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Abstract: There are thousands of chemicals that humans can be exposed to in their everyday environ-
ments, the majority of which are currently understudied and lack substantial testing for potential
exposure and toxicity. This study aimed to implement in silico methods to characterize the chemicals
that co-occur across chemical and product uses in our everyday household environments that also
target a common molecular mediator, thus representing understudied mixtures that may exacerbate
toxicity in humans. To detail, the Chemical and Products Database (CPDat) was queried to identify
which chemicals co-occur across common exposure sources. Chemicals were preselected to include
those that target an important mediator of cell health and toxicity, the peroxisome proliferator acti-
vated receptor gamma (PPARγ), in liver cells that were identified through query of the ToxCast/Tox21
database. These co-occurring chemicals were thus hypothesized to exert potential joint effects on
PPARγ. To test this hypothesis, five commonly co-occurring chemicals (namely, benzyl cinnamate,
butyl paraben, decanoic acid, eugenol, and sodium dodecyl sulfate) were tested individually and
in combination for changes in the expression of PPARγ and its downstream target, insulin recep-
tor (INSR), in human liver HepG2 cells. Results showed that these likely co-occurring chemicals
in household environments increased both PPARγ and INSR expression more significantly when
the exposures occurred as mixtures vs. as individual chemicals. Future studies will evaluate such
chemical combinations across more doses, allowing for further quantification of the types of joint
action while leveraging this method of chemical combination prioritization. This study demonstrates
the utility of in silico-based methods to identify chemicals that co-occur in the environment for
mixtures toxicity testing and highlights relationships between understudied chemicals and changes
in PPARγ-associated signaling.

Keywords: mixtures; in vitro; toxicology; in silico

1. Introduction

Humans are exposed to numerous chemicals in their everyday environments, predom-
inately in the form of mixtures. However, chemical exposure and toxicity assessments are
often designed to evaluate relationships between individual chemical exposures and health
outcomes. Commonly investigated chemicals in household environments with known
health hazards include parabens, phthalates, plasticizers, flame retardants, and other chem-
icals that are used in the manufacturing of products and personal care items [1–3]. There is
currently limited literature on the potential joint toxic effects of chemicals commonly found
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in everyday household environments on human health. Chemicals can have enhanced
effects when exposures occur in the presence of other chemicals that induce similar health
outcomes through similar mechanisms of action. A major limitation in mixtures-related
exposure and toxicity testing surrounds feasibility, where it is not feasible to test every
single possible chemical combination that may occur in the environment. Thus, prioriti-
zation and characterization efforts are needed to identify chemical mixtures that are most
prevalent in human exposure environments that likely exert toxicity through mechanisms
of joint action.

A mechanism through which chemicals can exert joint action is through the targeting of
the same molecular mediator(s) that underlie resulting disease outcomes [4,5]. An example
of an important molecular mediator of cell health and toxicity is the peroxisome proliferator
activated receptor gamma (PPARγ). Previous studies have incorporated mixtures modeling
into the evaluation of environmental effects on PPARγ activity and have established PPARγ
as an important target for future studies [6]. Peroxisome proliferator activated receptors
(PPARs), in general, are a group of nuclear receptor proteins that regulate cell differentiation
and metabolic pathways, such as lipid and glucose homeostasis [7]. PPARs regulate gene
expression by controlling transcription activity and are present throughout the nuclei
of cells [8,9]. The family of PPARs includes three isoforms: PPARα (alpha), PPARβ/δ
(beta), and PPARγ (gamma). These three nuclear receptor isoforms are all stimulated by
endogenous or exogenous ligands. PPARγ was selected as the potential common molecular
mediator of focus for this analysis because of its confirmed status as a major regulator
of cell health [7], as well as the availability of PPARγ assay data with adequate response
variability from the screening of thousands of chemicals in human liver cells through the
ToxCast/Tox21 consortium [10].

PPARγ is expressed throughout several tissues of the body, including adipose, intesti-
nal, kidney, liver, placenta, and spleen tissues [11]. PPARγ, in general, plays important
roles in adipogenesis, lipid metabolism, insulin sensitivity, immune regulation, and gen-
eral cellular processes, including cell differentiation [12]. Increased gene expression of
PPARγ has been associated with increased PPARγ activity. A recent example study con-
cluded that the expression levels of PPARγ were highly related and co-expressed with
important PPARγ gene targets involved in autophagy at various stages of adipocyte differ-
entiation [13]. Furthermore, studies using liver cells have shown that increases in PPARγ
activity resulted in altered expression of critical genes, including insulin receptor (INSR),
sex hormone-binding globulin, glucokinase, and others that are specifically known to be
regulated by PPARγ [14–16]. Because of its involvement across many cellular processes and
associated signaling, altered expression of PPARγ has implications in a variety of disease
outcomes, including autoimmune disease, cancer, cardiovascular disease, and metabolic
disease, among others [17–22]. The knowledge of the role of PPARγ specifically in the
liver has expanded in recent years, where PPARγ is now recognized as a major regulator
of liver metabolism, representing an important function that affects the overall health of
organisms [12]. Given the growing literature on PPARγ and its role in a variety of diseases,
the continued investigation of this receptor is needed in relation to environmental insults.
Here, we expand on this field of study by using database informatics to prioritize which
mixtures occur in environmental exposure that may be impacting PPARγ.

