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The opioid receptors are a family of G-protein coupled receptors (GPCRs) with close struc-
tural homology. The opioid receptors are activated by a variety of endogenous opioid neu-
ropeptides, principally β-endorphin, dynorphins, leu- and met-enkephalins. The clinical po-
tential of targeting opioid receptors has largely focused on the development of analgesics.
However, more recent attention has turned to the role of central opioid receptors in the
regulation of stress responses, anhedonia and mood. Activation of the κ opioid receptor
(KOP) subtype has been shown in both human and rodent studies to produce dysphoric and
pro-depressive like effects. This has led to the idea that selective KOP antagonists might
have therapeutic potential as antidepressants. Here we review data showing that mixed μ

opioid (MOP) and KOP antagonists have antidepressant-like effects in rodent behavioural
paradigms and highlight comparable studies in treatment-resistant depressed patients. We
propose that developing multifunctional ligands which target multiple opioid receptors open
up the potential for fine-tuning hedonic responses mediated by opioids. This alternative ap-
proach towards targeting multiple opioid receptors may lead to more effective treatments
for depression.

Introduction
The opioid neuropeptides are β-endorphin, enkephalins and dynorphins, which preferentially act at μ
(MOP), δ (DOP) and κ (KOP) opioid receptors respectively [1]. Together with the homologous but
non-opioid nociceptin/orphanin FQ (NOP) receptor, these opioid receptors form a subfamily of G-protein
coupled receptors (GPCRs) that are expressed throughout the brain and increasingly recognized to play
a role in mood and stress responsivity [2,3]. We and others, have focused on developing KOP receptor
antagonists with potential as antidepressant and anxiolytic agents [4]. KOP receptors are Gαi/o coupled
receptors with a unique pharmacology [5]. In this article, we highlight findings that suggest compounds
which have activity at a range of opioid receptors may represent a more effective antidepressant strategy
by rebalancing hedonic tone.

Opioid receptors regulate mood
Anhedonia or the reduced capacity to experience pleasure, is a core feature of major depressive disorder
[6,7]. The mesolimbic dopaminergic system is involved in the reward system and in mediating the de-
gree of anhedonia and risk of developing depression [6-8]. Hedonic tone can be defined as the trait or
genetic predisposition underlying an individual’s baseline range and lifelong characteristic ability to feel
pleasure [7]. The activity of the limbic-cortical-striatal-pallidal-thalamic pathway (which consists of con-
nections between the prefrontal cortex, ventro-medial striatum, ventral pallidum, hippocampal subicu-
lum, mediodorsal and midline thalamic nuclei and amygdala) is correlated with hedonic tone in healthy
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individuals and altered in major depressive disorder [7]. These circuits integrate higher cognitive function with
mood and emotional states via reciprocal connections between cortical regions and areas involved in the regu-
lation of autonomic functions such as the periaqueductal grey and the hypothalamus. Neuronal activity in the
limbic-cortical-striatal-pallidal-thalamic pathway is predominantly glutamatergic in nature modulated by GABA.
Release of both glutamate and GABA can be modulated by opioids in the ventral tegmental area (VTA), amygdala
and hippocampus [9]. Dysfunctional reward processing in depression is well characterized and anhedonia has been
shown to be a predictor of treatment-resistant depression, particularly in adolescent depression [10,11]. The relative
ineffectiveness of SSRIs used to treat anxiety and depression in patients with low hedonic tone is associated with
dysfunction of these circuits [12,13]. This would suggest a specific beneficial effect of an antidepressant strategy tar-
geting opioid receptors that could regulate hedonic tone in treatment-resistant depression, and perhaps particularly
in adolescent depression where effective treatment options are limited [14,15].

