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ABSTRACT
Purpose: There is a critical need for population-based
prospective cohort studies because they follow
individuals before the onset of disease, allowing for
studies that can identify biomarkers and disease-
modifying effects, and thereby contributing to systems
epidemiology.
Participants: This paper describes the design and
baseline characteristics of an intensively examined
subpopulation of the LifeLines cohort in the
Netherlands. In this unique subcohort, LifeLines DEEP,
we included 1539 participants aged 18 years and older.
Findings to date: We collected additional blood
(n=1387), exhaled air (n=1425) and faecal samples
(n=1248), and elicited responses to gastrointestinal
health questionnaires (n=1176) for analysis of the
genome, epigenome, transcriptome, microbiome,
metabolome and other biological levels. Here, we
provide an overview of the different data layers in
LifeLines DEEP and present baseline characteristics of
the study population including food intake and quality
of life. We also describe how the LifeLines DEEP
cohort allows for the detailed investigation of genetic,
genomic and metabolic variation for a wide range of
phenotypic outcomes. Finally, we examine the
determinants of gastrointestinal health, an area of
particular interest to us that can be addressed by
LifeLines DEEP.
Future plans: We have established a cohort of which
multiple data levels allow for the integrative analysis of
populations for translation of this information into
biomarkers for disease, and which will offer new
insights into disease mechanisms and prevention.

INTRODUCTION
Many diseases are multifactorial in origin,
meaning that they are caused by a combin-
ation of genetic and environmental compo-
nents. To date, a considerable number of
genetic variants have been identified that are

associated with almost every multifactorial
disease or trait.1 These independent genetic
factors are often common, occurring fre-
quently in the absence of disease, and there-
fore cannot yet be used to predict disease.
For example, 40 risk loci have been identi-
fied for coeliac disease that explain about
54% of disease risk,2 yet there is no clear cor-
relation between carrying these risk alleles
and actually developing coeliac disease.3

Thus the question remains: why do some
people develop the disease while others are
resilient despite carrying many genetic risk
alleles? These resilient individuals may
provide important clues to disease preven-
tion, but they can only be identified when
apparently healthy individuals are followed

Strengths and limitations of this study

▪ This cohort study is unique in that it collected a
wide range of biomaterials (eg, exhaled air and
faeces) contemporaneously from fasting
individuals.

▪ The LifeLines DEEP cohort is relatively small
(n=1539), nevertheless, it will allow for
proof-of-concept studies using systems biology
approaches.

▪ LifeLines DEEP is an example of a ‘next-
generation’ population cohort study—in which
multiple molecular data levels are combined with
observational research methods.

▪ The data from this study will allow us to con-
struct risk profiles for genetic predisposition to
many common diseases and to link these pro-
files to phenotype information, as well as clinical
and immunological parameters.

▪ Extensive questionnaires on, for example, food
intake and medical status, will provide data to
correct molecular analyses for environmental
factors.
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over time. This highlights the need for prospective
cohort studies where life course processes are investi-
gated and determinants of health and disease are identi-
fied. An advantage of population-based prospective
cohort studies is that they are not specifically targeted to
a diseased population and they follow individuals before
disease onset, allowing for studies that can identify bio-
markers and disease-modifying effects.4 Furthermore,
age-related processes that correlate to health and disease
can be studied in these cohorts.
LifeLines is a population cohort of over 165 000 parti-

cipants that covers multiple generations of participating
families and focuses on determinants for multifactorial
diseases. The cohort includes detailed information on
phenotypic and environmental factors, as well as health
status.5 6 Moreover, genetic information is available for
about 10% of the population. A subset of approximately
1500 LifeLines participants also take part in LifeLines
DEEP. These participants are examined more thor-
oughly, specifically with respect to molecular data, which
allow for a more in-depth investigation of the association
between genetic and phenotypic variation. For these par-
ticipants, additional biological materials and information
on health status are collected. Subsequently, genome-
wide transcriptomics and methylation data are gener-
ated, metabolites and biomarkers are measured and the
gut microbiome is assessed.
LifeLines DEEP specifically allows for in-depth analysis

