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Abstract: Acute myeloid leukemia (AML) is the second most common leukemia among children.
Although significant progress in AML therapy has been achieved, treatment failure is still associated
with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address
this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between
leukemic cells and their microenvironment is required. The tremendous role of this bone marrow
microenvironment in providing a supportive and protective shelter for leukemic cells, leading to
disease development, progression, and relapse, has been emphasized by recent research. It has been
revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular
components is critical in the process of leukemogenesis. In this review, we provide a comprehensive
overview of recently gained knowledge about the importance of the microenvironment in AML
whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical
trials and future challenges for the development of targeted therapies for AML.

Keywords: bone marrow microenvironment (BMM); acute myeloid leukemia (AML); hematopoiesis;
leukemogenesis; stromal cells; leukemic blast; therapeutic targets

1. Introduction

Acute myeloid leukemia (AML) is a malignant, hematologic disease that accounts
for about one-fifth of all childhood leukemia cases. In recent decades, the prognosis of
AML patients has improved thanks to advances in distinct diagnostic and therapeutic
tools. Although the vast majority of children initially achieve complete remission, overall
long-term survival is still limited by refractory disease and relapse, which occur in about
one-third of children with AML and are linked to poor prognosis [1,2]. To date, therapy is
risk-adapted but still mainly based on chemotherapeutic schemes associated with systemic
toxicity. Therefore, innovative and selective therapeutic approaches with greater efficacy
are urgently needed. To identify suitable, promising therapeutic targets, fundamental
knowledge about leukemogenesis in AML is required.

Originating from uncontrolled proliferating immature myeloid precursor cells at dif-
ferent stages of maturation, the pathogenesis of AML is mainly localized in bone marrow,
the major hematopoietic tissue. Physiologically, bone marrow represents a highly regen-
erative tissue that ensures continuous replenishment of hematopoietic cells originating
from a common hematopoietic stem cell (HSC). Because the lifespan of differentiated blood
cells in peripheral vessels is limited, each multipotent HSC gives rise to approximately
5 × 1011 cells each day, making the hematopoietic system one of the most regenerative
tissues in humans [3]. Various cellular and non-cellular factors in the bone marrow mi-
croenvironment (BMM) tightly regulate this process, emphasizing the high impact of the
hematopoietic microenvironment. In humans, the hematopoietic system is considered to
be one of the first developing functional systems, and its localization changes throughout
ontogeny. In early embryogenesis, the first hematopoietic cells are assumed to arise from
the yolk sac until the second wave of hematopoiesis occurs dorsally of the aorta (referred
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to as the aorta–gonad–mesonephros region) (reviewed in [4]). Definitive HSCs then move
to the fetal liver, which enables rapid expansion of these highly proliferative cells [5,6].
Shortly before birth, HSCs colonize the bone marrow cavity, which becomes the final
hematopoietic microenvironment (BMM) [4].

Whilst hosting hematopoietic cells under healthy conditions, in leukemogenesis,
this BMM is taken over by malignantly transformed and uncontrollably proliferating
leukemic blasts. As these cells outcompete healthy hematopoiesis, the typical clinical
presentation arises.

In analogy to the hierarchical order of healthy hematopoiesis, leukemic blasts are
thought to arise from a leukemic stem cell (LSC) population that is phenotypically identi-
fied as CD34+CD38- and functionally defined by the stem cell-like properties of infinite
self-renewal and leukemia engraftment in a patient-derived xenograft model [7,8]. It is
noteworthy that, in immunodeficient xenotransplant models, functional LSCs have also
been detected within the CD34+CD38+ fraction in AML, depending on the mouse strain,
indicating that the LSC population is more heterogenous than previously suggested [9,10].
In this regard, LSCs are also referred to as leukemia-initiating or propagating cells, empha-
sizing their importance as the putative origin of leukemogenesis [7].

High-yielding, single-cell analyses indicate that in leukemia evolution, the acquisi-
tion of various genetic mutations leads to a complex pattern of genetically heterogenous
leukemic subclones that can be either competitive or cooperative [11]. During the course of
disease, environmental factors in bone marrow exert a selective pressure on leukemic cells,
thereby remodeling clonal evolution [12,13]. Genetic diversity is presumed to enable the
selection of resistant leukemic subclones, which in turn, could promote the evolution of
relapsed and refractory disease [13].

In addition to cell-intrinsic genetic dysregulation, numerous studies have demon-
strated that microenvironmental components in malignantly altered bone marrow critically
impact leukemogenesis in AML (summarized in [14–16]). Leukemic blasts, and their
neighboring microenvironmental components, seem to mutually influence each other in a
bidirectional manner via complex, modified interacting pathways [16,17]. Although this is
reminiscent of healthy hematopoiesis, in AML the architecture and function of the microen-
vironment importantly differ from those in health. In the pathological microenvironment,
the altered release of mediators as well as deviating intercellular contacts lead to the forma-
tion of a malignantly modified leukemic niche that disturbs physiological hematopoiesis
but fosters leukemia maintenance, thus enabling leukemia progression [17–19].

On the one hand, there are indications that certain changes in non-hematopoietic
stromal cells may precede and, in turn, promote leukemia development [20]. On the other
hand, leukemic blasts are assumed to modify the formerly healthy hematopoietic bone
marrow niche to their favor, at the expense of healthy blood formation [21–23].

Therefore, targeting critical cellular and non-cellular interactions in the altered leukemic
microenvironment could be a promising approach for achieving the major objective of
establishing more effective and safer therapies that efficiently eliminate AML blasts. Redi-
recting this leukemia-supporting niche into a healthy hematopoietic microenvironment
will require sound and comprehensive knowledge about the physiological and patholog-
ical processes in the BMM. This review aims to contribute to a better understanding of
critical microenvironmental processes in healthy hematopoiesis and leukemogenesis while
emphasizing promising future therapeutic directions in pediatric AML.

