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Abstract

Corallimorpharia is a small Order of skeleton-less animals that is closely related to the reef-building corals (Scleractinia) and of

fundamental interest in the context of understanding the potential impacts of climate change in the future on coral reefs. The

relationship between the nominal Orders Corallimorpharia and Scleractinia is controversial—the former is either the closest outgroup

to the Scleractinia or alternatively is derived from corals via skeleton loss. This latter scenario, the “naked coral” hypothesis, is strongly

supported by analyses based on mitochondrial (mt) protein sequences, whereas the former is equally strongly supported by analyses

of mt nucleotide sequences. The “naked coral” hypothesis seeks to link skeleton loss in the putative ancestor of corallimorpharians

with a period of elevated oceanic CO2 during the Cretaceous, leading to the idea that these skeleton-less animals may be harbingers

for the fate of coral reefs under global climate change. In an attempt to better understand their evolutionary relationships, we

examinedmtgenomeorganization ina representative range (12species, representing3of the4extant families)ofcorallimorpharians

and compared these patterns with other Hexacorallia. The most surprising finding was that mt genome organization in

Corallimorphus profundus, a deep-water species that is the most scleractinian-like of all corallimorpharians on the basis of morphol-

ogy, was much more similar to the common scleractinian pattern than to those of other corallimorpharians. This finding is consistent

with the idea that C. profundus represents a key position in the coral<-> corallimorpharian transition.

Key words: naked coral hypothesis, gene order, mitochondrial genome, coral evolution.

Introduction

Understanding the evolutionary history of the Scleractinia and

relationships between corals and other members of the an-

thozoan subclass Hexacorallia should enable a better under-

standing of how it has been influenced by climate in the past

and thus enable better predictions of the likely impacts of

climate change (Romano and Palumbi 1996). Of the six

Orders of hexacorals, only members of the Scleractinia de-

velop continuous external calcified skeletons (Daly et al.

2003). The Scleractinia suddenly appear in the fossil record

in the middle Triassic, about 240 Ma, but the range of

morphological variation seen in the Middle Triassic fossils is

comparable to that of extant scleractinians (Romano and

GBE
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Palumbi 1996). Molecular phylogenies based on both mito-

chondrial (mt) and nuclear (nucl) genes imply a deeper diver-

gence (~300 Ma—in the Late Carboniferous) of extant

scleractinians into two major clades, the “Complexa” and

the “Robusta” (Romano and Palumbi 1996; Romano and

Cairns 2000; Chen et al. 2002; Le Goff-Vitry et al. 2004;

Fukami et al. 2008; Barbeitos et al. 2010; Kitahara, Cairns,

and Miller 2010; Kitahara, Cairns, Stolarski, et al. 2010;

Kitahara, Cairns, et al. 2012; Kitahara et al. 2012; Kayal

et al. 2013). By adding deep-water species to existing molec-

ular data sets and applying an appropriately calibrated

molecular clock, Stolarski et al. (2011) demonstrated that

two exclusively deep-sea families, the Gardineriidae and

Micrabaciidae, form a “basal” clade that diverged at around

425 Ma, prior to the Complexa/Robusta split, pushing the evo-

lutionary origin of scleractinians deep into the Paleozoic. These

results support the scenario that scleractinians are the descen-

dants of soft-bodied (corallimorpharian-like) ancestors that

survived the mass extinction at the Permian/Triassic boundary

and subsequently gained the ability to deposit calcified skele-

tons (Stolarski et al. 2011).

The “naked coral” hypothesis, first put forward by Stanley

and Fautin (2001) to explain the sudden appearance of diverse

scleractinian fauna in the middle Triassic, is based on the idea

that the skeleton has been an ephemeral trait during coral

evolution. Under this hypothesis, the Scleractinia were skele-

ton-less in the early Triassic, a time when carbonate deposition

was suppressed globally (Stanley 2003). Consistent with the

idea of skeleton ephemerality, some coral species can undergo

reversible skeleton loss under acid conditions (Fine and

Tchernov 2007). Strong phylogenetic support for the

“naked coral” hypothesis came from analyses based on the

alignment of concatenated proteins encoded by 17 complete

mt genomes from hexacorallians (Medina et al. 2006); in their

analysis, scleractinians were paraphyletic, corallimorpharians

being more closely related to the Complexa than are

Robusta, the interpretation being that the Corallimorpharia

arose by skeleton loss from a scleractinian ancestor at a time

(during the mid-Cretaceous) of high oceanic CO2 levels

(Medina et al. 2006).