of gastrointestinal (GI) health-related problems such as
irritable bowel syndrome (IBS). This is an important dir-
ection for research since GI symptoms are highly preva-
lent in the general population and have a high impact
on quality of life.7 8 IBS is a functional bowel disorder
that involves abdominal pain or discomfort and related
change in bowel habits.9 Prevalence of IBS in Western
countries varies widely among different studies ranging
from 4% up to 22%.10 There are, however, no specific
tests available to diagnose IBS. The current diagnosis is
based on excluding GI diseases and on symptoms using
diagnostic criteria such as the Rome III criteria.9

Here we describe the study design and baseline
characteristics of the LifeLines DEEP cohort and
explain how the collected data can be applied to mul-
tiple fields of interest.

COHORT DESCRIPTION
LifeLines
Individuals aged 25–50 years were invited by their
general practitioner to participate in the LifeLines study.
On inclusion, the participants’ family members were also
invited to participate in order to obtain information on
three generations. At baseline, all participants visited one
of the LifeLines Research Sites twice for physical exami-
nations. Prior to these visits, two extensive baseline ques-
tionnaires were completed at home. At the first visit,
anthropometry, blood pressure, cognitive functioning
and pulmonary function as well as other factors were

measured (see online supplementary table S1). At the
second visit, approximately 2 weeks later, a fasting blood
sample was collected. In total, 167 729 participants have
been included who will be followed for 30 years.6 Every
18 months, each participant receives a follow-up ques-
tionnaire. Additionally, once every 5 years, follow-up mea-
surements of the health parameters are performed.

LifeLines DEEP
From April to August 2013, all participants registered at
the LifeLines Research Site in Groningen were invited
to participate in LifeLines DEEP, in addition to the
regular LifeLines programme. During the participant’s
second visit to the site, three additional tubes of blood
were drawn by one of the LifeLines physicians’ assistants.
Exhaled air was also collected during this visit and parti-
cipants were given instructions for faeces collection at
home by one of the LifeLines DEEP assistants. The par-
ticipants who agreed to collect a faecal sample were also
asked to fill in the questionnaire on GI symptoms.
Immediately after faecal sample collection, the sample
was frozen at −20°C. Faecal samples were collected on
dry-ice from the participants’ homes within 2 weeks after
the second site visit. On arrival at the research location,
the faecal samples were immediately stored at −80°C.
The LifeLines DEEP study was approved by the ethics

committee of the University Medical Centre Groningen.
All participants signed an informed consent prior to
enrolment.

Inclusion
Initially, 1539 participants were included in the
LifeLines DEEP study. Of these participants, 78 dropped
out: 51 did not complete the second visit to the
LifeLines location in time and 27 withdrew from partici-
pation. In total, 1461 individuals completed the
LifeLines DEEP study. From these participants, we
collected additional blood for genetics, methylation and
transcriptomics analyses (n=1387); exhaled air for ana-
lysis of volatile organic compounds (n=1425); and faecal
samples for microbiome and biomarker assessment
(n=1248; table 1). Moreover, 1176 GI symptoms ques-
tionnaires were returned. For 81% (n=1183) of the parti-
cipants, we collected all three biomaterials: additional
blood, exhaled air and faeces (see online supplementary
figure S1). For 11.5% (n=168) of the participants, we
collected additional blood and exhaled air, and for 4.4%
(n=65) of the participants, we collected exhaled air and
faeces. For 3.1% of the participants, we only have add-
itional blood (2.5%, n=36) or exhaled air (0.6%, n=9).