The ‘opium cure’ was recommended for depressed patients before the discovery of current antidepressant treat-
ments or electroconvulsive therapy [16]. Of the endogenous neuropeptide opioids that have been identified as con-
tributing to the aetiology of major depressive disorder,β-endorphin has been the most extensively investigated. How-
ever, studies of basal β-endorphin levels in depressed patients have been equivocal with several reports suggesting
increased β-endorphin levels compared with controls while others suggest no change or decreased β-endorphin lev-
els [17,18]. This variability may reflect differences between the studies including subgroups of depressed patients,
comorbidities and medication status [17]. Despite concerns about the risks of abuse and dependency, opiates acting
at MOP receptors, including oxycodone, oxymorphone and the partial MOP agonist buprenorphine, have all been
shown to be beneficial in patients with treatment-resistant depression [19-22] and buprenorphine may have antisui-
cidal effects [23]. In ten patients with treatment-resistant unipolar non-psychotic depression, clinical improvements
were evident after 1 week of treatment with buprenorphine (0.15–1.8 mg/day), a significant improvement on existing
therapies [19]. More recently, in a small cohort of older treatment-resistant depressed adults, clinically significant
improvements were evident within 3 weeks of starting buprenorphine (0.4–0.7 mg/day) treatment [20]. In severely
suicidal patients receiving ultra-low-dose buprenorphine (0.1 mg once or twice daily) a greater reduction in Beck
Suicide Ideation Score was observed after 2 and 4 weeks of treatment, compared with placebo [21]. Buprenorphine
has a complex pharmacology (see below) and its therapeutic mechanisms of action are not well understood. In these
studies, different patient populations and different dosing regimes were used but in all cases clinically significant im-
provements were observed. However, high and moderate efficacy MOP receptor agonists, because of their rewarding
properties, are all associated with abuse liability and the potential for developing opiate dependency.

Stress is a risk factor for developing a range of psychiatric disorders including depression [24]. Multiple media-
tors are implicated in how the body responds to stress including corticotrophin releasing factor (CRF), vasopressin,
adrenocorticotrophic hormone and glucocorticoids, which mediate the actions of the hypothalamic-pituitary-adrenal
(HPA) axis. Opioids have been suggested to have a counter-regulatory role in modulating HPA stress responsivity
under stress conditions [25]. β-endorphin and dynorphin exert tonic inhibition and stimulation of HPA activity
by acting on MOP and KOP respectively. β-endorphin acting at MOP exerts tonic inhibition of CRF and thus of
the HPA axis in rodents, whereas KOP agonists stimulate plasma corticosterone and these stimulatory effects were
blocked by KOP antagonists [26]. Alongside this, accumulating evidence specifically implicates KOP receptors as
part of the body’s response to stress [27]. Dynorphin and KOP receptors are expressed in limbic brain regions as-
sociated with the regulation of mood. Stress releases CRF which then functions to increase dynorphin release and
subsequent activation of KOP receptors in specific brain circuits [28]. In this regard, acute or subchronic stress in ro-
dents produced stress-induced immobility that was reduced by treatment with the KOP receptor antagonist norbinal-
torphamine (norBNI) and absent from dynorphin and KOP receptor knockout mice [29-32], confirming that en-
dogenous dynorphins are released and activate KOP receptors during exposure to acute or repeated stress [33]. The
mesolimbic dopamine system has been implicated in the blockade of the dysphoric actions of dynorphin and in the
antidepressant effects of KOP receptor antagonists [34]. KOP receptors are expressed on VTA cell bodies and on the
presynaptic terminals of VTA afferents in the nucleus accumbens and their activation decreases dopamine release,
thereby producing a dysphoric effect. Interestingly, direct microinfusion of norBNI into the nucleus accumbens pro-
duced an antidpressant effect (Newton et al. (2002) [35]). Together with observations showing that KOP receptor
agonists produce dysphoric and psychotomimetic responses in humans [36-39] and aversive responses in rodents
[28,35,40], these findings have led to the view that KOP antagonists could be potential antidepressant drugs.
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Clinical trials of selective KOP antagonists
A number of high affinity, selective KOP receptor antagonists have been described in the literature including norBNI,
5′-guanidinonaltrindole (GNTI) and the (3R,4R)-dimethyl-4-(3-hydroxyphenyl) piperidine based JDTic [41-43].
These compounds share an unusual pharmacodynamic property in that there is slow onset of antagonist activity
(typically peaking at approximately 24 h) and exceedingly long duration of action in vivo (up to 3–4 weeks following
a single systemic administration) [44-46]. The first study in humans for JDTic to establish its safety, tolerability and
pharmacokinetics was terminated because of adverse effects and specifically non-sustained ventricular tachycardia
(https://www.clinicaltrials.gov/ct2/show/NCT01431586). Concerns about the feasibility of developing KOP antago-
nists for the clinic have centred around the long duration of action of high affinity selective compounds, leading
to the development of a number of short-acting KOP antagonists [47-52]. Ligand-directed signalling may account
for the duration of activity of KOP antagonists which has been demonstrated to correlate with activation of c-Jun
N-terminal kinase-1 (JNK1). The long acting KOP antagonists such as norBNI and JDTic activate JNK1 whereas
shorter acting KOP antagonists such as CERC-501 (previously LY-2456302) do not [53,54]. Additionally, there are
differences in blood–brain barrier permeability and bioavailability with JDTic showing poor brain penetration, and
compounds such as CERC-501 showing relatively rapid absorption. Irrespective of the duration of activity, it is clear
that the long-lasting blockade of KOP receptors is not necessary to block stress-induced or pro-depressant responses
and indeed the short-acting KOP antagonist CERC-501 has been evaluated in phase II clinical trials in a proof of
concept study for the treatment of mood and anxiety (https://www.clinicaltrials.gov/ct2/show/NCT02218736).