The purpose of this study was to couple in silico database mining with in vitro testing
to identify chemicals that are likely to co-occur in household environments, and to test
their potential joint action on PPARγ in human liver cells as a proof of principal. Chemical
exposure information was specifically analyzed from the Chemical and Products Database
(CPDat) to identify which chemicals are present across common exposure sources that are
relevant to household environments. Chemicals were preselected to include those that in-
crease PPARγ activity in liver cells, and were identified through query of the ToxCast/Tox21
database. The individual vs. joint effects of these chemicals on PPARγ was evaluated on the
basis of upstream PPARγ expression and a downstream target of PPARγ activity (i.e., INSR
expression) using HepG2 cells, paralleling the cell type used in ToxCast/Tox21 screening.
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Findings yielded a novel mixture of understudied chemicals that likely co-occur in house-
hold environments and may exacerbate or otherwise influence the toxicological impacts
from environmental exposures under conditions of co-exposure. The novelty of this study
surrounds the demonstration of in silico modeling to more efficiently identify harmful
chemicals and chemical mixtures in the environment which can then be further evaluated
through experimental testing.

2. Materials and Methods
2.1. Organizing Chemical Exposure Data from CPDat

The Chemicals and Products Database (CPDat) is a large, worldwide collection of
chemical use inventories and chemical exposure-level data [23,24]. CPDat includes an
exposure resource referred to as the Chemical List Presence database, which is organized
from manual reviews of federal and state reports, academic journal articles, and publi-
cations from international government agencies. Chemical records within this database
include global chemical use and product information inventories, chemical safety guideline
sheets, food inventories, pesticide use information, and water and soil contamination
data. Given the breadth of chemical inventories pulled, this database does not include
information on exposure concentrations; rather, it provides information on whether or not
a chemical has been recorded as found in a particular product and/or media (i.e., records
of absence/presence). This study leveraged data from CPDat for the purpose of identifying
possible chemical exposure combinations within household environments that also affect
PPARγ pathways.

The CPDat Chemical List Presence dataset was analyzed, which included chemical and
product use information across more than 20,000 chemicals at the time of the analysis (CP-
Dat v2.0) [24]. This dataset contained general chemical use descriptions assigned through
“keywords” that have been manually curated to summarize chemical and use categories.
We further categorized these keywords into larger “exposure source categories” to allow for
improved downstream analyses and exposure pattern recognition. The resulting exposure
source categories provide higher-level descriptions of the chemical use and presence infor-
mation. The specific mapping of CPDat Chemical List Presence keywords to the exposure
source categories is provided in the supplemental material (Supplemental Table S1).

2.2. Identifying Chemicals That Target PPARγ

This research focused on chemical agonists that target PPARγ in the same target cell
type, representing those that may display joint toxicities during conditions of co-exposure.
Chemicals were specifically selected to include those likely to increase the activity of PPARγ
in HepG2 cells, using findings from the ToxCast/Tox21 in vitro high-throughput screening
program [10]. Altered PPARγ activity was prioritized as the molecular endpoint of interest
on the basis of the following lines of reasoning: (1) PPARγ is a critical mediator of cell
health and toxicity and plays important roles in many human disease outcomes, including
metabolic disease and cancer [12]; (2) PPARγ activity endpoints from ToxCast/Tox21
showed data distributions that allowed for the identification of an adequate number of
chemicals with assay activity to analyze. Notably, many other endpoints that are relevant
to liver biological processes and toxicity (e.g., Hypoxia Inducible Factor 1 Subunit Alpha
[HIF1A], and Peroxisome Proliferator Activated Receptor Alpha [PPARα]) did not exhibit
as many instances of activity in association with chemicals with exposure information.
Therefore, altered PPARγ activity was selected as the focus of the current investigation,
which allowed for high data coverage and consistently reported in vitro findings.

The ToxCast/Tox21 in vitro screening program represents a federal collaboration
between the U.S Environmental Protection Agency (U.S. EPA), the National Institutes
of Health’s National Toxicology Program and National Center for Advancing Transla-
tional Sciences, and the Food and Drug Administration. The ToxCast/Tox21 screening
database includes molecular response information across various cell lines treated in dose–
response to thousands of individual chemicals, many of which represent understudied
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chemicals in the environment. This project used publicly available data compiled through
the U.S. EPA’s summary-level files (invitrodb_v3.1, released on March 2018) [25]. The ana-
lyzed assay endpoint was specifically denoted as the assay_component_endpoint_name of
ATG_PPARg_TRANS_up. This endpoint represents a reporter gene assay, which measured
mRNA induction to evaluate PPARγ activity at the transcription factor level. Induction
of mRNA by PPARγ gene transcription activity was obtained via fluorescent labeling of
the PPARγ response element in human HepG2 cells treated in dose–response (largely,
0–1000 µM) to thousands of individual chemicals. Single treatments were carried out for
chemicals dissolved in DMSO, and endpoint measures were collected 24 h post-exposure.
Given the role of PPRE activity occurring in combination with PPARγ to influence down-
stream biology [26], ToxCast/Tox21 data were also organized for the assay endpoint,
ATG_PPRE_CIS_up, in a similar manner. Raw data were collected and processed by the
ToxCast/Tox21 consortium, as previously published [27,28].

Here, summary-level data were organized and used to establish filters to identify
chemicals that elicited increased PPARγ activity at concentrations outside of those that
induce cytotoxicity. Specifically, chemicals were first filtered to include those that were
identified as “active” in this assay endpoint, designated as those with hit call values of
1, as previously defined [28]. Then, chemicals were filtered for those that elicited activity
at concentrations far below the “cytotoxic signal burst” region, designated as those with
cytotoxicity distributions that occurred at standard Z-scores > 2, in comparison to assay
bioactivities, as previously defined [27]. These filters parallel those that have previously
been implemented when analyzing and interpreting ToxCast/Tox21 data [29–31].