2. Hematopoietic Cells and Their Microenvironment

Physiologically, hematopoietic cells develop in a highly specialized and supportive
microenvironment. As this BMM ensures lifelong continuous replenishment of the blood
system, it must be tightly regulated by surrounding cellular and non-cellular elements.
These microenvironmental components are constantly interconnected with each other and
with hematopoietic cells, providing optimal conditions to direct HSC fate. In this context,
an analogy to the “seed-and-soil” theory has been drawn: The BMM serves as fertile soil



Children 2021, 8, 371 3 of 21

providing optimal conditions for the maturation of HSCs, which represent the seeds in
the soil (summarized in [24]). As early as 1978, the first reports were published regarding
the significance of specific bone marrow regions to hematopoiesis, originally referred to
as the stem cell niche [25]. Based on the different structural and functional aspects of
these different regions within the BMM, distinctions between different niches have been
established [26]. Whereas the endosteal niche primarily consists of osteolineage cells, the
perivascular niche comprises disparate sub-niches, depending on certain vascular subtypes
with associated endothelial and perivascular cells (Figure 1).
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Figure 1. Healthy hematopoietic bone marrow microenvironment.

Endosteal and vascular niches within the BMM consist of different hematopoietic
cells (i.e., hematopoietic stem cell [HSCs] and megakaryocytes [MK]) as well as non-
hematopoietic cells (e.g., osteoblasts, osteoclasts, adipocytes, sympathetic neurons with
associated Schwann’s cells, distinct perivascular stromal cells [neural-glia-2 (NG2+)], C-
X-C motif chemokine [CXCL]-12 abundant reticular [CAR] cells, leptin-receptor-positive
[LepR+] cells, and endothelial cells) and structural components (i.e., arterioles [Art.], si-
nusoidal vessels [sinu.], fibronectin, collagen [Col]-1, calcium [Ca2+], and the enzymes
cathepsin and matrix metalloproteinase [MMP]). Various non-cellular factors (e.g., osteo-
pontin [OPN], thrombin cleaved OPN [trOPN], and stem cell factor [SCF)), C-X-C motif
chemokine [CXCL]-12, CXCL-4, transforming growth factor beta [TGF-β], vascular endothe-
lial growth factor [VEGF], and vascular endothelial cadherin [VE-Cad], thrombopoietin
[TPO], Notch, and its ligand Jagged-1) expressed by the cellular components contribute to
hematopoietic regulation in the BMM. Figure 1 was created with biorender.com (accessed
on 13 February 2021).
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2.1. Endosteal, Osteoblastic Niche Regulates Hematopoiesis

Since primitive HSCs have first been isolated from the inner bone surface, close to
osteolineage cells, the endosteal region was identified as the HSC niche [27,28]. As this
niche mainly consists of osteolineage cells, its importance for the regulation of HSC fate
was later confirmed. Osteoblastic cells have been shown to ensure long-term mainte-
nance of hematopoiesis by regulating quiescence in long-term (LT)-HSCs [29–32]. This
form of hematopoietic cell control is mediated by various ways of direct and indirect
cellular interplay.

In different mouse models, parathyroid-hormone signaling and lack of bone morpho-
genetic protein (BMP) receptor-1A stimulated osteoblastic cells, which in turn increased
HSC numbers through Notch ligand Jagged-1- or N-cadherin-mediated cell adhesion
to HSCs, respectively [31,33]. Further studies also revealed that osteoblasts essentially
contribute to HSC quiescence and maintenance through N-cadherin [34,35]. However, in
genetically modified mice, conditional deletion of N-cadherin revealed no significant effect
on HSC function and number, suggesting that HSC quiescence may be partly influenced by
but not fully dependent on this cellular interaction [36,37]. Moreover, osteoblasts promote
stem cell quiescence and long-term maintenance by secretion of various soluble mediators,
such as by thrombopoietin (TPO) [38,39], stem cell factor (SCF, also termed steel factor
or kit-ligand) [40,41], and C-X-C motif chemokine 12 (CXCL-12) [42,43]. The latter is also
considered the strongest chemotactic factor that acts on HSCs via CXCR-4, promoting
recirculation of hematopoietic cells to the endosteal region [44]. Nonetheless, these factors
appear to be dispensable or at least balanced by other signaling mechanisms, since dele-
tion of CXCL-12 and SCF does not significantly compromise HSC numbers in vivo [45,46].
Moreover, osteoblasts contribute to mineralization by producing extracellular matrix (ECM)
components such as collagen-1 or fibronectin [47]. The ECM protein osteopontin (OPN) has
been shown to negatively regulate HSC pool size [48]. Its thrombin-cleaved form, which is
found predominantly in the BMM, serves as a chemoattractant, mediating the migration
and quiescence of HSCs and progenitor cells through interaction with the alpha(9)beta(1)
and alpha(4)beta(1) integrins [49]. As recently been shown by Cao et al., OPN already
plays a pivotal role in the fetal and newborn hematopoietic BMM (not in liver) [50]. The
mentioned endosteal niche factors are cleaved by proteolytic enzymes (i.e., cathepsin-K
and matrix metalloproteinase [MMP]-9) secreted by activated, bone-resorbing osteoclasts,
leading to mobilization of hematopoietic progenitor cells [51]. Conversely, via osseous re-
modeling processes, osteoclasts cause an increase in the calcium level, which is proposed to
protect quiescent HSCs through calcium-sensitive receptors [52]. In addition, bone damage
has been revealed to promote HSC expansion [53], and a recent imaging study spatially
allocated expanding HSCs in areas with high bone turnover [54]. Therefore, in addition to
osteoblasts, osteoclasts act as noteworthy cellular components in balancing hematopoietic
processes within the endosteal niche. However, distinct endosteal components and asso-
ciated processes were found to be dispensable, questioning the impact of this endosteal
niche in regulating hematopoiesis in the healthy BMM [37,45,55–58]. Consistently, in vivo
investigations revealed that a minority of hematopoietic cells are localized close to the
endosteal bone surface, but the majority are localized in the perivascular region within the
BM cavity [45,59].