Although the “naked coral” scenario is supported by anal-

yses of protein sequence data, phylogenetics based on mt

nucleotide sequences instead strongly support scleractinian

monophyly (Stolarski et al. 2011; Kayal et al. 2013; Kitahara

et al. 2014). The fundamental disagreement between phylog-

enies based on nucleotide (fig. 1A) or amino acid (fig. 1B)

sequence data for mt proteins stems from the fact that

none of the available models for sequence evolution ade-

quately account for the observed data (Kitahara et al. 2014).

One possible explanation for this is the occurrence of a

“catastrophic” event—a major and unpredictable change,

such as sudden impairment of mt DNA repair processes

(which are believed to be an ancestral trait within Anthozoa

(Pont-Kingdon et al. 1998; Shearer et al. 2002; Brockman and

McFadden 2012).

Given the intractability of coral/corallimorph relationships

using conventional molecular phylogenetics, we explored

the informativeness of mt genome architecture in this context.

mt gene rearrangements occur relatively infrequently and

have proven useful in resolving evolutionary relationships,

both shallow and deep, across a broad range of organisms

(e.g., Gai et al. 2008; Brockman and McFadden 2012; Kilpert

et al. 2012). This study is based on the complete mt genomes

of a total of 12 corallimorpharians (8 of which are novel),

representing 3 of 4 currently described families (Daly et al.

2007; Fautin et al. 2007), and 32 scleractinians, and includes

both the early diverging coral Gardineria hawaiiensis (Stolarski

et al. 2011), and corallimorpharian, Corallimorphus profun-

dus, which is considered to be the most coral-like of coralli-

morpharians based on morphological grounds (Moseley 1877;

den Hartog 1980; Riemann-Zürneck and Iken 2003). The

results indicate that, by contrast with the Scleractinia, exten-

sive rearrangements of the mt genome have occurred within

Corallimorpharia. The most surprising finding, however, was

that the mt genome of C. profundus is scleractinian-like, and is

organized very differently to those of all other corallimorphar-

ians for which data are available. Both nucleotide and amino

acid sequenced-based phylogenetics unequivocally place

C. profundus as an early diverging corallimorpharian, indicat-

ing that this organism most closely reflects the coral <->

corallimorpharian transition.

Materials and Methods

DNA Extraction, Polymerase Chain Reaction, Long
Polymerase Chain Reaction, Cloning, and Sequencing

Genomic DNA was extracted from corallimorpharian samples

that had been preserved in 95% (V/W) ethanol following

Chen et al. (2002)—sampling information is summarized in

table 1. Long-range polymerase chain reaction (L-PCR; Cheng

et al. 1994) was used to amplify large (6–9 kb) and overlap-

ping fragments covering the entire mt genomes of corallimor-

pharians and corals. For each species, either two- or three-

specific primer pairs were designed on the basis of previously

available partial sequence data for of rns, rnl, and COI (Folmer

et al. 1994; Romano and Palumbi 1997; Chen and Yu 2000;

Lin et al. 2011) (supplementary table S1, Supplementary

Material online). Reactions were set up in a total volume of

50ml: 10� LA PCR buffer, 2.5 mM MgCl2, 2.5 mM of each

dNTP, 2.5 units of TaKaRa La Taq, 0.5mm of each primer, and

approximately 0.5mg of genomic DNA. The L-PCR conditions

were slightly modified from those recommended by the poly-

merase manufacturer as follows: 94 �C for 1 min, then 30

cycles of 10 s at 98 �C, 45 s at 62–63 �C, 14.25 min at

68 �C, and 10 min at 72 �C. PCR products were recovered

from the agarose gel using the TOPO XL gel purification
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method, cloned into a pCR-XL-PCR vector system using topo-

isomerase I (Invitrogen), and transformed into Escherichia coli

(Top10) by electroporation. The nucleotide sequences were

determined for complementary strains of two to six clones

from each sample using primer walking on the same PCR

product by an ABI 377 Genetic Analyzer (Applied

Biosystems). The M13 forward and reverse primers were

used to obtain the initial sequences from the ends of each

insertion. The consensus sequences from three sequenced

clones were present for each species.

