection was conducted
independently on each imputed dataset, with results subsequently pooled using Rubin’s
rules to generate unified feature importance metrics [39,40]. The final feature set consisted
of predictors selected by both methods, ensuring the development of parsimonious models
that incorporate only clinically relevant and readily accessible predictors.

2.7. Model Development

We use APCS as the base model. To evaluate the incremental predictive value of
additional variables, FIT and lifestyle factors were sequentially incorporated to construct
the FIT-enhanced and full models, respectively. All of the three models were constructed
using CPH regression to estimate CRC risk. The proportional hazards (PHs) assumption
was tested using Schoenfeld residuals for each covariate and globally, following model
estimation. Additionally, the full model was further explored using RSF and XGBoost to
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explore potential nonlinear relationships and interactions among predictors [41,42]. All
models were trained and internally validated using 1000 bootstrap samples on the training
dataset. For the machine learning models, we employed a grid search with stratified 10-fold
cross-validation to optimize their parameters. The best-performing parameters were then
applied to the external dataset for model validation and evaluation. Detailed information
about the hyperparameter search space is provided in Supplementary Table S2.

In the CoxPH model, the risk score is directly obtained from the linear predictor (lp), a
weighted sum of covariates and their corresponding regression coefficients. RSF computes
risk score by averaging the predicted cumulative hazard function (CHF) across all survival
trees. In XGBoost, survival risk is estimated using a gradient-boosted tree, and the risk
score is calculated as the sum of predictions from individual trees.

To derive the 5-year and 10-year risk estimates, time-dependent risk scores were
transformed into cumulative risk probabilities. Specifically, for the CoxPH model, the
survival probability at time t was estimated using the baseline survival function S0 adjusted
by the exponentiated linear predictor. For RSF and XGBoost, the Nelson–Aalen estimator
was used to estimate the cumulative hazard function (CHF), which was then converted to
survival probabilities. All risk predictions were performed using the mlr3 and mlr3proba
frameworks [43]. The final risk scores were standardized to ensure a consistent and
comparable prediction across different models.

2.8. Model Evaluation

Model discrimination was assessed using Harrell’s C-index, calculated at 10 years,
which quantifies the model’s ability to correctly rank the relative risk of two randomly
selected individuals [44,45]. To account for model optimism due to overfitting, the C-
index for each model was computed for every bootstrap sample, and the mean value was
taken as an estimate of optimism. Optimism-corrected C-index was then calculated as
Capparent − Optimism [46,47]. The apparent C-index, bootstrap aggregated C-index with
its 95% CI, optimism-corrected C-index were reported. Additionally, time-dependent ROC
curves for each model at 5-year and 10-year time points were generated in the validation
cohort to visualize their discriminative power. The analyses were performed in R with the
package rms (version 5.1-3.1).

Model calibration was evaluated with the integrated Brier score (IBS) [48,49]. The Brier
score measures the average squared distances between the observed survival outcomes
and predicted survival probabilities. A lower IBS indicates better calibration. The metrics
was computed using the mlr3proba package in R, which accommodates right-censored
data [43]. Each model was internally validated using 1000 bootstrap samples, and the
optimism in the calibration was adjusted similarly to the C-index. Calibration curves were
generated for each model at 5-year and 10-year time points in the validation cohort.

To compare the clinical utility of the models, we assessed their performance across dif-
ferent risk strata and thresholds. We assumed a simplified scenario that a single colonoscopy
at the cohort entry would detect all existing CRC cases. Net benefit (NB) was manually
calculated in R using the standard formula [50]:

NB = (TP ÷ N) − (FP ÷ N) × (Pt ÷ [1 − Pt]) (2)

where TP = true positives, FP = false positives, N = total cohort size, and Pt = risk threshold
(e.g., Pt = 1% implies willingness to perform 100 colonoscopies per detected case). Analyses
were evaluated across a range of relevant risk thresholds.
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3. Results
3.1. Baseline Characteristics

Table 1 summarizes the baseline characteristics of the study participants. The cohort
was stratified by the decade of enrollment for model derivation and validation. Over the
entire follow-up period (median: 11.41 years for the derivation cohort and 10 years for the
validation cohort), a total of 285 CRC cases were observed. Compared to the development
cohort, the validation cohort had a higher level of education, fewer FIT-positive cases, and
a younger age profile due to later enrollment and the inclusion of 1180 individuals under
age 40. The observed heterogeneity between cohorts helped assess model robustness under
real-world conditions.

Table 1. Baseline characteristics of participants in the derivation and validation cohorts.