2.2. Perivascular Niches Regulate Hematopoiesis

The BMM is traversed by an intricate vascular system consisting of arterioles that
adjoin the endosteum and branches, creating an intricate venous–sinusoidal network in
the central bone cavity [60]. Recently, another vascular subtype was reported to connect
sinusoids to arterioles in a transition zone, which has been attributed to the endosteal area
rather than the central bone marrow [61]. The vast majority of hematopoietic cells have
been shown to reside in the perivascular bone marrow region [43,45,59]. This niche can
be sub-divided according to distinct types of vessels, which can be assigned to certain
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perivascular stromal cells [62] and endothelial cells (ECs) [61,63,64], forming different
perivascular sub-niches critical for hematopoietic regulation in the BMM [65–67].

In the perisinusoidal niche, CXCL-12-abundant reticular (CAR) and leptin-receptor-
positive (LepR+) cells direct the mobilization and maintenance of HSCs expressing high
amounts of CXCL-12 and SCF [43,45,68]. Of note, in vivo studies revealed that HSC
maintenance is necessarily regulated by SCF from LepR+ cells, whereas CXCL-12–mediated
regulation by CAR and LepR+ cells appears to be dispensable [45,58].

In vivo imaging identified different subpopulations of stromal cells characterized by
green fluorescent protein (GFP) expression under the control of the nestin promoter (Nes-
GFP) [62]. Whereas nestin-dim stromal cells largely overlap with CAR and LepR+ cells in
the perisinusoidal region, periarteriolar nestin-bright cells are reported to comprise neural-
glia-2 (NG2+)-expressing cells [65]. Both contribute to the protection of HSC quiescence
mainly conferred by CXCL-12 and SCF secretion [45,65].

In addition to mesenchymal-derived stromal cells, ECs serve as critical sources of
regulatory niche factors and importantly contribute to hematopoietic regulation [45,58].
Given the heterogeneity of the EC population, these cells include sinusoidal-derived ECs
(low expression of CD31 and Endomucin [type L] [61]) and arteriolar ECs (high expression
of CD31 and Endomucin [type H]) [61,66]. Arteriolar and artery-derived ECs have been
found to more abundantly express the key niche factors CXCL-12 and SCF [64]. Among
ECs, arteriolar ECs are reported to almost exclusively produce SCF and thus importantly
regulate HSC maintenance, whereas sinusoidal ECs expressing SCF appear dispensable [69].
When compared with sinusoidal and capillary/arteriole-derived ECs, a recently defined
sca+ and vwf+ arterial EC subset has been shown to more abundantly express SCF [64],
thereby representing an apparently relevant regulatory EC subset in the BMM.

Sinusoidal ECs are known to importantly contribute to the niche-dependent HSC
regulation through vascular endothelial (VE)-cadherin and vascular endothelial growth
factor (VEGF) receptors 2 and 3 [70,71]. This angiogenic factor (VEGF) supports the
proliferation and survival of HSCs by binding to its same-named receptor (VEGFR) in
an autocrine manner [72]. In vivo examination provided evidence of VEGFR2-mediated
reconstitution of sinusoidal ECs, which essentially promoted regeneration and engraftment
of HSCs post-transplantation [70].

Conditional deletion of VEGF-C in endothelial and stromal cells leads to decreased
hematopoietic cell and niche regeneration. Conversely, exogenous administration of VEGF-
C leads to improved hematopoietic niche recovery after irradiation, suggesting that VEGF
is important for maintaining the HSC niche [73]. Adhesion to E-selectin, an adhesion
molecule that is constitutively expressed on sinusoidal ECs, promotes HSC proliferation
and activation, to the detriment of self-renewal and quiescence [74,75].

In the perisinusoidal region, a major subset of megakaryocytes is reported to positively
direct HSC quiescence and maintenance by expression of mediators such as CXCL-4, TPO,
and transforming growth factor beta (TGF-β)1 [76–78]. As part of the TGF-β superfamily,
TGF-β1 functions as a pleiotropic mediator, importantly shifting the balance between
HSC quiescence and proliferation in favor of the former [79,80]. To exert this regulatory
function, the secreted latent form of TGF-β must first be activated by different cellular and
non-cellular mechanisms in the BMM.

As the hematopoietic BMM is vastly innervated and controlled by the sympathetic
nervous system [81], non-myelinating Schwann’s glial cells wrapping peripheral nerve
fibers maintain the quiescent HSC pool by activating latent TGF-β [82]. However, it
has been suggested that high levels of catecholaminergic transmitters stimulate HSC
proliferation and mobilization [83,84]. Moreover, the circadian release of hematopoietic
progenitor cells through β-adrenergic signals was shown to be promoted by neural cells
of the sympathetic nervous system, induced by granulocyte colony-stimulating factor
(G-CSF) [85,86].