Additional data types
Genome-wide transcriptomics were assessed as a measure
of gene expression. We isolated RNA from whole blood
collected in a PAXgene tube using PAXgene Blood
miRNA Kit (Qiagen, California, USA). The RNA
samples were quantified and assessed for integrity
before sequencing. Total RNA from whole blood was
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deprived of globin using GLOBINclear kit (Ambion,
Austin, Texas, USA) and subsequently processed for
sequencing using Truseq V.2 library preparation kit
(Illumina Inc, San Diego, California, USA). Paired-end
sequencing of 2×50 bp was performed using Illumina’s
Hiseq2000, pooling 10 samples per lane. Finally, read
sets per sample were generated using CASAVA, retaining
only reads passing Illumina’s Chastity Filter for further
processing. On average, the number of raw reads per
individual after QC was 44.3 million. After adapter trim-
ming, the reads were mapped to human genome build
37 using STAR (https://code.google.com/p/rna-star/).
Of these, 96% of reads were successfully mapped to the
genome. Transcription was quantified on the gene and
meta-exon level using BEDTools (https://code.google.
com/p/bedtools/) and custom scripts, and on the tran-
script level using FluxCapacitor (http://sammeth.net/
confluence/display/FLUX/Home).
We isolated total DNA from EDTA tubes and profiled

genome-wide methylation using the Infinium Human
Methylation450 BeadChip, as previously described.11 In
short, 500 ng of genomic DNA was bisulfite modified
and used for hybridisation on Infinium Human
Methylation450 BeadChips, according to the Illumina
Infinium HD Methylation protocol.
We determined metabolites in exhaled air and blood.

Metabolites from exhaled air were measured by a com-
bination of gas chromatography and time-of-flight mass
spectrometry (GC-tof-MS), as described previously.12 13

In short, the exhaled air sample was introduced in a GC
that separates the different compounds in the mixture.
Subsequently, the compounds were introduced into the
MS to detect and also to identify the separated volatile
organic compounds. The metabolites in plasma were

measured using the nuclear MR (NMR) method, as
described by Kettunen et al.14

Genotyping of genomic DNA was performed using both
the HumanCytoSNP-12 BeadChip15 and the
ImmunoChip, a customised Illumina Infinium array.16

Genotyping was successful for 1385 samples (CytoSNP)
and 1374 samples (IChip), respectively. First, SNP
quality control was applied independently for both plat-
forms. SNPs were filtered on MAF above 0.001, a HWE
p value >1e−4 and call rate of 0.98 using Plink.17

The genotypes from both platforms were merged into
one data set. For genotypes present on both platforms,
the genotypes were put on missing in the case of non-
concordant calls. After merging, SNPs were filtered
again on MAF 0.05 and call rate of 0.98, resulting in
a total of 379 885 genotyped SNPs. Next, these data were
imputed based on the Genome of the Netherlands
(GoNL) reference panel.18–20 The merged genotypes
were prephased using SHAPEIT221 and aligned to the
GoNL reference panel using Genotype Harmonizer22 in
order to resolve strand issues. The imputation was per-
formed using IMPUTE223 V.2.3.0 against the GoNL ref-
erence panel. We used a MOLGENIS compute24

imputation pipeline to generate our scripts and monitor
the imputation. Imputation yielded 8 606 371 variants
with Info score ≥0.8. In addition, HLA type was estab-
lished via the Broad SNP2HLA imputation pipeline.25

We collected several types of cells, including lympho-
cytes and granulocytes, for assessment of telomere
length as a measure for ageing. We are now optimising
the FlowFish method of telomere measuring as
described by Baerlocher et al.26 In addition, peripheral
blood mononuclear cells (PBMCs) were collected and
stored at −80°C for future functional studies.