Characteristics Overall Derivation Cohort Validation Cohort p

N 21,358 16,782 4576
Cases (%) 285 (1.33) 226 (1.35) 59 (1.29) 0.833
Follow up time (median
[Q1,Q3]) 11.12 (10.09, 11.86) 11.41 (10.55, 12.18) 10.38 [9.86, 11.08] <0.001

Age (mean (SD)) 60.74 (6.99) 60.87 (6.54) 60.24 (8.41) <0.001
Education (%) <0.001

Primary (elementary) 4935 (23.1) 4442 (26.5) 493 (10.8)
Medium (junior and senior) 8004 (37.5) 6216 (37.0) 1788 (39.1)

High (college and university) 8419 (39.4) 6124 (36.5) 2295 (50.2)
Smoke (%) 0.835

No 15,860 (74.3) 12,456 (74.2) 3404 (74.4)
Yes 5498 (25.7) 4326 (25.8) 1172 (25.6)

Alcohol (%) 0.047
Occasional drinkers 17,654 (82.7) 13,826 (82.4) 3828 (83.7)

Current drinkers 3704 (17.3) 2956 (17.6) 748 (16.3)
Red meat (%) <0.001

≤50 g per day 13,661 (63.9) 10,538 (62.8) 3123 (68.2)
>50 g per day 7697 (36.0) 6244 (37.2) 1453 (31.8)

Deep fried food (%) <0.001
≤3 meals per week 16,492 (77.2) 13,071 (77.9) 3421 (74.8)
>3 meals per week 4866 (22.8) 3711 (22.1) 1155 (25.2)

Pickle (%) <0.001
≤1 meal per week 12,909 (60.4) 9864 (58.8) 3045 (66.5)
>1 meal per week 8449 (39.6) 6918 (41.2) 1531 (33.5)

Vegetables and fruits (%) <0.001
≥300 g per day 3389 (15.9) 2757 (16.4) 632(13.8)
<300 g per day 17,969 (84.1) 14,025 (83.6) 3944 (86.2)

BMI (mean (SD)) 24.42 (3.26) 24.48 (3.27) 24.22 (3.23) <0.001
Waist (mean (SD)) 82.59 (9.08) 82.89 (9.10) 81.48 (8.92) <0.001
Hip (mean (SD)) 94.68 (6.91) 94.96 (6.96) 93.66 (6.62) <0.001
Diabetes (%) <0.001

No 16,986 (79.5) 13,212 (78.7) 3774 (82.5)
Yes 4372 (20.5) 3570 (21.3) 802 (17.5)

Diarrhea (%)
No 20,705 (96.9) 16,200 (96.5) 4505 (98.4) <0.001
Yes 653 (3.1) 582 (3.5) 71 (1.6)

Constipation (%)
No 20,163 (94.4) 15,839 (94.4) 4324 (94.5) 0.798
Yes 1195 (5.6) 943 (5.6) 252 (5.5)
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Table 1. Cont.

Characteristics Overall Derivation Cohort Validation Cohort p

Hematochezia (%)
No 20,981 (98.2) 16,467 (98.1) 4514 (98.6) 0.021
Yes 377 (1.8) 315 (1.9) 62 (1.4)

Mucous (%)
No 21,145 (99.0) 16,596 (98.9) 4549 (99.4) 0.002
Yes 213 (1.0) 186 (1.1) 27 (0.6)

Stool deformity (%)
No 20,531 (96.1) 16,097 (95.9) 4434 (96.9) 0.003
Yes 827 (3.9) 685 (4.1) 142 (3.1)

Family history (%)
No 15,461 (72.4) 12,079 (72.0) 3382 (73.9) <0.001
Yes 5897 (27.6) 4703 (28.0) 1194 (26.1)

FIT (%)
Negative 18,237 (85.4) 14,130 (84.2) 4107 (89.8) <0.001

Positive 3121 (14.6) 2652 (15.8) 469 (10.2)
Values are presented as n (%) unless otherwise specified. p values represent comparisons between the development
and validation cohorts. Continuous variables were compared using t-tests or Wilcoxon rank-sum tests as
appropriate; categorical variables (including those with multiple categories) were compared using the chi-
square test.

3.2. Selected Predictors

Supplementary Table S4 shows the distribution of Cox regression coefficients of all
predictor variables based on the 10-fold cross-validated elastic net regularization. Variables
whose coefficients were not shrunk to 0 were selected. For RSF, the best parameters were
identified through grid search, with the model’s error rate stabilizing at approximately
0.35 after around 200 trees, indicating robust performance (Supplementary Figure S2). Top
12 variables were selected. The number of variables determined was the one that minimized
the loss function plus one standard deviation in 10-fold cross validation.