2.3. Exposure Co-Occurrence Characterization of Environmental Chemicals

Chemicals with exposure information and evidence for inducing PPARγ activity in
liver cells were then evaluated for co-occurrence patterns across exposure source categories.
Co-occurrence patterns were identified using an approach that coupled standard clustering
algorithms with Jaccard similarity indices, based on similarities across exposure source
occurrences. The Jaccard index, also known as the Tanimoto index, is a widely used binary
distance metric employed in chemoinformatic analyses and applications [32]. Example uses
of this metric include the evaluation of chemical fingerprints [33,34] and identification of
gene and chemical toxicogenomic profiles [35]. These methods build upon similar clustering
approaches that we have previously used to characterize trends across chemical/molecular
signatures [36,37].

Here, a summary table of the included chemicals and exposure source categories
was organized, containing values of 1, which indicated chemicals that were present in
an exposure source category, and values of 0, which indicated chemicals that were not
present in an exposure source category. This summary table was then used to calculate a
distance matrix based upon the Jaccard distance measures, which represent the complement
of the Jaccard similarity indices [38]. Values within the resulting distance matrix can
range from 0, representing low dissimilarity (i.e., high similarity), to 1, representing high
dissimilarity (i.e., low similarity). The vegan package (v2.5.7) was used to carry out these
calculations in R (v4.0.3). These final Jaccard distance values were used as input towards a
hierarchical clustering analysis. In determining the number of clusters to use, the average
silhouette width and within cluster sum of squares of the distance matrix were derived,
and the results were visualized across 1≤ k ≤ 34 clusters through the factoextra package
in R (v1.0.7). Data were then grouped into the optimized number of clusters using the
cluster package (v2.1.1). Parallel methods were used to determine the clusters of exposure
source categories. In visualizing these clustering results, a heatmap was generated using
the pheatmap package (v1.0.12).

2.4. Selection of High-Interest Chemicals That Co-Occur as Mixtures for In Vitro Testing

The chemical exposure pattern analysis findings were used to prioritize a cluster of
chemicals that exhibited similar co-occurrence patterns across exposure source categories.
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One cluster was identified as high interest due to the following lines of reasoning: (1) This
cluster included chemicals that were present across the highest number of exposure source
categories, on average; (2) Chemicals in this cluster have many recorded instances of
being present in exposure source categories that are relevant to our everyday household
environments. Because this cluster contained nine chemicals, we further informed the final
selection of chemicals to carry forward for in vitro testing to cover various product uses for
chemicals that were also available to purchase from credible chemical vendors.

2.5. Chemical Procurement for In Vitro Testing

The five chemicals that were prioritized for in vitro testing were purchased from the
following chemical suppliers: Butylparaben was purchased from Alfa Aesar (Haverhill, MA,
USA; Cat: A14043, Purity of 99+%); benzyl cinnamate from Alfa Aesar (Haverhill, MA,
USA, Cat: A19550, Purity of 99%); Decanoic acid from Alfa Aesar (Haverhill, MA, USA,
Cat: A14788, Purity of 99%); Eugenol from Alfa Aesar (Haverhill, MA, USA, Cat: A14332,
Purity of 99%); and Sodium dodecyl sulfate (SDS) from TCI America (Portland, Oregon,
Cat: I035225G, Purity of 97+%). Chemicals were dissolved in DMSO to generate high-
concentration stock solutions that were further diluted in cell-culture media for final
treatment conditions, as detailed below.

2.6. Cell Culture and Treatment

The HepG2 immortalized human liver cell line was purchased from Sigma Aldrich
(St. Louis, MO, USA). The cells were grown in Gibco Minimum Essential Media supple-
mented with 10% fetal bovine serum at 37 ◦C in 5% carbon dioxide. Cells were plated at
2 × 106 cells per 100 mm dish and incubated under standard conditions until achieving
70–80% confluence. To investigate the cytotoxicity of the evaluated chemicals in vitro,
HepG2 cells were seeded in a 96-well culture plate at 104 cells per well and incubated
for 24 h prior to treatment. Similarly, to investigate PPARγ and INSR expression in vitro,
HepG2 cells were seeded in a 12-well culture plate at 105 cells per well and incubated for
24 h prior to treatment. On the day of treatments, stock chemical solutions dissolved in
DMSO were added to cell culture medium and vortexed to create final concentrations.
Chemical treatments or vehicle controls (i.e., DMSO added to cell culture media) were
added to cells, incubated for 24 h, and harvested for downstream analysis. More details are
provided per assay-specific methods below.