Table 1 Overview of additional data collected in LifeLines DEEP, including the number of samples, the source biomaterial it

originates from and the method of analysis used

LifeLines DEEP data n Source Methods

Biological ageing 1387 Cells from whole blood FlowFish

Biological ageing 1387 DNA from whole blood qPCR and sjTRECs

Biomarkers (citrulline, cytokines) 1387 Plasma HPLC, ECLIA

Biomarkers (calprotectin, HBD-2,

chromogranin A, SCFA)

1248 Faeces ELISA, ELISA, RIA, GC-MS

CVD risk score 1448 Biochemical measures

and questionnaire

Scoring algorithm Framingham Heart Study

Functional studies 1387 PBMC from whole blood Various methods

Gastrointestinal symptoms 1176 Questionnaire Rome III criteria and Bristol Stool Form Scale

Genetics 1387 DNA from whole blood CytoSNP and ImmunoChip, GoNL as

imputation reference

Metabolomics 1425 Exhaled air GC-tof-MS

Metabolomics 1387 Plasma NMR

Methylation 761+ DNA from whole blood 450 K chip

Microbiome 1248 Faeces 16S rRNA based sequencing

Transcriptomics 1387 Whole blood (PAXgene) RNA sequencing

CVD, cardiovascular disease; ECLIA, electro-chemiluminescence immunoassay; GC-(tof-)MS, gas chromatography-(time of flight-)mass
spectrometry; HBD-2, human β defensin 2; HPLC, high-performance liquid chromatography; NMR, nuclear MR; qPCR, quantitative PCR; RIA,
radioimmunoassay; SCFA, short chain fatty acids; sjTRECs, signal joint T cell receptor excision circles.
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Faecal samples were collected in order to study the gut
microbiome. Gut microbial composition was assessed by
16S rRNA gene sequencing of the V4 variable region on
the Illumina MiSeq platform according to the manufac-
turer’s specifications.27 Reads were quality filtered and
taxonomy was inferred using a closed reference
Operational Taxonomic Unit-picking protocol against a
preclustered GreenGenes database, as implemented by
QIIME (V.1.7.0 and V.1.8.0).28 29 Moreover, faecal ali-
quots were stored for future analysis of GI-health-related
biomarkers.
In addition, phenotypic data were collected on GI

health symptoms by means of the Rome III criteria ques-
tionnaire9 and the Bristol Stool Form Scale.30

We collected and stored plasma for future analysis of
disease and ageing-related biomarkers such as circulat-
ing microRNAs.

Analyses of baseline characteristics, quality of life, GI
symptoms and qualitative food intake
For each participant, a risk score for cardiovascular
disease (CVD) was calculated according to the scoring
algorithm developed by the Framingham Heart Study.31

The CVD risk score ranges from ≤−3 to ≥18 and is cal-
culated based on gender, age, high-density lipoprotein,
total cholesterol, systolic blood pressure, smoking status
and presence or absence of diabetes.
We calculated quality of life scores based on the

RAND 36-item Short Form Health Survey scoring
version I by calculating eight summary scores, and the
mental and physical component score.32 33 The
summary scores range from zero to 100 points, where
100 represents the best quality of life. The mental and
physical component scores were transformed to have a
mean of 50 and a SD of 10 compared to the reference
population, as described by Ware et al.33 34

Occurrence of functional bowel disorders was assessed
via the Rome III criteria.9 Participants with self-reported
Crohn’s disease, ulcerative colitis and caeliac disease
were excluded from this analysis.

Data on habitual dietary intake were collected via a
validated food frequency questionnaire developed by
the division of Human Nutrition of Wageningen
University.35

Mean and SDs for the baseline characteristics and
quality of life scores were calculated. Statistical pro-
grammes R (V.3.0.1) and IBM SPSS Statistics (V.20) were
used for analyses and for constructing the figures.