A relevant subset of adipocytes localized in the perisinusoidal region has been re-
cently identified as sympathetically innervated and regulated [87]. Initially, adipocytes
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were preliminarily believed to exert a negative influence on hematopoiesis [88]. Concor-
dantly, in vivo studies revealed that inhibition of adipogenesis following chemotherapy-
induced ablation leads to an improved regeneration of hematopoiesis [89]. However,
adipocytes have been found to support hematopoietic regeneration through secretion of
SCF [90] and to positively contribute to hematopoiesis through the adipokines leptin and
adiponectin [91,92]. In addition, in a genetically modified mouse model, a complete lack
of adipocytes led to markedly increased extramedullary hematopoiesis and alteration
in CXCL-12/CXCR-4 signaling [93]. These results suggest that adipocytes are required
for appropriate hematopoietic regulation in BMM. As CD169+ macrophages stimulate
secretion of the retention factor CXCL-12 by periarteriolar Nes-GFP+ stromal cells, they
presumably contribute to the maintenance of HSC quiescence [94].

The above-discussed results, in part, are indicative of the idea of a vascular sub-niche
that plays a binary role within the hematopoietic BMM. Whereas periarteriolar localized
parts seem to rather protect the quiescent HSC pool [65,95], perisinusoidal niche cells
may be more likely to promote the expansion, differentiation, and mobilization of actively
circulating HSCs [65,66,70]. It, therefore, seems reasonable to assume that structurally and
functionally separated perivascular sub-niches broadly guarantee differential regulation of
distinct hematopoietic cell subsets [95]. However, a strict distinction between these special-
ized sub-niches appears controversial due to anatomical and functional overlaps between
these niches and has therefore not been clearly defined [59]. In addition, contrary to the
long-held belief that the hematopoietic BMM consists of different niches, an increasingly
accepted point of view states the existence of only one niche, comprising a periarteriolar
and a perisinusoidal compartment [96]. Further research is necessary to fully elucidate
the exact localization of HSCs at different stages in bone marrow niches and to clarify the
specific regulatory functions of distinct niches in the direction of hematopoiesis.

2.3. Hypoxia in the Bone Marrow Microenvironment

Despite its pronounced vascularization, the BMM has been revealed to be hypoxic [97],
with varying oxygen (O2) levels reported to range from 0.1% and 6% in different areas
within the bone marrow [98,99]. In this hypoxic microenvironment, hematopoietic cells
present a hypoxic profile, regardless of their location and cell cycle status, characterized
by intracellular incorporated pimonidazole and upregulation of the transcription factor
hypoxia-inducible factor (HIF)-1α [60,100,101]. Under hypoxic conditions, HIF-1α shows
full transcriptional activities and has been proposed to necessarily contribute to the ac-
tivation of an anaerobic glycolytic metabolic program in quiescent HSCs [100,102,103].
Hypoxic HSCs sustain their own stem cell properties through the stable expression of
HIF-1α, which essentially regulates stem cell survival and quiescence [100]. In this regard,
several studies also have suggested that hypoxia contributes to hematopoietic regulation
in bone marrow (reviewed in [104]).

Based on indirect measurements, the endosteal niche has long been believed to be
comparatively hypoxic, which was thought to support the maintenance of HSCs and
subsequently influence the distribution of HSCs in the BMM [105]. However, direct in vivo
measurements showed that the total extravascular oxygen tension (pO2) is significantly
higher in endosteal regions compared to the local pO2 in the vicinity of nestin-negative
vessels, with the lowest level found in the deeper perisinusoidal region (1.3% O2) [97].
More recently, O2 values measured in areas around HSCs and more differentiated HPCs
were very similar [54]. This may suggest a lower impact of different levels of hypoxia on the
microenvironmental regulation of hematopoiesis and may correspond to a dense arteriolar
network, which has been found to abundantly enclose the endosteal surface [65,106].

The exact oxygen concentrations within different niches, as well as the detailed impacts
on hematopoietic regulation, remain elusive and are the subject of current research studies.
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3. Dysregulated Leukemic Bone Marrow Microenvironment

In leukemogenesis, the bone marrow is typically characterized by increased infil-
tration of uncontrollably proliferating leukemic cells (blasts) at the expanse of healthy
hematopoiesis. It has been shown that disturbed cell-intrinsic regulation of leukemic cells
is accompanied by deregulation of the bone marrow niche, suggesting a decisive role of an
altered BMM in leukemogenesis (Figure 2). Of note, various studies have indicated that this
malignant BMM also favors leukemogenesis by promoting immune-evading mechanisms
(reviewed in Sendker et al.) [107].

Children 2021, 8, x FOR PEER REVIEW 7 of 21 
 

 

The exact oxygen concentrations within different niches, as well as the detailed im-

pacts on hematopoietic regulation, remain elusive and are the subject of current research 

studies. 

3. Dysregulated Leukemic Bone Marrow Microenvironment 

In leukemogenesis, the bone marrow is typically characterized by increased infiltra-

tion of uncontrollably proliferating leukemic cells (blasts) at the expanse of healthy hem-

atopoiesis. It has been shown that disturbed cell-intrinsic regulation of leukemic cells is 

accompanied by deregulation of the bone marrow niche, suggesting a decisive role of an 

altered BMM in leukemogenesis (Figure 2). Of note, various studies have indicated that 

this malignant BMM also favors leukemogenesis by promoting immune-evading mecha-

nisms (reviewed in Sendker et al.) [107]. 

The idea of a transformed microenvironment facilitating the development of hema-

topoietic malignancies was reported first by Dührsen and Hossfeld in 1996 [108]. Since 

then, several studies have investigated the malignant microenvironment. However, the 

exact role and contribution of the microenvironment in leukemogenesis have not yet been 

fully clarified. Understanding the cellular crosstalk in the leukemic microenvironment as 

well as its contribution to the initiation, progression, relapse, and refractoriness of AML 

is critical for the identification of promising therapeutic targets. 

 

Figure 2. Leukemic bone marrow microenvironment. 