2.7. Cytotoxicity Assay

For downstream experiments, an activity concentration where 90% viability is achieved
(AC90) needed to be established to observe bioactivity in the absence of excess cell death.
To establish the AC90 for each chemical, HepG2 cells seeded in 96-well plates were treated
in triplicate with concentrations of benzyl cinnamate, butylparaben, decanoic acid, eugenol,
and sodium dodecyl sulfate ranging from 0 to 2000 µM to include concentrations imple-
mented within ToxCast/Tox21. Chemical treatments were incubated for 24 h, followed by
the addition of resazurin, according to the manufacturer’s protocol. In brief, resazurin was
dissolved in filtered Dulbecco’s phosphate-buffered saline to a concentration of 15 mg/kg
and added to each well. Cells were incubated for 2 h at 37 ◦C in 5% CO2. Fluores-
cence was read on a SpectraMax iD5 Multi-Mode Microplate Reader (Molecular Devices,
San Jose, CA, USA) using 560 and 590 nm as the excitation and emission wavelength, re-
spectively. Dose–response cytotoxicity curves were generated using a nonlinear regression
model within GraphPad Prism (v9.0) to estimate each AC90 to carry forward in the in vitro
testing. In one case, a chemical was not found to decrease viability to 90% at concentrations
up to the maximum tested (2000 µM), and a concentration of 1000 µM was carried for-
ward in the analysis of this chemical. Descriptive statistics, including mean and standard
deviation, were calculated within GraphPad Prism and plotted on dose–response curves.
The same methods were used to assess cell viability in response to mixtures exposures.
These mixtures included all five chemicals tested at concentrations that were proportional
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to their respective AC90. The following mixtures concentrations were specifically tested:
C1.0, C0.5, and C0.2, where Ci was defined through the following Equation (1):

Ci =
(

AC90, Benzyl Cinnamate × i
)
+

(
AC90, Butyl Paraben × i

)
+ (AC90, Decanoic Acid × i)

+
(

AC90, Eugenol × i
)
+ (AC90, SDS × i)

(1)

for i = 1.0, 0.5, and 0.2.

2.8. PPARγ and INSR Gene Expression Screening

Given the relationship between PPARγ gene expression and PPARγ transcription
factor activity, PPARγ gene expression was measured as an indicator of PPARγ-associated
signaling [13]. To further evaluate PPARγ activity, verified gene targets of PPARγ tran-
scription factor activation were queried within the PPARgene database, where INSR was
identified as a validated target in HepG2 cells [26]. Gene expression of INSR was thus
selected for measurement. To examine PPARγ and INSR gene expression, HepG2 cells
seeded in 12-well plates were treated with chemical concentrations summarized in Table 1.

Table 1. The AC90 concentrations of individual household chemicals and a household chemical
mixture used to evaluate exposure-induced changes in PPARγ expression and INSR expression in
HepG2 cells. The resulting viabilities of each evaluated condition are also provided. Note that higher
concentrations of chemicals were tested as a combined mixture, but caused a sudden, significant drop
in viability at doses higher than C0.2.

Chemical Name CASRN
Individual Chemical

Concentrations Tested (AC90)
(µM)

Concentrations of Chemicals
Tested as a Mixture (at C0.2) 1 (µM)

Benzyl cinnamate 103-41-3 1000 200
Butylparaben 94-26-8 150 30
Decanoic acid 334-48-5 1300 260

Eugenol 97-53-0 150 30
Sodium Dodecyl

Sulfate 151-21-3 250 50

% Viability of each
treatment 2 90% 136%

1 C0.2 was defined as the sum of each individual chemical eliciting 90% viability × 0.2. Therefore, each chemical
was included in the mixture at concentrations that were 1/5 of their respective AC90 values. 2 Benzyl cinnamate
did not decrease viability to 90% in any of the concentrations tested and was thus at 100% viability at the
tested concentration.

After 24 h incubation, treated and vehicle control cells were collected in 350 µL of
Qiagen Buffer RLT Plus for RNA extraction using the Qiagen RNeasy Mini Kit, according
to the manufacturer’s protocol, and RNA samples were quantified using a Nanodrop 1000
spectrophotometer (Thermo Scientific, Waltham, MA, USA). Exposure conditions were
tested in biological triplicate. To analyze gene expression, extracted RNA was converted
to cDNA using the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems,
Foster City, CA, USA). Real-Time quantitative reverse transcription polymerase chain
reaction (RT-qPCR) was performed in biological and technical triplicate using Qiagen’s
RT-qPCR Primer Assay for PPARγ (cat. 330001, GeneGlobe ID: PPH02291G) and INSR (cat.
330001, GeneGlobe ID: PPH02324F). Expression values based on cycle thresholds (Cts) were
measured using a Stratagene Mx3000P instrument (Agilent, Santa Clara, CA, USA). Values
were normalized against the geometric mean of the housekeeping gene, glyceraldehyde
3-phosphate dehydrogenase (GAPDH), and fold changes in expression were calculated
using the ddCt method [39]. Data were visualized using GraphPad Prism.

3. Results
3.1. Study Overview

An overview of the steps carried out in this project is illustrated in Figure 1. In brief,
database mining and in silico methods were used to prioritize chemicals that are likely
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to co-occur in our everyday household environments as mixtures exposures that also
commonly target PPARγ. In silico approaches were specifically used to: (1) identify
chemicals that increase PPARγ activity in HepG2 cells; (2) categorize PPARγ agonists
into exposure source categories; (3) evaluate chemical co-occurrence patterns relevant to
household environments; and (4) prioritize chemicals for in vitro analysis. These in silico
database informatic approaches informed a proof-of-principal in vitro study in a parallel
HepG2 model. In brief, selected chemicals were: (1) tested individually to derive AC90
concentrations; (2) tested individually for changes in the expression of PPARγ, as well as
its target gene, INSR, as a measure of potential downstream activity; (3) combined within
mixtures for concentration selection; and (4) tested as a mixture to evaluate changes in
expression of PPARγ, as well as its target gene, INSR, as a measure of potential downstream
activity. Results highlight the utility of merging in silico database informatics with in vitro
testing to evaluate environmental mixtures.
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Figure 1. Study experimental workflow. This figure illustrates the experimental workflow, from in
silico prioritization and characterization of chemicals to in vitro testing. Figure created in BioRender.