Baseline characteristics of study participants
Over a period of 6 months, 1539 participants enrolled in
the LifeLines DEEP study. Slightly more women (n=903,
58.7%) than men (n=636, 41.3%) were included (table 2).
The age of the participants ranged from 18 to 86 years,
with a mean age of 44. Mean BMI was 25.2 kg/m2. On
average, total cholesterol level and blood glucose level
both were 5 mmol/L. Average blood pressure was lower in
women (116/68 mmHg) compared to men (124/
74 mmHg). Among women, the percentage of current
smokers was slightly lower (18.3%) than in men (19.5%).
The Framingham risk score for cardiovascular disease was,
on average, 5.7 for women and 8.6 for men, correspond-
ing to a 3% and 7% risk of a first cardiovascular event,
respectively (table 2).31 In our cohort, the quality of life
score was lowest for vitality (mean(SD): 67.2(15.5)) and
highest for physical functioning (mean(SD): 92.1(12.3))
(figure 1 and online supplementary table S2). The data
on age, BMI and blood level parameters were normally dis-
tributed, whereas the data on CVD risk score and QoL
components deviated from normality.
Analysis of 1176 GI symptoms questionnaires identi-

fied 409 participants with functional bowel disorders
(figure 2). Prevalence of IBS in our cohort was 21%
(n=249). Another 13% (n=160) of participants fulfilled
criteria for functional bloating (9%, n=108), functional
constipation (3%, n=37) or functional diarrhoea
(1%, n=15). Two-thirds of the participants (n=767)
did not meet the Rome III criteria for functional bowel
disorders. Moreover, 4% (n=51) of the participants

Table 2 Baseline characteristics of LifeLines DEEP by gender, including smoking, age, BMI, cholesterol level, glucose level,

blood pressure and Framingham risk score for cardiovascular disease

Characteristic Men Women

n 636 903

Smoking status Current % 19.5 18.3

Former % 29.9 28.5

Never % 47.0 48.0

Age mean (SD) 44.0 (13.9) 43.3 (13.8)

BMI mean (SD) 25.4 (3.5) 25.0 (4.7)

Total cholesterol (mmol/L) mean (SD) 5.0 (1.0) 5.0 (1.0)

HDL cholesterol (mmol/L) mean (SD) 1.3 (0.3) 1.7 (0.4)

Glucose level (mmol/L) mean (SD) 5.1 (0.7) 4.9 (0.7)

Systolic blood pressure (mm Hg) mean (SD) 123.5 (12.4) 115.6 (13.4)

Diastolic blood pressure (mm Hg) mean (SD) 73.6 (9.6) 68.4 (8.3)

CVD risk score mean (SD) 8.6 (8.9) 5.7 (7.0)

BMI, body mass index; CVD, cardiovascular disease; HDL, high-density lipoprotein.
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answered that they never experience any GI symptoms
(figure 2).
Analysis of the frequency of intake of major food

groups showed a subdivision into three main categories.
The first category contained food groups that were con-
sumed daily, bread and coffee, for example (figures 3A,
B). The second category contained food groups for
which consumption ranged from daily to a few days per
week. Examples of these food groups include meat,
vegetables and fruit (figures 3C–E). The third category
included food groups that were consumed on a weekly
to monthly basis only, fish, for example (figure 3F). For
other food groups, such as milk and alcoholic beverages,
the intake varied greatly (figures 3G, H). These fre-
quency data will later be combined with portion sizes
and the Dutch food composition table (NEVO 2006,
RIVM, Bilthoven) to estimate nutrient intake in grams
per day.
For all individuals, additional biomaterials were

collected (see online supplementary figure S1) for future

system epidemiological studies36 integrating multilevel
‘omics’ data with environmental, physical and epidemio-
logical data to provide a deeper and more detailed view
of the LifeLines DEEP population. These biomaterials
include plasma to examine the concentration of metabo-
lites, peripheral blood mononuclear cells to determine
genome-wide transcription and methylation profiles,
exhaled air to analyse volatile organic compounds and
faeces to establish composition of the gut microbiome.
Moreover, genetic data has been generated for all
individuals, allowing for the construction of genetic risk
profiles for a wide variety of common diseases. These
multiple data levels will provide rich opportunities for
future research into the molecular underpinnings of
human health and disease, as well as for research into the
interaction between molecular and environmental com-
ponents including behaviour, sociodemographic factors
and analysis of specific subgroups. For example, the ana-
lysis of microbiota composition in relation to ageing
revealed associations to several taxa, and highlights the
importance of correcting for age in microbiome studies
(figure 4).