In a malignantly altered BMM, dysregulated cellular (i.e., mesenchymal stem cell 

[MSCs], osteoblasts, hematopoietic stem cells [HSC], sympathetic neurons, distinct peri-

vascular stroma cells [neural-glia-2 (NG2+)], C-X-C motif chemokine [CXCL]-12 abundant 

reticular [CAR] cells, leptin-receptor-positive [LepR+] cells, and endothelial cells) and 

structural components (i.e., arterioles [Art], sinusoidal vessels [sinu], fibronectin [FN], and 

oxygen level [O2]) as well as non-cellular mediators (stem cell factor [SCF], CXCL-12, 

transforming growth factor beta [TGF-β], vascular endothelial growth factor [VEGF] and 

vascular endothelial cadherin [VE-Cad], thrombopoietin [TPO], and hypoxia-inducible 

factor [HIF]-1α), including related cellular interaction and signaling (vascular cell adhe-

sion molecule [VCAM)]-1 and very late antigen [VLA)-4), constitute a supportive niche 
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The idea of a transformed microenvironment facilitating the development of hematopoi-
etic malignancies was reported first by Dührsen and Hossfeld in 1996 [108]. Since then,
several studies have investigated the malignant microenvironment. However, the exact
role and contribution of the microenvironment in leukemogenesis have not yet been fully
clarified. Understanding the cellular crosstalk in the leukemic microenvironment as well as
its contribution to the initiation, progression, relapse, and refractoriness of AML is critical
for the identification of promising therapeutic targets.

In a malignantly altered BMM, dysregulated cellular (i.e., mesenchymal stem cell
[MSCs], osteoblasts, hematopoietic stem cells [HSC], sympathetic neurons, distinct perivas-
cular stroma cells [neural-glia-2 (NG2+)], C-X-C motif chemokine [CXCL]-12 abundant
reticular [CAR] cells, leptin-receptor-positive [LepR+] cells, and endothelial cells) and
structural components (i.e., arterioles [Art], sinusoidal vessels [sinu], fibronectin [FN],
and oxygen level [O2]) as well as non-cellular mediators (stem cell factor [SCF], CXCL-12,
transforming growth factor beta [TGF-β], vascular endothelial growth factor [VEGF] and
vascular endothelial cadherin [VE-Cad], thrombopoietin [TPO], and hypoxia-inducible
factor [HIF]-1α), including related cellular interaction and signaling (vascular cell adhesion
molecule [VCAM)]-1 and very late antigen [VLA)-4), constitute a supportive niche for
leukemic blasts, driving pathogenesis and disease progression in acute myeloid leukemia
(AML). Figure 2 was created with biorender.com (accessed on 13 February 2021).
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3.1. Microenvironment-Mediated Malignancy Versus Malignancy-Mediated Microenvironment

In the leukemic microenvironment, dysregulations not only occur in hematopoi-
etic cells but also in non-hematopoietic cells. This raises the question of what is first
in leukemogenesis?

In non-hematopoietic stromal cells derived from patients with AML and myelodys-
plastic syndrome (MDS), certain non-clonal (epi-)genetic aberrations have been revealed
and differ from mutations found in hematopoietic cells [20,109,110]. These results may
indicate a pivotal role of mesenchymal stem cells (MSCs) in mediating leukemogenesis
but do not answer the question of whether microenvironmental stromal cells facilitate
disease progression rather than initiation. In mouse models, activating β-catenin mutation
in osteoblasts cooperates with Foxo-1 to lead to AML development via activation of the
NOTCH pathway in HSCs, which is suggestive of an initiative role of microenvironmental
cells [111,112]. However, in an in vitro investigation, leukemic MSCs did not necessar-
ily contribute to the leukemic process, although these stromal cells displayed altered
phenotypic and functional features linked to the progression of leukemogenesis [113].

In contrast, multiple reports indicate that donor-derived leukemia following allogenic
stem cell transplantation for different hematopoietic malignancies (reviewed by [114]) is
a powerful in vivo model, suggesting that the malignant microenvironment pressures
healthy donor-derived HSCs to convert into leukemic cells [114,115]. These examples favor
an initiative role of the microenvironment preceding leukemic clonal transformation. Inter-
estingly, examples of donor-derived ALL and AML were also reported post-transplantation
for beta-thalassemia in a 5 year old boy [116] and for aplastic anemia in a 12 year old girl,
respectively [117]. Together with the finding that a relatively small proportion (about 5%)
of all post-transplantation cases of leukemia relapse originates from donor cells [118,119]
and most cases relapse as acute leukemia, these observations could indicate a type of
hereditary leukemic predisposition mediated by the microenvironment [114].

Contrary to the concept of a transformed microenvironment that drives leukemia
according to microenvironment-mediated malignancy, an opposite but not exclusive notion
assumes malignant hematopoietic cells mediate malignancy-associated changes in the
microenvironment (malignancy-mediated microenvironment), as MDS cells have been
shown to induce malignant/MDS-like transformation in healthy MSCs [120]. Similarly,
AML-derived conditioned medium has been shown to convey leukemic alteration (regard-
ing repressed osteogenic differentiation and proliferation) in healthy MSCs, suggesting
leukemic dysregulation is instructed by leukemic cells [22].

In in vivo AML models, LSCs lead to transcriptional changes in healthy MSCs, affect-
ing the expression of various molecular mediators involved in intercellular crosstalk [121].
Interestingly, among these distinct MSCs, a heterogenous pattern of genetic alteration has
been shown and linked to a heterogeneous prognosis, presumably reflecting the clinical
heterogeneity of AML [121]. A recent study involving co-culture experiments revealed that
AML-derived exosomes promote interleukin (IL)-8 secretion in co-cultured stromal cells,
which in turn may contribute to leukemic self-protection from chemotherapy [122]. Simi-
larly, further studies demonstrated that AML cells convey microenvironmental disruption
through the production of exosomes and vesicles (i.e., affecting stromal cell metabolism or
suppressing the natural killer [NK]-cell-mediated immune response) [21,123,124].