3.2. Identification of Chemicals That Increase PPARγ Activity in Human Liver Cells

This analysis focused on chemicals that impact a common molecular mediator that is
known to play a critical role in liver biological processes and toxicity, PPARγ. In identifying
these chemicals, data from the ToxCast/Tox21 in vitro high-throughput screening program
(v3.1) were analyzed to capture understudied chemicals of environmental relevance. Within
this screening effort, a total of 3851 chemicals were evaluated for their potential to induce
changes in PPARγ activity in human liver HepG2 cells. Of these, 364 were shown to cause
increased PPARγ activity at concentrations well below cytotoxicity. Data surrounding
the ToxCast/Tox21 PPARγ assay results, including detailed chemical identifiers, hit calls,
cytotoxicity z-scores, and AC50 values, are detailed in Supplemental Table S2.

3.3. Dataset of Chemicals with Exposure Information and Evidence of PPARγ Activity Changes

This analysis focused on chemicals with demonstrated evidence of increasing the
expression of PPARγ in human liver HepG2 cells that also contained exposure data from
CPDat mapping to exposure source categories. Here, exposure source categories represent
high-level summaries of keywords that describe chemical and product use information
derived through chemical inventory information contained within CPDat, in the form
of recorded absence/presence data. Chemical data were filtered for chemicals that were
associated with at least two distinct exposure source categories to allow for the analysis of
chemical co-occurrence patterns. After these filters were applied, a total of 148 chemicals
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remained for analysis. These 148 chemicals mapped to 30 exposure source categories across
117 keywords (Supplemental Tables S1 and S3). In addition, chemicals were considered for
PPRE agonism, as detailed in Supplemental Table S3.

3.4. Characterization of Co-Occurring Chemicals in the Environment That Increase
PPARγ Activity

Chemicals that contained exposure data and evidence for increasing PPARγ activity
in liver cells were evaluated for potential co-occurrence as chemical mixtures that are
present across overlapping exposure source categories. A clustering approach was used
to derive 17 distinct clusters across the 148 total chemicals, with each cluster containing
groups of chemicals with overlapping exposure source categories (Figure 2). These clusters
of chemicals represent chemical mixtures that are likely to co-occur in the environment
based on analysis of worldwide chemical and product use information. Exposure source
categories notably grouped into 13 distinct clusters based on similarly occurring chemi-
cals, representing common sources of exposure that may lead to aggregate exposures of
chemicals that co-occur in the environment (Figure 2).
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of being in an exposure source category are shown in blue. Chemical clusters are numbered top to
bottom (1–17) and represent chemical mixtures that are likely to co-occur in the environment based
on analysis of worldwide chemical and product use information.

3.5. Selection of High-Interest Household Chemicals That Co-Occur as Mixtures for In Vitro Testing

Results from the chemical-exposure-pattern analysis were used to select chemicals
of interest to test further via in vitro methods. A cluster of chemicals was prioritized that
exhibited similar co-occurrence patterns across exposure source categories; specifically,
Cluster 5 (Figure 3).
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Figure 3. Prioritized cluster that contained co-occurring chemicals relevant to everyday house-
hold environments. Chemicals in Cluster 5 had recorded instances of being present in household-
environment-related exposure source categories, including those that were relevant to food and water
(e.g., pesticides, human food from animals, surface water), product off-gassing (e.g., chemicals that
emit or off-gas), and household products and materials (e.g., furniture, household care and cleaning
products, personal care, and inert ingredient in products). This cluster was prioritized for further
evaluation, where five chemicals, indicated by red text, were identified for mixtures-based testing
in vitro.

This cluster was prioritized based upon the following lines of reasoning: First, this
cluster included chemicals that were present across the highest number of exposure source
categories, on average. To detail, Cluster 5 contained chemicals with reported presence
across an average of eight exposure sources, where the other clusters contained chemi-
cals with reported presence across an overall average of four exposure sources (min = 2;
max = 8) (Supplemental Table S4). Second, chemicals within Cluster 5 showed many
recorded instances of being present in exposure source categories that are relevant to every-
day household environments. These categories included select food- and water-relevant
exposure source categories (e.g., pesticides, human food from animals, surface water),
exposure source categories from chemicals off-gassing from products (e.g., chemicals that
emit or off-gas), and many exposure source categories from household products and mate-
rials, including furniture, household care and cleaning products, personal care products,
and inert ingredient in products (Figure 3, Supplemental Table S3).

Cluster 5 contained nine chemicals, and a subset of these were carried forward
for in vitro testing. This chemical subset was selected to cover variable product uses,
while also including those that were able to be purchased, were accessible at the time of
research, and were remain stable in solution based upon their physicochemical properties.
This selection resulted in a final list of five chemicals that were evaluated further through
in vitro testing (Figure 2). In addition to PPARy agonism, four of these prioritized chemicals
have also been shown to agonize PPRE (Supplemental Table S3).

3.6. Cell Viability in Response to Treatment Conditions

HepG2 cells were treated across various doses to either benzyl cinnamate, butyl
paraben, decanoic acid, eugenol, or sodium dodecyl sulfate, and demonstrated variable
cytotoxicity as detailed in Figure 4.
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Figure 4. Cell viability curves generated from cytotoxicity screening of individual chemicals
across multiple doses to derive AC90 values. Household chemicals elicited variable cytotoxicity
when tested across a range of doses. Mean and standard deviation are plotted for each dose. Predicted
dose eliciting 90% viability (AC90) is indicated by the red dotted line.