Mixed KOP/MOP antagonists are antidepressant in animal
models
We investigated the in vivo KOP activity of two naltrindole derivatives which had been identified in vitro to have
high selectivity for the KOP receptor; 5′-(aminomethyl) naltrindole (5′-AMN) (compound 5, [55]) and the closely
related amidine N-((Naltrindol-5-yl) methyl) pentanimidamide (5′-MABN) (compound 10b, [56]). Primary amines
are known to be readily metabolizable by amine oxidases and we predicted that these naltrindole derivatives would
maintain their selectivity for KOP receptors while having a shorter duration of action than standard KOP antago-
nists such as norBNI. In vitro studies showed that both 5′-AMN and 5′-MABN had high affinity for KOP receptors
(Ki: 1.36 +− 0.98 and 0.27 +− 0.08 respectively) and were revealed as potent antagonists at both KOP (pA2: 7.43 and
8.18 respectively) and MOP receptors (pA2: 7.62 and 7.85 respectively) in the isolated guinea pig ileum [57]. Systemic
administration of both 5′-AMN and 5′-MABN in mice blocked KOP agonist-induced (U50,488) antinociception es-
tablishing that they were KOP antagonists. However, they were not short acting and had a duration of action similar to
or longer than that of norBNI [57]. Despite this significant MOP antagonist activity, both 5′-AMN and 5′-MABN de-
creased mouse anxiety- and depression-related behaviours in the elevated plus maze and forced swim test respectively
[57]. It was perhaps surprising that concurrent MOP receptor antagonism did not negate the antidepressant effects of
KOP receptor antagonism, with both compounds being as effective as the standard selective KOP antagonist norBNI.