These results suggest that leukemic cells differentially remodel the previously healthy
microenvironment to their favor, indicative of a secondary induced malignant microenvi-
ronment that may further support disease progression. In this context, microenvironmental-
mediated malignancy and malignancy-mediated microenvironment do not seem to mutu-
ally exclude each other, but rather to complementarily cooperate in a bidirectional manner,
favoring hematopoietic insufficiency and leukemogenesis.

3.2. Bidirectional Interplay in a Leukemic Microenvironment

Numerous studies point to a self-reinforcing, bidirectional interplay between leukemic
cells and their microenvironment that favors further disease progression (reviewed in
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Korn et al. 2017 [125]) and resembles a vicious cycle. In the pathological microenvironment,
changes in the release of soluble mediators, such as proinflammatory cytokines, and
deviating inter-cellular contacts lead to the formation of a leukemic niche at the expense of
healthy hematopoiesis.

The retention of LSCs in the leukemic bone marrow niche depends on cellular interac-
tions, which are mediated by CXCR-4/CXCL-12 signaling and other pathways. In addition,
AML blasts secrete high amounts of SCF, a retention factor, that importantly attracts HSCs
into less suitable areas within the leukemic BMM, from where they can only be mobilized
with difficulty, which serves to impede healthy hematopoiesis [14].

Malignant, leukemic cells express certain adhesion molecules to an increased extent,
such as CD44, that interact with ECs expressing E-selectin, resulting in promoted chemore-
sistance and upregulated viability and proliferative capacity [74]. The cellular crosstalk
between vascular cell adhesion molecule (VCAM)-1 on MSCs and very late antigen (VLA)-4
(an integrin alpha4βeta1 heterodimer) on leukemic cells is reported to lead to transcrip-
tional changes in stromal bone marrow-derived cells, causing upregulation of distinct
nuclear factor kappa B (NF-κB) target genes and ultimately having a beneficial effect
on leukemic cell growth, survival, and chemoresistance [126]. The interaction between
VLA-4–expressing AML cells with fibronectin on MSCs has been correlated with adverse
outcomes and recurrence in AML, as this interplay causes increased drug resistance medi-
ated by intracellular activation of the phosphatidylinositol-3-kinase (PI-3K)/AKT/Bcl-2
pathway [127].

Leukemic cells increasingly produce several proinflammatory cytokines, such as Il-1
that induce surrounding ECs and stromal cells to secrete growth factors such as CXCL-12
or colony-stimulating factors, which are proposed to result in unlimited cell growth and
proliferation of leukemic blasts [128]. In pediatric AML patient samples, inhibition of
BMP (a molecule that belongs to the TGF-ß superfamily) using the BMP-inhibitor K02288
promoted differentiation of LSCs, while reducing viability and colony counts in vitro,
suggesting the significance of the BMP-Smad pathway in pediatric AML [129].

Despite the healthy microenvironment, TGF-β restricts hematopoietic proliferation,
and in the leukemic microenvironment, TGF-β has also been implicated in leukemogen-
esis [130]. In this regard, TGF-β has been shown to protect leukemic blasts from lethal
chemotherapeutic effects and favor quiescence in LSCs, thus promoting leukemic pro-
gression [131]. Moreover, TGF-β importantly contributes to leukemia progression by
dysregulating the leukemic microenvironment [132]. Whilst elevated TGF-β levels have
been observed in the AML BMM [133,134], predominantly upon release by megakary-
ocytes (MKs) and to a lesser extent by ECs [135], other studies reported decreased TGF-β
levels in AML patients’ sera [136]. However, as shown by multiple studies, TGF-β1 im-
portantly contributes to leukemogenesis [130,132,137]. The BMM in children with Down
syndrome (DS)-acute megakaryoblastic leukemia (AMKL) is characterized by marrow
fibrosis [138,139], and TGF-β has been revealed as the main mediator of bone marrow
fibrosis [140]. Based on pediatric patient-derived samples, Hack et al. showed that TGF-β
supports fibrosis and thus significantly contributes to leukemogenesis in pediatric DS-
AMKL [141].

Given that MKs and leukemic blasts abundantly express TGF-β, resulting in markedly
increased TGF-β levels in the DS-AMKL BMM, and TGF-β has been shown to induce
early-stage marrow fibrosis in DS-AMKL [141], TGF-β appears to play a pivotal role in the
leukemogenesis of AMKL (FAB-M7) in children with and without trisomy-21. Exosomes
released in AML have been revealed to contain high concentrations of TGF-β and to impact
leukemogenesis and the therapeutic response [134,142]. Thereby, through secretion of
exosomes, leukemic blasts remodel their environment into a leukemia-favoring niche,
protecting AML blasts [21,123,143].

In AML, insulin-like growth factor (IGF)-1 and its same-named receptor IFG-R1 signif-
icantly contribute to leukemogenesis, according to evidence that IGF-1/IGF-1R signaling
exerts pro-leukemic effects on AML cells in vitro via activation of downstream PI3K/Akt
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and the extracellular signal-regulated kinase (Erk) pathways [144,145]. In the DS-AMKL
mice model, overactive IGF/IGF1R-signaling, cooperatively with the mutated lineage
determining transcription factor GATA1 contribute to malignant transformation of GATA1-
short mutation bearing fetal megakaryocytic progenitors, suggesting a developmental
stage-specific interplay in fetal megakaryopoiesis [146]. In AML samples, increased levels
of IGF-1 and associated binding proteins (IGF-BP) were shown to correlate with prognosis,
which leads to the assumption that these markers have the potential to serve as predictive
tools for tracing residual disease load [147]. In contrast to the stated pro-leukemic role of
IGF-BP-1–6, IGF-BP-7 has a tumor-suppressive role in leukemogenesis [148].