Genome Annotation and Sequence Analysis

Sequences were verified and assembled using SeqManII

(DNAstar v5.0) or Sequencher v4.8 (Gene Codes

Corporation) and then analyzed in Vector NTI v9.0

(InforMax). Open-reading frames (ORFs) of length more than

50 (amino acids) were translated using National Center for

Biotechnology Information translation table 4 and compared

with the databases using BlastX (Gish and States 1993). No

novel ORFs were identified on this basis. MEGA v5.0 (Tamura

et al. 2011) with a weighted matrix of Clustal W (Thompson

et al. 1994) was used to align the identical putative ORFs and

rRNA genes with previously published data. The 50- and 30-

ends of the rRNA genes were predicted using the program

SINA on the Silva ribosomal RNA database site (www.arb-silva.

de/, last accessed February 1, 2014) using the default settings

(Pruesse et al. 2012). tRNAs were predicted using tRNAscan-

SE search server v1.21 (Lowe and Eddy 1997). rRNA loci were

identified on the basis of sequence similarity. Finally, Vector

NTI v9.0 was used to generate maps of the mt genomes based

on the assembled sequence data.

Gene Order Phylogeny

The double cut and join (DCJ) distance metric (Yancopoulos

et al. 2005), implemented in GRAPPA (Moret et al. 2002;

Zhang et al. 2009), was used to calculate the pairwise DCJ

and breakpoint distances (BPDs) from the gene order data and

to generate pairwise distance matrixes. Gene order phyloge-

nies (DCJ and BPD) were estimated with FastME (Desper and

Gascuel 2002).

Because gene order is a single character with multiple

states (Shi et al. 2010), bootstrapping is not applicable,

hence the reliability of each branch was estimated by applying

a jackknife resampling technique that in each iteration ran-

domly removed 25% of the initial orthologous gene sets. Note

that, because the data set consisted of only 13 protein-coding

genes, higher removal rates (e.g., 50%) are unable to resolve

the tree branching order. Jackknifing was used to generate

1,000 matrices, which were imported into FastME and used to

obtain 1,000 DCJ- and BPD-based trees. Finally, the

CONSENSE program in the PHYLIP software package

(Felsenstein 1989) was used to calculate majority-rule consen-

sus trees with percent values at each node. Each value repre-

sents the percentage of trees supporting a clade defined by a

node.

Results

Characteristics of mt Genomes of Corallimorpharians and
Gardineria hawaiiensis

The molecular characteristics of the mt genomes of a repre-

sentative range (8) of corallimorpharians and the “basal”

scleractinian G. hawaiiensis are summarized in table 1, along

A BNucleotide level

Gardineria hawaiiensis (Basal)

Complexa (Scleractinian) 

Robusta (Scleractinian)

Robusta (Scleractinian)
Corallimorphus profundus

Gardineria hawaiiensis (Basal)

Complexa (Scleractinian)

Protein level

Outgroup

Corynactis californica

Pseudocorynactis sp.

Ricordea yuma
Ricordea florida

Actinodiscus nummiformis
Rhodactis mussoides

Discosoma sp.2
Discosoma sp.1

Amplexidiscus fenestrafer
Rhodactis indosinensis

Rhodactis sp.

Corallimorphus profundus
Corynactis californica

Pseudocorynactis sp.

Ricordea yuma
Ricordea florida

Actinodiscus nummiformis
Rhodactis mussoides
Discosoma sp.2
Discosoma sp.1

Amplexidiscus fenestrafer
Rhodactis indosinensis
Rhodactis sp.

FIG. 1.—Alternative phylogenetic hypotheses for relationships between Scleractinia and Corallimorpharia based on mt genome nucleotide sequences

(A) or the amino acid sequences of the proteins that they encode (B). The trees were modified from Kitahara et al. (2014). Note that, for both (A) and (B)

scenarios, support for the node separating Corallimorpharia from Scleractinia (the root of the gray part of the tree) was over 97% under both maximum-

likelihood analysis and Bayesian inference.
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with the publically available data for hexacorallians (42 spe-