Dose–response cytotoxicity curves were used to estimate AC90 exposure concentra-
tions, which are summarized in Table 1. These doses were carried forward individually or
were proportionally scaled down in the following mixtures experiments. Note that benzyl
cinnamate was not found to decrease viability to 90% at concentrations up to the maximum
tested (2000 µM), and a concentration of 1000 µM was carried forward in the analysis of
this chemical (proportionally scaled down in the mixtures evaluation).

For the mixtures evaluations, tested chemical combinations were summarized with
the following abbreviation: Ci, defined as the sum of [each individual chemical AC90] × i.
Three combinations of concentrations were tested for viability: C1.0, C0.5, and C0.2, and the
resulting viabilities were 12%, 17%, and 136%, on average, respectively. The mixture that
elicited <90% viability (i.e., C0.2) was carried forward in the following analyses, and the
composition for this tested mixture is fully detailed in Table 1.

3.7. PPARγ and INSR Expression Changes in Response to Individual Household Chemicals vs.
Household Chemical Mixture

To evaluate whether these co-occurring chemicals potentially exert joint effects on
PPARγ-associated signaling, qRT-PCR was used to evaluate potential changes in expression
of PPARγ, as well as a PPARγ-target gene, INSR, in HepG2 cells exposed to individual
household chemicals as well as the household chemical mixture. Of the five individual
household chemicals tested, all showed modest increases in PPARγ expression compared
to the control. To detail, all but one of the log2 fold changes (log2FC) (based off 2−ddCt

calculations comparing exposed versus unexposed samples) averaged between 0.22 and
0.94, with one chemical, benzyl cinnamate, reaching a log2FC of 1.24, which was not
statistically significant compared to the controls. Of all the individual chemicals tested,
only one was significant at p < 0.05. Specifically, decanoic acid caused PPARγ expression to
increase at a log2FC of 0.94 (p = 0.012) (Figure 5).
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In comparison, a mixture of all chemicals tested at a concentration 0.2 times that of the
doses used for individual testing (i.e., C0.2) elicited 0% cytotoxicity and induced a more
significant change, with a large fold change in comparison to the individual chemicals.
Specifically, this combined mixture caused PPARγ expression to increase at a log2FC of
1.2 (p = 0.001), with a more significant change than any of the individual chemical test
results. These findings support the potential joint action of these chemicals on PPARγ
expression, highlighting mixtures-induced changes that were amplified in comparison to
individual chemical-induced changes.

Similarly, to evaluate whether these co-occurring chemicals potentially exert joint
effects on downstream PPARγ activity, qRT-PCR was used to evaluate INSR expression as
a verified target gene [26]. HepG2 cells were exposed to household chemicals individually
and in a mixture, as described above. Of the five individual household chemicals tested,
all showed modest changes in INSR expression compared to the control. Specifically, the av-
erage log2FC ranged from −0.19 to 1.52. Parallel to the evaluation of PPARγ expression,
only decanoic acid induced statistically significant expression changes, causing an increase
at a log2FC of 1.52 (p = 0.002) (Figure 6).

Additionally, the mixture of all chemicals combined (C0.2) induced an increase in
INSR expression at a log2FC of 0.67 (p = 0.001). Similar to the PPARγ expression analysis,
INSR expression was increased more significantly by the C0.2 mixture than by individual
chemicals, even at lower respective concentrations. While decanoic acid appears to be
a major driver of INSR expression changes, given the concentrations tested, one would
expect a relatively lower fold change from the mixture exposure if chemical relationships
showed no interactions. However, there is a high significance at a greater fold change
induction than expected, based on individual chemical testing. These findings thus support
the potential joint action of these chemicals on PPARγ and INSR expression, which are
indicators of PPARγ activity.



Toxics 2022, 10, 199 12 of 18
Toxics 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Changes in INSR expression in liver cells after exposure to individual chemicals vs. a 
mixture of chemicals found in exposure sources relevant to everyday household environments. 
qRT-PCR results for INSR represent the minimum, lower quartile, median, upper quartile, and max-
imum log2 fold changes of INSR expression associated with individual and combined chemical ex-
posures. 

Additionally, the mixture of all chemicals combined (C0.2) induced an increase in 
INSR expression at a log2FC of 0.67 (p = 0.001). Similar to the PPARγ expression analysis, 
INSR expression was increased more significantly by the C0.2 mixture than by individual 
chemicals, even at lower respective concentrations. While decanoic acid appears to be a 
major driver of INSR expression changes, given the concentrations tested, one would ex-
pect a relatively lower fold change from the mixture exposure if chemical relationships 
showed no interactions. However, there is a high significance at a greater fold change 
induction than expected, based on individual chemical testing. These findings thus sup-
port the potential joint action of these chemicals on PPARγ and INSR expression, which 
are indicators of PPARγ activity. 

4. Discussion 
This study represents a novel integration of in silico database informatics with fol-

low-up in vitro testing to evaluate understudied chemicals in our everyday household 
environments that exert changes on a common molecular mediator, PPARγ. This research 
resulted in the following major findings: First, we demonstrated the utility of employing 
informatics and computational methods across the large bioactivity and exposure data-
bases of ToxCast/Tox21 and CPDat, respectively, to identify co-occurring chemicals that 
likely elicit biological changes through similar mechanisms involving PPARγ. Second, un-
derstudied chemicals in household-relevant exposure source categories were prioritized 
for further evaluation, including those used in personal care products, children’s products 
and toys, household care and cleaning products, and other ingredients in household prod-
ucts. Third, in vitro testing of five prioritized chemicals demonstrated that individual 
chemicals exerted less significant changes in expression of PPARγ and INSR, indicators of 
PPARγ activity, than a combined exposure of these same chemicals at lower concentra-
tions, demonstrating potential joint effects of these household chemicals in conditions of 
co-exposure. These common household chemicals may therefore exacerbate exposure-in-
duced effects when exposures occur as mixtures. 