In an MLL-AF9 AML model, it was demonstrated that leukemic infiltration leads to
sympathetic neuropathy, which is presumably due to damaged β-adrenergic signaling
and includes disruption of quiescent perisinusoidal nestin-positive cells, resulting in an
impaired physiological niche function with reduced HSC-maintaining NG2+ periarteriolar
cells but increased leukemia-supportive pericytes [149]. This process is accompanied by
increased expansion of MSCs and progenitor cells, primed for osteogenic differentiation
(limited to osteoprogenitor cells) [149]. In line with the latter, Battula et al. described a
pre-osteoblast-rich niche that further favors the expansion of leukemic blasts [150].

In patient-derived AML cells, VEGF and its receptor VEGFR2 have been reported to
be overexpressed [151] and associated with a poor prognosis in AML [152]. The angiogenic
factor VEGF-C is proposed to increase the proliferation and survival of leukemic blasts
while protecting them from pro-apoptotic signals [153]. Accordingly, in pediatric patient-
derived AML samples, increased endogenous levels of VEGF-C were significantly linked
to reduced blast elimination, reflected by increased drug resistance in vitro and higher
blast count on day 15 as well as a longer time to complete remission in-vivo [154]. VEGF is
promoted by hypoxia in normal and malignant cells [155]. Notably, a correlation between
the hypoxia marker HIF1α and VEGF-A has been recently reported. Both are overexpressed
in AML cells, but the concentration of HIF1α was significantly higher in AML-M3-derived
cells than in other AML cells [156]. This could be explained by the oncogenic mutation
PML-RARA in promyelocytic leukemia (M3) [157].

Hypoxia-mediated signaling through the transcription factor HIF-1α is required for
the maintenance of leukemia-initiating cells in vitro [158] and in vivo [159], suggesting
a pivotal role for hypoxia in sustaining leukemia. Furthermore, hypoxia promotes the
recruitment of leukemic blasts expressing more CXCR-4 under hypoxic conditions through
increased HIF-1α levels [160]. In addition, hypoxia not only conveys anti-apoptotic and pro-
proliferative effects on leukemic blasts but also may contribute to chemoresistance [161].
In a patient-derived xenograft model (with knockdown of MIF, HIF-1α, and HIF-2α),
leukemia cell proliferation was promoted by hypoxia and HIF-1α. This subsequently
caused constitutive overexpression of macrophage migration inhibitory factor (MIF) in
AML blasts, which in turn stimulated Il-8 expression, conferring leukemic growth and a
survival advantage [162,163]. Contrary to the notion that hypoxia is a major contributor
to leukemia progression, HIF-1α is also considered to have a suppressive function in
leukemogenesis [164].

Though most results favor a pro-leukemic role, indicative of a highly hypoxic leukemic
microenvironment, the oxygen content in AML-derived bone marrow samples is ap-
proximately as high as the pO2 in physiological bone marrow samples (46.05 mmHg
[6.1%] and 54.9 mmHg [7.2%]) [160,165]. In contrast to most cancer cell lines, which
preliminary depend on anaerobic glycolysis referred to as the Warburg effect [166]), the
metabolism of some AML cells importantly depends on mitochondrial oxidative phos-
phorylation [167–169]. Furthermore, leukemic cells can switch metabolism depending on
environmental conditions such as oxidative stress, which may confer a selective advantage
of leukemia cells over normal hematopoietic cells [170].
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3.3. Developmental Changes in the Bone Marrow Microenvironment

Along with the above-mentioned ontogenic changes in hematopoietic development,
there are noteworthy age-related differences in the fetal, neonatal, and adult hematopoietic
and leukemic BMMs. The healthy fetal liver provides a unique environment that ensures
enormous HSC-expansion without malignant transformation. The results of various studies
focusing on the fetal liver niche suggest an important role of fetal liver stromal cells in
supporting the massive expansion of early HSCs through the expression and secretion
of pivotal hematopoietic mediators, including angiopoietin-like 2 and 3, TPO, and IGF-
2 (reviewed in [171,172]). The combination of the attracting factors CXCL-12 and SCF
synergistically increase migration of fetal liver HSCs to its niche [173].

In the postnatal period, it has been reported that HSCs possess increased CXCL-12
expression and high cell cycling activity, which are linked to an engraftment defect that can
be reversed by antagonizing the CXCL-12/CXCR-4 interplay [174]. Intriguingly, in recent
studies, investigating the neonatal and adult BMM, transplantation of HSCs into neonatal
mice resulted in a higher regeneration capacity than in adult BMM. Conversely, the self-
renewal of LSCs, when transplanted into adult BMM, was greater than that in neonatal
models, which appears consistent with prognostic differences in adult and childhood
AML [175]. In addition, primitive mesenchymal stromal cells (PDGF-R+ and SCA-1+) are
more abundant in the neonatal environment and secrete higher levels of pivotal microenvi-
ronmental mediators, such as Jag-1 and CXCL-12. This raises the question of whether these
age-dependent microenvironmental changes could be causative for the observed changes
in hematopoietic and leukemic cell engraftment, which has been confirmed by further
switching transplantation experiments [175]. However, considering age as a prognostic fac-
tor, particularly in pediatric and young adult AML [176,177], the clinical prognostic impact
of age-dependent changes in the leukemic BMM in children versus adults is still unknown.

4. Bone Marrow Directed Therapeutic Approaches in AML

Based on the high impact of this remodeled leukemia-supportive microenvironment
in the pathogenesis of AML, relevant molecular structures in the BMM need to be con-
sidered as therapeutic targets for efficiently eradicating leukemic blasts and preventing
relapsing/non-responding unfavorable courses of disease. To date, several cellular interac-
tions that protect AML blasts within the highjacked leukemic microenvironment have been
approved as potential therapeutic targets for disrupting this leukemia-protecting interplay.