FINDINGS TO DATE
One area of particular interest is the domain related to
GI health. We therefore studied the prevalence of IBS in
LifeLines DEEP. We identified IBS in 21% of partici-
pants. These data should be interpreted with caution as
our diagnosis is based solely on participant’s responses
to a Rome III criteria questionnaire, and results may
therefore be slightly inflated. Nevertheless, our result is
consistent with previous suggestions that almost 25% of
the population encounters irritable bowel symptoms
over the course of their lifetimes.37 Its prevalence in our
cohort confirms that IBS is a common disease and thus
research aimed at improved diagnosis and treatment will
benefit society. GI symptoms are multifactorial, making
large cohorts necessary to study them in more detail.

Figure 1 Mean and SD of crude

and adjusted quality of life scores,

2 component scores and 8 group

scores in the LifeLines DEEP

population (n=1539) compared to

a national sample of the Dutch

population.34 42 Adjusted score is

adjusted for gender and age.

PCS, physical component score;

MCS, mental component score;

PF, physical functioning; RP,

role-physical; BP, bodily pain;

GH, general health; VT, vitality;

SF, social functioning; RE,

role-emotional; MH, mental

health.

Figure 2 Functional bowel disorders in the LifeLines DEEP

cohort based on Rome III criteria (n=1176). IBS (Irritable

Bowel Syndrome): pain or discomfort at least 2–3 days/month,

IBS_strict: pain or discomfort more than 1 day/week, FBD,

functional bowel disorder, healthy gut, lowest possible score

on Rome III questionnaire.
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For IBS, in particular, there is an urgent need to
develop biomarkers that are predictive of disease. We
have selected six GI-health-related biomarkers and devel-
oped a multidomain biomarker panel that can

distinguish patients with IBS from healthy controls and
that correlates well to GI symptom severity in patients
with IBS (Mujagic Z 2015, submitted for publication).
The biomarker panel was developed in the Maastricht

Figure 3 Qualitative intake of (A) bread, (B) coffee, (C) meat and poultry, (D) vegetables, (E) fruit, (F) fish, (G) milk and

buttermilk and (H) alcoholic beverages, in LifeLines DEEP (n=1539). Bars represent: ‘not this month’, ‘1 day/month’, ‘2–3 days/

month’, ‘1 day/week’, ‘2–3 days/week’, ‘4–5 days/week’ and ‘6–7 days/week’.
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IBS cohort (which currently includes 400 cases and 200
healthy controls, recruitment is ongoing) and validated
in the LifeLines DEEP cohort. In addition, we studied
the volatile organic compound (VOC) profile from
exhaled air in both cohorts and compared IBS cases
with controls (Baranska A 2015, submitted for publica-
tion). We identified a novel breath biomarker of 16
VOCs that distinguishes patients with IBS from healthy
controls and correlates significantly with the presence of
GI symptoms. Furthermore, we are collaborating with a
large Genome-Wide Association Study on the identifica-
tion of the genetic architecture of IBS.38 Several
chromosomal regions of suggestive significance were
identified in individual cohorts. Integrative meta-analysis
of this data is currently ongoing. Moreover, we are
working on the analysis of food intake in patients with
IBS versus healthy controls.
Despite the high prevalence of IBS, the quality of life

in our study population in general was higher than in a
random selection of the Dutch population as reported
by Aaronson et al.39 This might be due to age and
gender differences, since the national sample included
56% men with a mean(SD) age of 47.6(18) years,39 com-
pared to 41% men with a mean(SD) age of 44.6(13.8)
years in the LifeLines DEEP cohort. Secular changes
may also play a role, since the national survey was con-
ducted more than 15 years ago.
LifeLines DEEP is also a unique, independent data