cies). All the corallimorpharian and scleractinian mt genomes,

both those determined in this study and previous work,

encode 13 protein-coding genes, 2 tRNA genes (trnM and

trnW; but note that Seriatopora spp. have a duplicated

trnW), the small (rns) and large (rnl) subunit ribosomal DNA

genes, and a COI group I intron. Corallimorpharian mt ge-

nomes range in size from 20,093 bp in Rhodactis sp. to

22,015 bp in Ricordea yuma and are significantly larger than

those of both Complexa and Robusta corals due not only to

the presence of COI group I intron (table 1) but also to differ-

ences in size of the intergenic spacers (IGSs) between the three

lineages (supplementary fig. S1, Supplementary Material

online). In fact, the mt genome architectures of the Coralli-

morpharia are less dense than those of Scleractinia; mt

genome size correlates with the total size of the IGS

(r2¼ 0.5371, P<0.001; supplementary fig. S2, Supplemen-

tary Material online). Corallimorpharian mt genomes are char-

acterized by the genes being discrete (i.e., nonoverlapping),

whereas this is quite rare in the Scleractinia, where this in

shown by only 2 (the complex corals, Siderastrea sp. and Fun-

giacyathus stephanus) of the 29 species for which data are

available.

The mt genomes of scleractinians are smaller than those of

corallimorpharians, but the size (19,429 bp) reported here for

that of G. hawaiiensis is the largest known for a scleractinian.

Two cases of gene overlap were observed in the G. hawaiien-

sis mt genome; ND4 and rns loci overlap by 1 bp, and ATP8

and COI overlap by 18 bp.

Gene Order and Rearrangements

The organization of the mt genomes of hexacorallian antho-

zoans is summarized as linear maps in figure 2 and potential

rearrangement mechanisms discussed below. As in the

Scleractinia, there is a canonical corallimorpharian gene ar-

rangement (CII), but these two patterns are clearly distinct.

Ten of 12 corallimorpharian mt genomes exhibited an identi-

cal gene arrangement (referred to as Type CII in fig. 3), the

exceptions being those of Corynactis californica (Type CI) and

C. profundus (Type CIII). In the Scleractinia, 27 of the 29 com-

plete mt genomes have identical gene order, but again two

cases of rearrangement are known (fig. 2). However, although

noncanonical gene arrangements have been observed in

both Corallimorpharia and Scleractinia, those in the latter

involve relatively small changes (i.e., can be explained by

single rearrangement events), the rearrangements within

Corallimorpharia are much more extensive (fig. 2). At least

four rearrangement events are required for the transition

between Type CII and Type CI, up to six rearrangement

events were identified between Type CII and Type CIII. In

the case of scleractinians, far fewer rearrangement events

can explain the two deviations from the canonical pattern

(Type SII), which G. hawaiiensis shares with most of theT
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Scleractinia. Madrepora oculata (Type SIII) differs from the SII

pattern only in having the order of the COII–COIII genes chan-

ged, whereas in Lophelia pertusa (Type SI), a block of genes

(COB-ND2-ND6) has been rearranged (Type SI). The most sur-

prising finding was that, in terms of gene organization, the mt

genome of the deep sea corallimorph C. profundus (Type CIII)

was more similar to the canonical scleractinian organization

(Type SII) than it was to other corallimorpharians. Only two

rearrangements of blocks of genes are required to explain the

SII–CIII transition (fig. 2). Thus, although Corallimorphus is un-

questionably a corallimorpharian in terms of the sequences of

mt genes, the organization of those genes is scleractinian-like,

implying that it might represent a key transitional state.

Among metazoans, one unique characteristic of the mt

genomes of hexacorallians is the presence of a self-splicing

intron within the ND5 gene that contains a number of com-

plete genes. In the case of the Zoanthidea, Antipatharia, and

Actiniaria for which data are available, only two genes, ND1

and ND3, are contained in the ND5 intron, whereas in the

Type CII, all of the genes (including trnM, but excluding trnW)

are contained in the ND5 intron. In the Type CI pattern, nine

protein-encoding genes are located in the ND5 intron,

whereas in Types CIII, SII, and SIII, the same ten protein-

coding genes and rns are contained in the ND5 intron. In

Type SI, the number of genes within the ND5 intron is reduced

to 8 due to a rearrangement event between Type SI and these

two types of mt genomes in the scleractinians (fig. 2).

Discussion

The most surprising finding of this study was that the mt

genome of the deep-sea corallimorpharian, C. profundus,

more closely resembles scleractinians in gene organization

than it does other corallimorpharians (fig. 3A and B).

Although molecular phylogenetic analyses based on nucleo-

tide or amino acid sequence data for mt proteins yield
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rnsND2 COB rnl COIII COI ND4L COII ND4 ND6 ATP8 ATP6
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Corallimorphus profundus
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FIG. 2.—Linear maps showing mt genome architecture in Corallimorpharia, Scleractinia, and other members of the anthozoan subclass Hexacorallia.