Regarding the aforementioned physiological effects of the CXCL-12–CXCR-4 axis
on CD34-positive HSC mobilization [178], administration of the first-generation CXCR-4–
directed agent plerixafor (AMD3100) has been approved in combination with G-CSF to
support the release of HSCs into the blood circulation [178,179]. Concurrent administration
of plerixafor with chemotherapy abrogated resistance to chemotherapy, thereby decreasing
the leukemia burden and increasing survival in an AML mouse model [180]. These
promising anti-leukemic effects were demonstrated in patients with relapsed/refractory
AML in the phase I/II study NCT00512252 [181].

The novel CXCR-4 antagonist BL8040, which has inverse agonism activity, more
efficiently inhibits CXCR-4 with increased binding affinity and thus represents a next-
generation CXCR-4–directed agent [182]. A combination of FLT-3 and BCL-2 antagonists
has been shown to augment the anti-leukemic power of BL8040, leading to enhanced
leukemia eradication and prolonged survival in in vivo trials [183].

The E-Selectin antagonist Uproleselan (GMI-1271) reduces niche-mediated chemore-
sistance, survival, and regeneration of leukemic cells by sensitizing them to chemotherapy
while similarly reinforcing healthy hematopoiesis [184]. Based on encouraging results in a
phase I/II study, a phase III study (NCT03616470) is currently assessing the clinical value
of Uproleselan in relapsed/refractory AML in adults [185].

In the leukemic microenvironment, the cellular crosstalk between VLA-4 and VCAM-1
has been proposed to mediate increased blast proliferation and to reduce therapy-induced
apoptosis, contributing to a poor prognosis [186]. Consistently, blockage of VLA-4 us-
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ing Natalizumab, an approved VLA-4 inhibitor, leads to decreased leukemia burden
and exerted promising anti-leukemic effects in vivo [187]. However, the clinical value of
Natalizumab should be considered with caution according to described adverse events,
especially according to the risk of leukoencephalopathy [188].

AS101 is a non-toxic VLA-4 antagonist that reconstitutes sensitivity to chemotherapy
by disrupting the underlying PI3K/Akt/Bcl-2 pathway, and concomitant administration
with cytarabine demonstrated promising anti-leukemic activity in pre-clinical trials [189].
The efficiency and safety of AS101 in combination with chemotherapy are currently being
evaluated in a phase II clinical trial (NCT01010373) for elderly patients with MDS and
non-M3 AML.

The peptide FNIII14, which disturbs VLA-4–mediated activation by disrupting the
interaction between fibronectin and the beta1-subunit, exhibited synergistic anti-leukemic
effects when given with cytarabine, contributing to significantly improved survival in
investigated mouse models without increasing adverse myelosuppressive effects [190].
Inhibition of VLA-4 using a specific antibody (SG/17) restored susceptibility to apoptosis
when given together with the chemotherapeutic agent cytarabine and rescued treated mice
from residual disease [127].

Regarding the previously described leukemia-supporting impact of IGF–IGF-1R signal-
ing in leukemogenesis in AML [145], inhibition of IGF-1R using a neutralizing antibody and
the IGF-1R kinase inhibitor NVP-AEW541 abrogated this pro-leukemic effect in vitro [144].
Given that NVP-AEW541 sensitizes AML cells to etoposide-mediated toxicity in pre-clinical
investigations, a first attractive therapeutic approach could be its combinatorial use together
with chemotherapy [144].

Furthermore, administration of the IGF-1R inhibitor picropodophyllin (PPP) was able
to abrogate the proliferative capacity of treated LSCs, which was attributed to downregula-
tion of IGF-2 and Nanog expression [191]. Treatment with BMS-536924, a small molecule
IGF-1R/insulin-receptor kinase inhibitor, reduced proliferation and induced apoptosis
among AML cells through inhibition of downstream MEK1/2 and Akt signaling [192,193].
Despite these results, to our knowledge, none of these described IGF signaling-directed
therapeutic tools (BMS-536924 and PPP) have yet to reach clinical phase studies. In addition,
neutralizing IGF-1R antibodies and the tyrosine kinase inhibitors (TKIs) NVP-AEW541 and
NVP-ADW742 have been shown to inhibit proliferation and to induce apoptosis [194,195].

Given that, in contrast to HSCs, LSCs express a markedly decreased level of the tumor-
suppressing IGF-BP7, this secreted factor appears may represent a promising therapeutic
agent in AML [196]. In a pre-clinical study, administration of recombinant IGF-BP7 was
proven to efficiently eliminate the leukemia cell load by redirecting the leukemic phenotype
towards a phenotype with increased differentiation, decreased survival, and reconstituted
chemotherapy sensitivity [148].

Despite these first promising clinical results, studies assessing the utility of novel
therapeutic approaches targeting the microenvironmental interaction in pediatric AML are
rare, and available clinical data are limited by low incidence, emphasizing the necessity of
strong international collaboration.

5. Conclusions

In this review, the major mechanisms of cell–cell interaction in the BMM that contribute
to healthy hematopoiesis and leukemogenesis have been outlined. Microenvironmental
crosstalk involves various cellular and non-cellular components that mutually influence
each other in a multidirectional manner, resulting in a complex leukemia-supportive niche.
Considering the high impact of this BMM in leukemogenesis, targeting such microenviron-
mental crosstalk may provide a promising future strategy to cure AML. The first auspicious
BMM-directed therapies are already being tested, but clinical studies in pediatric AML are
still limited. Further research is necessary to deepen our knowledge about the BMM and
identify novel approaches to eradicate leukemic blasts.
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