source. For approximately 1500 individuals, we will be
able to construct genetic risk profiles for predisposition
to many common diseases based on genome-wide associ-
ation data. Next, we will be able to link these risk profiles
to phenotype information, as well as clinical, immuno-
logical and other parameters. Using this information,
we may already be able to compare high-risk individuals

with and without disease symptoms to generate hypoth-
eses on resilient individuals. Recently, Ricaño-Ponce et al
studied the genetics of 14 immune-mediated diseases and
identified single nucleotide polymorphisms (SNPs) spe-
cifically affecting the expression of long non-coding
RNAs in these diseases (Ricaño-Ponce I 2015, submitted
for publication). At the same time, LifeLines DEEP also
allows for integration across different data levels to
study, for example, the association between molecular
and phenotypic data to increase our understanding of
pathogenic mechanisms.40 For instance, on analysing
data from the LifeLines DEEP cohort, we found associa-
tions of bacterial taxonomies to age (figure 4), and to
BMI and blood lipid levels (Fu J 2015, in press at
Circulation Research). Furthermore, Smolinska et al per-
formed extensive analysis on confounding factors such as
smoking and BMI on VOCs analysis (Smolinska A 2015,
manuscript in preparation).

STRENGTHS AND LIMITATIONS
In the design of a population cohort study, it is import-
ant to balance breadth (the number of samples
included) and depth (the amount of phenotypic data).
LifeLines is a large prospective cohort that includes
more than 165 000 individuals and measures several
thousand phenotypes ranging from biochemical para-
meters, physical measurements, psychosocial character-
istics and environmental factors, to detailed information
on health status. However, the cohort was not set up to
include molecular data levels for the study of health and
disease in human populations. With LifeLines DEEP, we
are performing a pilot study of additional deep molecu-
lar measurements in 1500 individuals, using biomaterials
from different domains that were all collected contem-
poraneously from fasting individuals. Although the
LifeLines DEEP cohort is relatively small, it will allow for
proof-of-concept studies into systems epidemiology.
LifeLines DEEP is unique in that it has exhaled air mea-
surements from all individuals and a level of information
that, to our knowledge, is rarely present in other
population-based cohorts. Additionally, both the collec-
tion of cells for telomere length measurements and
further functional studies, and the faecal sample collec-
tion, are unique. LifeLines DEEP will not only contrib-
ute to a better understanding of the association between
genetic variation and molecular function, but can also
be integrated with other population cohorts that have
similar molecular data. In particular, the collection and
analysis of faecal material is crucial given increasing evi-
dence that the gut microbiome can play an important
role in health and disease.41 Nevertheless, harmonisa-
tion and linking of data across multiple cohorts might
be needed to achieve critical numbers. The Biobanking
and Biomolecular Research Infrastructure in the
Netherlands (BBMRI-NL)42 and Europe43 will allow for
such studies. LifeLines DEEP has been designed to study
exposures in detail whereas data on disease heterogeneity

Figure 4 Change in abundance of Actinobacteria on ageing.
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is limited. Combining our exposure-driven-data-collection
cohort with disease-specific and tissue-specific-data-
collection cohorts, such as the Netherlands Cohort Study
on Cancer, could offer even more insight into disease
mechanisms.44 45

COLLABORATION
We have established a cohort of which multiple data
layers allow for integrative analysis of populations for
translation of this information into biomarkers for
disease and which will provide new insights into disease
mechanisms and prevention. We encourage collabora-
tions with researchers from other cohort studies to work
on the above aspects with increased sample size. The
data from the LifeLines DEEP cohort will be available
via LifeLines.6 Researchers can apply for data and bio-
material by submitting a proposal to the LifeLines
Research Office (LLscience@umcg.nl). Detailed infor-
mation on the measured variables can be found in the
online LifeLines data catalogue (http://www.lifelines.
net). All proposals will be reviewed on scientific quality
and methodology by the LifeLines scientific board.
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