Names of each Order are indicated in bold. The arrow indicates the direction of transcription. The positions of the 50- and 30-ends of the ND5 intron are

indicated by black squares. Corresponding blocks of genes are marked with color; for clarity, lines showing how genes or gene blocks differ in organization

between the mt genomes are shown for only the Scleractinia. Note the relatively small number of rearrangements required to account for genome

organization between the scleractinians and Corallimorphus compared with the large number of rearrangements that appear to have occurred in the

corallimorpharians.
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fundamentally different results with respect to the relationship

between the “complex” and “robust” scleractinian clades,

there is no disagreement concerning the monophyly of the

Corallimorpharia nor about the early divergence of

Corallimorphus within that clade (fig. 1; Kitahara et al.

2014). On morphological grounds, Corallimorphus is also con-

sidered the most coral like of corallimorpharians (Moseley

1877; den Hartog 1980; Riemann-Zürneck and Iken 2003).

50.0

Other scleractinians (29, Type SII)

Actiniaria (2)

Anthipatharia (2)

Octocorallia (2)

Madrepora oculata (1, Type SIII)

Corynactis  californica (1, Type CI)

Corallimorphus profundus (1, Type CIII)

Zoanthidea (1) 

Zooxanthellate corallimorpharians (10, Type CII)

84/73

97/82

100/90

99/95

71/58

97/90

100/100

A

50.0

Other scleractinians (29, Type SII)

Actiniaria (2)

Anthipatharia (2)

Octocorallia (2)

Madrepora oculata (1, Type SIII)

Corynactis  californica (1, Type CI)

Corallimorphus profundus (1, Type CIII)

Zoanthidea (1) 

Zooxanthellate corallimorpharians (10, Type CII)

68/72

94/75

95/93

100/93

68/59

98/95

100/100

Lophelia pertusa (1, Type SI)
58/49

B

FIG. 3.—mt gene order phylogeny of anthozoans. The trees shown are majority-rule cladograms generated using the CONSENSE program in PHYLIP

(Felsenstein 1989). The numbers shown at the nodes indicate the percentages of 1,000 jackknife analyses supporting the topology shown in breakpoint and

DCJ analyses, respectively. Numbers of species exhibiting the gene arrangement shown are indicated in parentheses. (A) Gene order phylogeny with Lophelia

included. (B) Gene order phylogeny with Lophelia excluded. Note the weak support for the Lophelia/Corallimorphus clade in (A).
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Several authors (den Hartog 1980; Owens 1984; Cairns 1989,

1990; Fautin and Lowenstein 1992) have pointed out the level

of similarity between Corallimorphus and members of the

scleractinian family Micrabaciidae, which are characterized

by a reduced skeleton, the fleshy polyp totally investing the

rudimentary corallum. Molecular clock estimates imply that

the micrabaciids and gardineriids diverged from the scleracti-

nian lineage in the mid-Paleozoic, well prior to the Robusta/

Complexa split (Stolarski et al. 2011). The similarity between

the earliest diverging members of both the Scleractinia and

Corallimorpharia in terms of both morphology and mt

genome architecture (fig. 2) implies that Corallimorphus occu-

pies a key position in the corallimorpharian <-> scleractinian

transition. Corallimorphus therefore diverged either close to

the point of the scleractinian/corallimorpharian divergence

(under scleractinian monophyly) or at the point of skeleton

loss (under the “naked coral” scenario).

If we accept that the organization of the mt genome in

Corallimorphus most closely reflects the ancestral pattern (figs.

1 and 4), then extensive reorganizations are required to gen-

erate the consensus corallimorpharian architecture (CII in fig.

2) and that seen in Corynactis; in contrast, the rearrangements

documented to date within Scleractinia require far fewer

steps. In the case of Lophelia, the presence of a 67 bp direct

repeat comprising the 30-end of the ND1 and 50-end of COB

genes (Emblem et al. 2011) implies that the likely mechanism

of reorganization was tandem duplication and random loss

(Moritz et al. 1987; Zhang 2003), which may also account for

the COII–COIII inversion seen in Madrepora (Lin et al. 2012).

We were unable to identify signatures of duplication-medi-

ated rearrangement in corallimorpharians; however, neither

are there obvious examples of inversion of segments of the mt

genome in this Order. Rather, extensive segmental reorgani-

zation without inversion has occurred within

Corallimorpharia, possibly facilitated by the less compact

nature of the mt genomes (reviewed in Boore and Brown

1998). This contrasts markedly with the situation in octocorals,

where many successive inversion events explain the observed

diversity of mt gene organization (Brockman and McFadden

2012).