CT Mixture
-1.0

-0.5

0.0

0.5

1.0

1.5

lo
g

2F
C

**
C0.2  

Combined Chemical Mixture

CT Exp
-2

0

2

4

6

lo
g

2F
C

**

Decanoic Acid
AC90

CT Exp
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g

2F
C

AC90

Benzyl Cinnamate

CT Exp
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g

2F
C

Eugenol
AC90

CT Exp
-1.0

-0.5

0.0

0.5

1.0

lo
g

2F
C

Butyl Paraben
AC90

CT Exp
-1.0

-0.5

0.0

0.5

1.0

lo
g

2F
C

AC90

Sodium Dodecyl Sulfate

*** p<0.005 p<0.05

Figure 6. Changes in INSR expression in liver cells after exposure to individual chemicals
vs. a mixture of chemicals found in exposure sources relevant to everyday household environ-
ments. qRT-PCR results for INSR represent the minimum, lower quartile, median, upper quartile,
and maximum log2 fold changes of INSR expression associated with individual and combined
chemical exposures.

4. Discussion

This study represents a novel integration of in silico database informatics with follow-
up in vitro testing to evaluate understudied chemicals in our everyday household environ-
ments that exert changes on a common molecular mediator, PPARγ. This research resulted
in the following major findings: First, we demonstrated the utility of employing infor-
matics and computational methods across the large bioactivity and exposure databases of
ToxCast/Tox21 and CPDat, respectively, to identify co-occurring chemicals that likely elicit
biological changes through similar mechanisms involving PPARγ. Second, understudied
chemicals in household-relevant exposure source categories were prioritized for further
evaluation, including those used in personal care products, children’s products and toys,
household care and cleaning products, and other ingredients in household products. Third,
in vitro testing of five prioritized chemicals demonstrated that individual chemicals exerted
less significant changes in expression of PPARγ and INSR, indicators of PPARγ activity,
than a combined exposure of these same chemicals at lower concentrations, demonstrating
potential joint effects of these household chemicals in conditions of co-exposure. These
common household chemicals may therefore exacerbate exposure-induced effects when
exposures occur as mixtures.

Informatics-based approaches were implemented here to predict chemicals that co-
occur in the environment as common exposure sources that may be impacting human health.
Our approaches leveraged the bioactivity and exposure databases of ToxCast/Tox21 and
CPDat, respectively, and implemented high-throughput assay filtering followed by chemi-
cal pattern analyses. Pattern analyses leveraged Jaccard similarity indexes acrosschemical
use categories with clustering algorithms to yield groups (i.e., clusters) of chemicals that
are likely to co-occur in the environment. This approach represents one of many different
combinations of in silico approaches that can be leveraged to better understand toxicity and
exposure patterns. For example, data reduction approaches have been used to evaluate sim-
ilarities amongst chemical and biological response profiles associated with complex dietary
supplement exposures [40,41]. Random forest modeling approaches have been used lever-
aging Tox21 high-throughput toxicity screening assays that demonstrated co-occurring
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activities to predict in vivo apical toxicity outcomes in the rat liver [31]. In terms of human
exposure pattern modeling, a recent notable study analyzed chemical biomonitoring data
within the National Health and Nutrition Examination Survey (NHANES) through frequent
itemset mining, which yielded novel chemical combinations detected to frequently co-occur
in humans [42]. Other advanced in silico methods have included additional machine-
learning approaches (i.e., deep learning) [43], Bayesian statistical methods [44], and text
mining [45]. The current study, as well as these additional examples of silico/database-
driven approaches, collectively represent progress in the fields of exposure science and
toxicology towards better characterizing environmental mixtures.

The chemicals prioritized for experimental evaluation of individual vs. mixtures-
induced impact on PPARγ activity included benzyl cinnamate, butyl paraben, decanoic
acid, eugenol, and sodium dodecyl sulfate. These chemicals have evidence to support their
presence in children’s products and toys, household care and cleaning products, and per-
sonal care products, as curated through CPDat. Benzyl cinnamate is an ester compound
derived from cinnamic acid and benzyl alcohol and is used as a scent, flavoring agent,
fixative, antibacterial agent, and antifungal agent in certain products, foods, and pharma-
ceuticals [46]. Butyl paraben (also referred to as 4-hydroxybenzoic acid butyl ester or butyl
p-hydroxybenzoate) is synthetically generated and is used as a preservative in cosmetics
and food [47]. Decanoic acid (also referred to as capric acid) is naturally present in certain
foods, is organically synthesized from esters, and is found primarily in perfumes, artificial
fruit flavors, and food additives [48,49]. Eugenol is a chain-derived molecule that is used as
a flavoring agent in teas, meats, perfumes, and essential oils [50]. Sodium dodecyl sulfate
(also referred to as sodium lauryl sulfate) is an organosulfate compound that is mainly used
in cleaning products, such as laundry detergent, because of its properties as an anionic
surfactant [51]. While these chemicals may have been originally tested/evaluated for safety
at the exposure doses that occur in household items, what remains to be established are the
effects of these chemicals in conditions of co-exposure.