The two methods produced consistent results with slight differences in variable rank-
ing. Most predictors were significantly associated with the outcome. Variables with low
prevalence, such as gastrointestinal symptoms, contributed minimally and were excluded
from the final model. Ultimately, twelve variables were selected for the full model, in-
cluding age, gender, smoking, family history, alcohol use, body-shape (first principal
component), dietary factors, diabetes, and FIT. Table 2 presents the hazard ratios and 95%
confidence intervals from the final multivariable Cox model. The proportional hazards
(PHs) assumption was evaluated using Schoenfeld residuals, and detailed test results are
provided in Supplementary Table S3.

Table 2. Hazard ratios and confidence intervals for variables included in the full Cox model.

Characteristics HR 95% CI p Value

Age 1.048 1.029–1.067 <0.001
Gender

Male Ref Ref
Female 0.548 0.400–0.749 <0.001

Smoke
No Ref Ref
Yes 1.317 1.011–1.717 0.042

Alcohol
Occasional drinkers Ref Ref
Current drinkers 1.192 0.799–1.787 0.089
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Table 2. Cont.

Characteristics HR 95% CI p Value

Red meat (%)
≤2 meals per week Ref Ref
>2 meals per week 1.021 1.003–1.039 0.048

Deep fried food (%)
≤2 meals per week Ref Ref
>2 meals per week 1.209 0.879–1.663 0.062

Pickle (%)
≤2 meals per week Ref Ref
>2 meals per week 1.019 0.844–1.232 0.094

Vegetables and fruits (%)
≥300 g per week Ref Ref
<300 g per week 1.184 0.988–1.148 0.052

Body shape 1.142 1.058–1.388 0.004
Diabetes (%)

No Ref Ref
Yes 1.317 1.011–1.717 0.043

Family history (%)
No Ref Ref
Yes 1.164 0.914–1.483 0.218

FIT results (%)
Negative Ref Ref
Positive 4.877 3.860–6.162 <0.001

3.3. Model Performance

With a C-index of 0.727 (bootstrap 95% CI: 0.682–0.762; Table 3) and a 10-year AUC of
0.811, the full model exhibits the highest discrimination performance among the three mod-
els. Compared with the base model (C-index = 0.626; 95% CI from bootstrap: 0.589–0.657),
consistent with the original study), the addition of FIT increased the C-index by 0.073
(0.065 in the validation set), while the full model improved the C-index by 0.101 (0.096
in the validation set). These findings indicate a statistically significant enhancement
in discrimination.

The ranking of model performance based on time-dependent AUC was consistent
with the C-index results. At both 5-year and 10-year time points, the full Cox model
outperformed the base and FIT-enhanced models (AUC = 0.821 and 0.811, respectively).
Machine learning models further improved discrimination, with XGBoost achieving the
highest AUCs (0.856 at 5 years; 0.834 at 10 years), followed closely by RSF (Figure 2).
Although these improvements over the Cox model were not statistically significant, they
highlight the potential of ensemble learning methods in risk prediction.

A slight decline in AUC was observed over time (approximately 2% on average),
indicating modest temporal attenuation in model performance. All models showed good
calibration, with only minor differences. Notably, the RSF model exhibited the most stable
calibration slopes across both time horizons, particularly in higher-risk groups (Table 3 and
Figure 3).
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Table 3. Model performances in training and validation sets.

Model

C-Index

Apparent Bootstrap Optimism Optimism-
Corrected Validation

APCS 0.634 0.626 (0.589, 0.657) 0.008 0.626 0.622
FIT + APCS 0.709 0.699 (0.651, 0.709) 0.010 0.699 0.687

Cox full model 0.739 0.727 (0.682, 0.762) 0.012 0.727 0.718
RSF full model 0.754 0.734 (0.691, 0.776) 0.020 0.734 0.728
XGB full model 0.760 0.739 (0.692, 0.783) 0.021 0.739 0.729

Model

IBS

Apparent Bootstrap Optimism Optimism-
Corrected Validation

APCS 0.008 0.011 (0.007, 0.014) −0.004 0.012 0.014
FIT + APCS 0.008 0.011 (0.008, 0.014) −0.004 0.012 0.014

Cox full model 0.008 0.011 (0.007, 0.016) −0.004 0.012 0.014
RSF full model 0.008 0.010 (0.007, 0.014) −0.003 0.011 0.014
XGB full model 0.008 0.013 (0.008, 0.016) −0.005 0.013 0.014

Apparent” refers to the model’s performance evaluated directly on the training dataset (n = 16,872). “Bootstrap”
reflects the mean performance across 1000 bootstrap resamples from the training cohort. Values in parentheses
indicate 95% confidence intervals derived from bootstrap resampling. “Optimism” is the difference between
apparent and bootstrap performance, representing model overfitting. “Optimism-corrected” indicates internal
validation results after adjusting for optimism. “Validation” represents external validation performance assessed
in the independent validation cohort (n = 4576).