Can comparisons of mt genome organization resolve the

question of coral monophyly? Although the data presented

here are consistent with monophyly of the Scleractinia, they

do not exclude the possibility of an origin for corallimorphar-

ians within the coral clade. Phylogenetic analyses based on

gene order (fig. 3A and B) were ambiguous. Although both

AA- and nt-based molecular phylogenetic analyses unambig-

uously support monophyly of the Corallimorpharia, the gene

order analysis (fig. 3A and B) did not. We interpret the group-

ing of Lophelia and Corallimorphus in this analysis as an

artifact resulting from superficial similarities in gene organiza-

tion in these two organisms; although gene order is similar,

the sequences of those genes are highly divergent. The idea

that the grouping of L. pertusa with C. profundus is artifactual

is supported by the relatively low DCJ and BPD confidence

values (58/49) associated with this node (i.e., well below the

85% confidence interval recommended by Shi et al. 2010).

When L. pertusa was removed from the analysis, the overall

DCJ and BPD statistic performances at the nodes of

Corallimorpharia and Scleractinia increased, particularly for

the node of C. profundus and Scleractinia/M. oculata, where

support increased from 94/75 to 97/82 (fig. 3).

The mt genomes of the Robusta differ from both coralli-

morpharians and all other corals in several characteristics. First,

within the larger Scleractinia/Corallimorpharia clade, the

Robusta have the most compact mt genomes (size range

14,853–17,422 bp) as a consequence of having in general

shorter intergenic regions and the largest number of overlap-

ping gene pairs (three to six cases of overlaps). In contrast,

corallimorpharians have the largest mt genomes (size range

20,092–22,015 bp), longer intergenic regions, and no cases of

overlapping genes, with complex corals intermediate in these

characteristics (genome sizes 17,887–19,387 bp; 0–2 overlap-

ping gene pairs—most frequently a single case of overlapping

genes). Second, the Robusta differ in structural comparisons

of the ND5 group I intron (Emblem et al. 2011) as well as in

molecular phylogenetics based on this feature. A group

I intron interrupts the ND5 gene of all hexacorallians examined

to date; these introns typically come and go during evolution

but that in hexacorallians contains a variable number of genes

and has become an essential feature. The hexacorallian ND5

intron has been “captured” in the sense that it is now

dependent on host-derived factors for splicing, as indicated

by the substitution of theoG (the last nucleotide of the intron)

by oA (reviewed in Nielsen and Johansen 2009; Emblem et al.

2011). Although these characteristics are common across the

0.09

Outgroup
Corallimorphus profundus

Corynactis californica

Lophelia pertusa

Madrepora oculata

Gardineria hawaiiensis

Complexa

Robusta

Zooxanthellate corallimorpharians

CI

CII

SI

SII

CIII

SIII

FIG. 4.—Hypothetical scheme for the evolution of mt genome archi-

tecture in the Scleractinia and Corallimorpharia. The scheme is based on

the phylogenetic tree shown as figure 5 in Kitahara et al. (2014), with

patterns of gene organization (numbered as in fig. 2) indicated in green

boxes.
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coral-corallimorpharian clade, the ND5 introns of robust corals

have a more compact core and overlapping intron and ND5-

coding sequences (Emblem et al. 2011). In some robust corals,

oA is replaced by oC, indicating a higher level of dependency

on host factors for processing and thus greater integration of

intron and host. These qualitative factors, as well as molecular

phylogenetics of the ND5 intron sequences, are most parsi-

moniously accommodated by scleractinian monophyly

(Emblem et al. 2011). Third, of the three lineages, the mt

genomes of Robusta have the highest (A+T) content and

most constrained codon usage, one obvious consequence of

which is that phenylalanine is overrepresented in the proteins

that they encode, suggesting that mt DNA repair may be re-

duced in the Robusta (Kitahara et al. 2014).

The features outlined above, in which the Robusta differ

from complex corals and corallimorphs, are derived character-

istics—they serve to resolve the robust corals but do not un-

ambiguously identify the sister group. Scleractinian

monophyly explains all of the data most parsimoniously, but

the alternative cannot yet be ruled out. The mt genome has

been exhaustively mined for answers, but these must likely

wait for the availability of appropriate nuclear markers.

Supplementary Material

Supplementary table S1 and figures S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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