An alternative approach to developing short-acting ligands KOP antagonists with antidepressant-like potential
was to investigate the effects of combination buprenorphine and naltrexone [58]. Buprenorphine/naltrexone (4 mg
sublingual: 50 mg oral) has proved safe and effective in treating opioid dependence in an observational study, in
part because it improves the dysphoria associated with drug withdrawal [59]. This would suggest that combination
buprenorphine/naltrexone may improve mood. Buprenorphine is a partial MOP receptor agonist, a KOP receptor
antagonist and at higher concentrations, a DOP antagonist and also possesses NOP receptor partial agonist activity
[60,61]. Naltrexone is a relatively non-selective opioid antagonist with a higher affinity for MOP than KOP recep-
tors. Combining buprenorphine with naltrexone (1:1) produced a functional short acting blockade of both KOP and
MOP receptors in CD1 mice as evaluated in the warm water tail withdrawal assay (Almatroudi et al. 2015) [58]. The
combination dose of buprenorphine/naltrexone (both 1 mg/kg) produced no locomotor effects, was not rewarding
nor aversive but did produce antidepressant and anxiolytic like responses in the forced swim and novelty-induced hy-
pophagia tasks [58]. More recently, we have shown that a novel compound, BU10119, derived from buprenorphine,
with a pharmacology resembling combination buprenorphine/naltrexone, also shows antidepressant-like responses
[62]. BU10119 was also able to block stress-induced analgesia but not stress-induced increases in corticosterone [62].
Others have shown that stress-induced behaviours can be blocked by KOP antagonists, such as norBNI, even though
corticosterone levels may or may not have been affected (see discussion in [62]).

In our experiments, we were also able to demonstrate that naltrexone alone also produced antidepressant-like
responses in CD1 mice [58]. The mixed KOP/MOP receptor antagonist profile of naltrexone has recently been pro-
posed to account for its ability to reduce the latency to feed in the novelty-induced hypophagia task in C57BL/6J
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Figure 1. Opioid receptors regulate hedonic tone

The opioid receptors MOP, DOP and KOP have all been implicated in the control of hedonic tone. The above diagram illustrates

how the balance of activation of these receptors could contribute to overall hedonic tone. Agonist activation of MOP and DOP

receptors is proposed to increase hedonic tone whereas activation of KOP receptors produces anhedonia. Blockade of both KOP

and MOP receptors by BU10119, buprenorphine, naltrexone, 5′-AMN and 5′-MABN produced antidepressant-like responses in

rodents, perhaps by rebalancing hedonic tone.

mice [63]. This was somewhat surprising, since the aversive effects of naltrexone have been known for a long time
[64]. While some have shown no effect of naltrexone on mood (daily, 200 mg dose) in overweight healthy volunteers
[65], others have shown, in opioid-dependent patients, with a high baseline affective burden, depot naltrexone treat-
ment produced a significant improvement in depression scores [66]. Recently Mischoulon et al. [67] demonstrated
that low dose naltrexone (1 mg, twice a day), in a small cohort of patients with recurrent major depressive disorder
on dopaminergic antidepressant regimens, showed some benefit as an adjunct therapy, compared with placebo. The
present study restricted the patients to those on dopaminergic therapies, predominantly bupropion, because their
hypothesis was based on observations in Restless Leg Syndrome which suggested that naltrexone might facilitate
sensitization of dopamine D2 and D3 receptors.

As discussed earlier, buprenorphine on its own has demonstrated clinical efficacy in treatment-resistant depres-
sion and has also been shown to reduce depressive and anxiety-like behaviours in rats and mice [58,68,69]. There
remains concerns about the non-therapeutic misuse of buprenorphine, because of its partial MOP receptor agonist
activity, which appears to be rising among drug users [70]. Initially it was believed that buprenorphine’s efficacy in
treating depressed patients was derived from its partial MOP agonist actions but this has been challenged in recent
years with evidence suggesting these behavioural effects of buprenorphine can be attributed to its KOP receptor an-
tagonism [58,69]. Intriguingly, the most recent data indicate that MOP receptors do play a role in buprenorphine’s
behavioural response where there is a motivational component [63,71] but perhaps not in the way initially envis-
aged. In the novelty-induced hypophagia task in C57BL/6J mice buprenorphine, when used at a time point when
it was acting as an MOP receptor antagonist, reduced the latency to approach the food in the novel cage but not in
MOP receptor knockout mice. That this activity was mediated through blockade of MOP receptors was confirmed by
use of a selective MOP receptor antagonist, cyprodime. These authors suggest that antagonism of MOP receptors by
buprenorphine could block stress-induced activation of MOP receptors in the VTA which has been shown to reduce
dopaminergic transmission in the nucleus accumbens [63]. It would therefore appear that both KOP receptor antago-
nism and MOP receptor antagonism may be important for buprenorphine’s ability to regulate emotional state. Clinical
evidence is supportive of this hypothesis; Alkermes have combined buprenorphine with the MOP antagonist sami-
dorphan in a single sublingual tablet (ALKS5461) and in a 1:1 combination that provides KOP receptor antagonism
and antagonism or extremely low stimulation at MOP receptors. ALKS5461 has been shown to have potential in the
treatment of major depressive disorder [72,73] confirming the pre-clinical findings with buprenorphine-naltrexone
and BU10119 [58,62].