This study compared the effects of each individual chemical vs. a mixture of these
chemicals on PPARγ activity via measures of upstream PPARγ expression and downstream
INSR expression in HepG2 liver cells. Each chemical was first tested individually at varying
concentrations, and many chemicals were found to cause no effect or slightly increased cell
viability at lower doses, and decreased cell viability at higher doses. This trend parallels
some literature supporting the potential beneficial/protective effects produced by the
tested chemicals at lower doses, including benzyl cinnamate [52], butyl paraben [53],
decanoic acid [54], and eugenol [55]. At higher doses, there is also evidence of certain
chemicals causing liver toxicity, among other toxicological outcomes, including butyl
paraben [56], eugenol [55], and sodium dodecyl sulphate [57–59]. Our in vitro cell viability
results were then used to estimate the chemical concentrations eliciting approximately
90% cell viability to carry forward in the testing of PPARγ and INSR expression changes,
which were then compared to a mixture exposure containing all five of these chemicals.
Collectively, this mixtures-based exposure condition elicited a more robust and significant
increase in PPARγ expression in comparison to any of the chemicals that were tested
individually, despite this mixture containing much lower concentrations of each of the
individual chemicals. Similarly, INSR expression was more significantly altered by the
mixture than by the individual chemicals. These data suggest that conditions of co-exposure
for these chemicals may exacerbate biological changes occurring in the liver, in comparison
to single-chemical exposure conditions. While the doses tested in this study are likely
higher than those that reach the liver following exposure in our everyday environment,
these data provide important preliminary information towards identifying chemicals that
may induce joint toxicity.

Our study employed a novel approach to prioritize and test biological responses asso-
ciated with chemical mixtures in the environment and serves as a starting point for future
investigations that could expand upon these initial findings. We used the ToxCast/Tox21
database to prioritize chemicals that were found previously to increase PPARγ activity in
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human liver HepG2 cells as a consistent metric that we could then test in our laboratory. It
is notable that other biological response databases can be queried to expand upon molecular
targets and endpoints of interest, including the Chemical Effects in Biological Systems [60],
Comparative Toxicogenomics Database [61], and Toxicological Reference Database [62],
among others. We also focused on exposure information gathered through the Chemical
List Presence dataset within CPDat, which represents a robust chemical inventory database
that captures information across tens of thousands of chemicals. The CPDat’s Chemical List
Presence dataset was selected for use because of its wide chemical coverage, as well as its
organizational structure on a per-chemical basis. These properties allowed for the analysis
of chemicals with both exposure and bioactivity data from CPDat and ToxCast/Tox21,
respectively. Future efforts could incorporate additional datastreams that inform human
exposure patterns. For example, a recent study used consumer product purchasing data col-
lected through The Nielsen Company and linked these data with available CPDat chemical
composition data from SDS/MSDS, Manufacturer Ingredient Disclosures, and Ingredient
Lists to understand the composition and function of chemicals in consumer products [63].
These types of data could be integrated in future analyses for more product use based
exposure predictions, and could also inform exposure dosings, though will likely limit
the scope of chemicals with available data. Future efforts could also incorporate chemical
fate and transport mechanisms to enhance the consideration of exposure routes and hu-
man intake/dosing through additional databases and/or model evaluations. Additional
exposure databases that provide more quantitative measures of exposure could include
biological or environmental monitoring data (e.g., NHANES [64], or the Air Quality Survey
(AQS) [65]), and additional models could include the Systematic Empirical Evaluation of
Models [SEEM] framework [66], among other databases/models.

In terms of in vitro mixtures testing, this study served as a proof-of-principal, provid-
ing preliminary evidence of joint effects between the evaluated household chemicals on
PPARγ activity through upstream and downstream gene expression in liver cells. Given
that multiple mechanisms of toxicity may be at play, future studies may further evaluate
these chemicals using -omic technologies to more fully characterize mechanisms involved.
Additionally, future studies could more comprehensively evaluate these individual chemi-
cals and defined mixtures, capturing expression changes in dose–response, and conducting
mixtures modeling to quantify additivities and/or synergies on PPARγ expression and
other upstream/downstream targets. Additional studies could also implement similar
methods to identify chemicals that may influence other important molecules involved in
the regulation of cell health and biology that may be impacted by mixtures exposures.

5. Conclusions

In conclusion, this study highlights a novel method of database integration, combined
with informatics, to characterize combinations of chemicals that likely occur in the envi-
ronment as mixtures exposures that also show potential for eliciting biological changes
through common molecular mediators. This was exemplified through a case study that
focused on PPARγ in human liver cells, and through exposure patterns that were informed
by an analysis of the CPDat database. Results yielded findings on co-occurring chemicals in
household environments that increased expression of PPARγ and its target gene, INSR, to a
greater extent when exposures occurred as mixtures. Future studies will further quantify
the relationships between these potential joint toxicities while expanding the prioritization
efforts towards additional biological targets and chemical exposure domains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics10050199/s1, Table S1: Data used to evaluate human exposure patterns through the
organization of exposure source categories; Table S2: Chemicals that induced an increase in the
expression of PPARg in HepG2 cells from the ToxCast/Tox21 high-throughput screening program;
Table S3: Database of 148 chemicals and their associated exposure source categories; Table S4: Av-
erage number of instances chemicals were present in an exposure source category, calculated on a
per-cluster basis.

https://www.mdpi.com/article/10.3390/toxics10050199/s1
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