Figure 2. Time-dependent ROC curves for (A) 5-year and (B) 10-year colorectal cancer survival
prediction. The Cox full model showed improved discrimination over the base and FIT-enhanced
models. XGBoost achieved the highest AUC at both time points, followed by RSF. ROC curves were
generated using the validation cohort.
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Figure 3. (A) Calibration curve for 10-year survival across different models (APCS, APCS + FIT, and
Full model) for predicted probability vs. observed risk. (B) Calibration curve for 10-year survival
across three modeling methods (Cox, RSF, XGBoost) using the full model for predicted probability vs.
observed risk. (C) Calibration curve for 5-year survival across different models (APCS, APCS + FIT,
and full model) for predicted probability vs. observed risk. (D) Calibration curve for 5-year survival
across three modeling methods (Cox, RSF, XGBoost) using the full model for predicted probability vs.
observed risk.

3.4. Population Stratification

The full model demonstrated more distinct separation between risk groups, partic-
ularly for high-risk individuals, indicating improved stratification with the inclusion of
additional risk factors (Figure 4A). All three methods achieved consistent risk group sepa-
ration, with only slight variation in predicted cumulative event probabilities (Figure 4B).
Supplementary Table S5 reports the sensitivity, specificity, and detection rate of the Cox full
model for identifying individuals in the highest-risk quartile. Notably, individuals in the
top 20% of predicted absolute risk accounted for 56% of observed CRC cases, with a speci-
ficity of 80% and a detection rate of 0.70%. Across models, predicted absolute risks within
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the same risk quantile were broadly consistent, suggesting robustness in stratification
performance.

Figure 4. (A) Cumulative event probabilities across three models (APCS, APCS + FIT, full model).
(B) Cumulative event probabilities across three modeling methods (Cox, RSF, XGBoost) using the full
model risk factors. Each color represents a specific model, while risk level is distinguished by the line
type. All methods demonstrated consistent risk separation over time, with the largest divergence
observed in the high-risk group.

3.5. Decision Curve Analysis

Across a wide range of threshold probabilities, the full model consistently yielded
greater net benefit than both the APCS and APCS + FIT models, indicating improved
decision-making potential for identifying individuals who would benefit from further
diagnostic evaluation. (Figure 5A) While the RSF and XGBoost models showed perfor-
mance comparable to the Cox-based full model, the differences in net benefit were marginal.
(Figure 5B) To illustrate, at a threshold probability of 1%, the net benefit of the Cox full
model was 0.008 true positives, corresponding to the detection of 0.8 colorectal cancer cases
per 100 individuals, compared to 0.6 with the FIT-enhanced model and fewer with APCS
alone. These suggest that the full model could meaningfully improve early cancer detection
without substantially increasing unnecessary interventions.
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Figure 5. (A) Decision curve analysis across three models (APCS, APCS + FIT, full model). (B) Decision
curve analysis across three modeling methods (Cox, RSF, XGBoost). The solid black line represents a
no-screening strategy, and the dashed line represents screening all. At low threshold probabilities,
large portions of individuals are recommended for screening, resulting in the highest net benefit.
All three models showed comparable net benefit, with performance declining gradually as the
threshold increased.

3.6. Individual Risk Estimation and Risk Score Calculation

To support individual risk stratification, we derived a linear predictor (risk score)
based on the full multivariable Cox model. This score reflects the relative hazard for each
participant and enables ranking individuals according to their predicted long-term risk of
CRC. The risk score was calculated as a linear combination of the 12 predictors retained in
the final model:

RiskScore = ∑12
i=1 βi·Xi

The full set of regression coefficients and variable definitions is provided in Table 2.
These estimates may be used to compute individual-level risk scores for population-based
stratification and personalized screening strategies. An example formula using the esti-
mated β values is as follows:

RiskScore = 1.048 × Age + 0.548 × Female + 1.317 × Smoker + . . . + 4.872 × FITpositive

To estimate the absolute 10-year risk of CRC for each individual, we applied the
following formula based on the Cox model framework:

R̂(10|X) = 1 − Ŝ0(10)exp (RiskScore)

where Ŝ0(10) denotes the baseline survival probability at 10 years, and the risk score is
calculated as described above. In our study, the estimated value of Ŝ0(10) was 0.986.
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4. Discussion
Using data from a large, population-based cohort with over 10 years of follow-up,

we developed and validated a 10-year CRC risk prediction model incorporating lifestyle
and related factors. The full model showed the best performance across all metrics and
offered improved stratification compared to the other three models. It also demonstrates
strong applicability to population screening. This stratified approach may enable more
precise identification of high-risk individuals, reduce unnecessary screening, and support
more efficient allocation of limited healthcare resources. Moreover, integrating dietary
and behavioral factors may raise risk awareness and motivate sustained lifestyle changes,
contributing to long-term improvements in population health [51,52].

In the risk group analysis, the inclusion of lifestyle risk group and FIT significantly
enhanced the discrimination performance of the base model. Notably, although the hazard
ratios for the lifestyle related variables showed a relatively narrow range in the Cox regres-
sion model, their joint effect contributed substantially to the model’s overall performance.
FIT, as a simple and non-invasive CRC screening method itself, also greatly improved
the model’s predictive ability, a finding that has been confirmed in several studies. These
results suggest the value of incorporating FIT and lifestyle factors in the development of
CRC risk prediction models. Information on these modifiable lifestyle factors can facilitate
improving health professionals’ ability to advocate for preventive measures and provide
preventive health recommendations. Moreover, this tailored approach enables personalized
feedback regarding individual lifestyle patterns, which can essentially aid behavior changes
in high-risk populations.

When comparing the performance of the three methods in the full model, machine
learning approaches exceeded the Cox full model in terms of discrimination ability. How-
ever, the extent of the improvement in performance was not statistically significant and
should be interpreted with caution. Additionally, we found that the Cox regression model
demonstrated predictive capabilities comparable to those of machine learning models in
risk stratification and net benefit analysis. This might be attributed to the relatively simple
data structure in our study. The full model included only 12 variables and did not exhibit
highly complex nonlinear relationships with the outcome. The strength of machine learning
approaches typically lies in their ability to capture complex nonlinear relationships and
interactions between variables. In a simpler dataset like ours, the traditional Cox propor-
tional hazards model may offer a reliable and more straightforward method, particularly
for clinical researchers. Nonetheless, machine learning methods remain valuable for their
flexibility and scalability, especially as future datasets incorporate more variables, larger
sample sizes, and increasingly complex data structures. It is important to recognize the
potential performance improvements provided by machine learning methods.

Our study has several limitations. Firstly, the model was developed using data from
the Shanghai program. Risk patterns for colorectal cancer may differ across populations
from different regions, ethnicities, and cultural backgrounds. Therefore, future research
should validate the model using multi-center datasets to further assess its generalizability
and accuracy. Secondly, though we included lifestyle and dietary factors, other important
potential risk factors, such as biomarkers and gut microbiota, were not accounted. This
limitation primarily stems from the limited accessibility of genetic data. Given that the
program began decades ago, obtaining biological samples from large populations was
challenging at that time, especially due to high cost and privacy concerns regarding genetic
information. However, with advancements in testing methods, recent studies have started
exploring large cohorts incorporating genetic factors [53]. However, in the context of large-
scale screening, these benefits must be weighed against logistical considerations, cost, and
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potential ethical concerns. In future studies, further detailed cost-effectiveness analyses
and utility assessments based on real-world data are necessary and should be included.

Integrating risk stratification models into existing colorectal cancer screening programs
has the potential to improve screening performance and optimize resource allocation. By
focusing on high-risk individuals, public health authorities can ensure more efficient use of
resources and timely intervention. However, before implementing risk-based screening, it
is crucial to conduct a thorough real-world cost-effectiveness evaluation, to assess its clinical
benefits and address potential health disparities. Combining lifestyle factors, biomark-
ers, and genetic information with current screening strategies could further enhance the
precision and effectiveness of CRC prevention programs.

5. Conclusions
Colorectal cancer is one of the most preventable malignancies and could benefit sub-

stantially from risk-stratified screening strategies. We developed and externally validated
a 10-year prediction model that demonstrated reasonable discrimination and calibration.
By integrating modifiable lifestyle factors, the model enables effective identification of
high-risk individuals and provides a practical tool for personalized prevention. Beyond
informing targeted screening, it may also enhance individual risk perception and promote
positive health behaviors. With further validation and implementation in real-world set-
tings, this model holds promise for integration into population-level screening programs to
improve early detection and optimize resource utilization.
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