Overall, these data provide good evidence of the therapeutic potential for exploiting mixed KOP/MOP receptor
antagonists as antidepressant treatments, particularly in treatment- resistant depressed patients, to rebalance hedonic
tone (Figure 1).

Future prospects for opioid ligands in the treatment of mood?
In addition to MOP and KOP receptors, DOP and NOP receptors also play a role in the regulation of hedonic
tone and the response to stress. Activation of DOP receptors has been shown to be an antidepressant in a num-
ber of preclinical behavioural studies [3]. However, DOP agonists may be limited by their pro-seizure-like properties
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[74,75], although DOP agonists that generate antidepressant-like effects without convulsions have recently been de-
veloped [76]. Buprenorphine has no DOP agonist activity, but is a DOP antagonist [61]. The effects of the NOP
receptor on stress-related behaviour are less well characterized [77]. NOP receptor agonists have been shown to have
anxiolytic-like effects comparable with those of benzodiazepines in a range of behavioural assays [78]. NOP ago-
nists have also been shown to decrease extracellular dopamine in the nucleus accumbens and to block the rewarding
and reinforcing properties of morphine and alcohol (Toll et al. (2016) [77]). While buprenorphine and BU10119 show
some efficacy at NOP receptors in vitro, these effects are evident only at drug concentrations approximately 1000-fold
higher than required for MOP and KOP antagonism [61,62,79]. The close structural homologies between the three
classic opioid receptors, MOP, DOP and KOP, and the NOP receptor has presented challenges in obtaining conven-
tional selective ligands to study these receptors but will be aided by knowledge of the crystal structure of these GPCRs
complexed with ligands [80]. Perhaps bivalent or multifunctional opioid ligands like buprenorphine and BU10119,
each with a unique profile of pharmacological activity across the opioid receptors, offer wider therapeutic potential
in the treatment of mood disorders [81].

In addition to close structural homology, opioid receptors can function either as a monomer or as part of a homo-
or heterodimer or higher multimer [82]. For example, MOP and DOP receptors heterodimerize in vivo causing a
change in receptor properties and signalling [83]. Both in vivo and in vitro evidence suggest that these heteromers
can switch G-protein coupling preference, thus displaying a significantly different signalling pathway compared with
their corresponding homomers [84]. It has also been demonstrated that KOP and DOP receptors heterodimerize in
vivo in the spinal cord where they produce a unique receptor pharmacology making the design of analgesics with
functional selectivity a possibility [85]. Adding further complexity, MOP, KOP and DOP receptors are increasingly
recognized to show functional selectivity or biased agonism [86]. This means that ligands which bind to the same
receptor can elicit distinct conformations that preferentially signal through distinct G-protein or arrestin subtypes.
There is interest in exploiting bias signalling at opioid receptors to improve analgesics as a way of separating the
desired therapeutc effect from the unwanted side effects, which limit their clinical utility [87]. The effects of agonist
bias signalling through opioid receptors implicated in regulation of mood and anhedonia are largely unknown.

Rebalancing of opioid receptor dysregulation in stress-induced mood disorders is not as simple as targeting a single
opioid receptor. There is much potential for designing multifunctional opioid ligands with a unique pharmacology
targeting multiple opioid receptors and activating biased intracellular signalling. Better understanding of the down-
stream signalling pathways of opioid receptors, the role of heterodimers and ligand bias signalling and their role in
hedonic tone and motivated behaviours should lead to promising new treatments for depression.
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