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Abstract: Venetoclax is a highly selective and effective B-cell lymphoma-2 (BCL-2) inhibitor, which
is able to reinstate the apoptotic potential of cancer cells. With its full repertoire yet to be explored,
it has changed the therapeutic landscape in haematological malignancies, and most particularly
chronic lymphocytic leukaemia (CLL), acute myeloid leukaemia (AML) and multiple myeloma
(MM). In CLL, it has shown remarkable efficacy both as monotherapy and in combination therapy.
Based on data from MURANO and CLL14 studies, fixed-duration combination therapy of venetoclax
with anti-CD20 antibody is now the standard of care in numerous countries. In AML, although of
limited efficacy as a single agent, venetoclax combination therapy has demonstrated encouraging
outcomes including rapid, durable responses and acceptable toxicity, particularly in the older, unfit
patient population. Multiple myeloma with translocation (t)(11;14) harbours high BCL-2/ myeloid
cell leukaemia sequence-1 (MCL-1) and BCL-2/BCL-XL ratio and is, therefore, particularly suited
for venetoclax-based therapy. Despite a wide ranging and evolving clinical role in these diseases,
venetoclax treatment is not curative and, over time, clonal evolution and disease relapse appear
to be the norm. While a variety of distinct resistance mechanisms have been identified, frequently
emerging in a sub-clonal pattern, the full picture is yet to be characterised. Further illumination of
the complex interplay of various factors is needed to pave the way for rational combination therapies
aimed at circumventing resistance and improving durability of disease control. Serial molecular
studies can aid in identification of new prognostically significant and/or targetable mutations.
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1. Introduction

The highly conserved intrinsic pathway of apoptosis is tightly regulated by a balance
between pro-apoptotic proteins (i.e., BAX, BAK, BIM, BID, BAD, PUMA and NOXA) and
anti-apoptotic (i.e., BCL-2, BCL-XL, BFL-1/A1, BCL-W and MCL-1) proteins [1–3]. BAX
and BAK execute apoptosis by triggering mitochondrial outer membrane permeabilisation
(MOMP) and cell death via the mitochondrial pathway. Activation of these proteins is
inhibited by BCL-2 homology 3 (BH-3)-only proteins including BIM, BID, PUMA, NOXA
and BAD. By sequestering their pro-apoptotic counterparts, the anti-apoptotic proteins
promote cell survival [4,5].

The link between overexpression of BCL-2 proteins and malignancy is well defined [4–6].
As a crucial survival mechanism, BCL-2 expression promotes tumourigenesis and therapy
resistance by enabling cancer cells to evade apoptosis. Lymphoid malignancies frequently
exhibit overexpression of BCL-2, making BCL-2 inhibitors a compelling therapeutic option.

Venetoclax (formerly known as ABT-199) is a first-in-class, orally bioavailable, BH-3
mimetic designed by reverse engineering to produce a compound highly selective for BCL-
2 with significantly lower affinity for BCL-W and BCL-XL, a molecule crucial for platelet
survival [7–9]. Venetoclax binds to BCL-2 with high affinity, disrupting BCL-2 signaling
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within the cell and inducing the TP53-independent apoptotic pathway (Figure 1). It has
changed the treatment paradigm of (CLL) and is of great interest in other haematological
malignancies such as indolent Non-Hodgkin lymphoma (iNHL), MM and AML.
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Venetoclax Pharmacokinetics

Maximum plasma concentration is reached 5–8 h post dose and the elimination
half-life (t 1/2) ranges between 17 and 41 h after a single oral dose. Bioavailability is
increased by food and it is primarily metabolised via the CYP3A pathway and through
the hepatic/faecal system [10]. The venetoclax area under the curve (AUC) is, therefore,
2.5 times higher in patients with severe liver disease. Co-administration with moderate or
strong CYP3A inhibitors and inducers may require dose adjustment and should be avoided
during dose ramp-up periods.

2. Venetoclax in CLL

BCL-2 is universally over-expressed in CLL cells [11], enabling them to evade apop-
tosis and accumulate in vivo, making CLL the ideal disease in which to test the clinical
utility of venetoclax [12–15]. In view of its favourable efficacy and a tolerable toxicity
profile [12,14,15], venetoclax has become standard of care for the management of both de
novo and relapsed refractory CLL, demonstrating deep and durable responses regardless
of adverse prognostic features such as deletion (del) (17p).

2.1. Venetoclax Monotherapy

The first-in-human dose-escalation study of venetoclax monotherapy in relapsed and
refractory (RR) CLL was enriched for patients with a high percentage (89%) of poor clinical
and/or genetic prognostic features. Despite this, the study demonstrated promising efficacy
for the 400 mg dose of venetoclax with overall response rate (ORR) 79%, complete response
(CR) 20%, undetectable minimal residual disease (uMRD) 15% and 15-month progression
free survival (PFS) of 69%. This was the first report of uMRD among patients with relapsed
and refractory CLL treated with novel agents. Unfortunately, during the dose-finding phase
of the first-in-human study, three patients experienced clinical tumour lysis syndrome (TLS),
including one death. Implementation of a range of TLS mitigation measures including
gradual dose titration, hydration, uric acid lowering agents and protocolised monitoring
significantly reduced the risk of this complication [14]. Subsequent data in a cohort of
158 patients, majority (97%) with RR CLL with del (17p), established promising tolerability
and durable responses including ORR of 77%, uMRD in peripheral blood (PB) of 30% and
estimated 24-month PFS of 50% [13,16].
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In a rapidly evolving therapeutic landscape, the optimal sequencing of therapy for CLL
remains controversial especially with a plethora of options including B-cell receptor (BCR)
inhibitors such as Bruton kinase (BTK) inhibitors and Phosphatidylinositol-3 kinase (PI3K)
inhibitors. Interim analysis of a Phase 2 study of venetoclax in patients with CLL whose
disease had progressed after ibrutinib therapy showed durable activity with ORR of 65% at
14-months follow-up, signifying the therapeutic potential of venetoclax in this setting [17].
Similarly, a phase 2 study of 36 RR CLL patients with progressive disease during or after
idelalisib therapy showed promising efficacy with ORR 67% and estimated 12-month PFS of
79% [18]. Retrospective data from 683 patients with CLL, treated with ibrutinib, idelalisib
or venetoclax after initial progression on ibrutinib or idelalisib therapy, demonstrated
marginally better outcomes in those treated with venetoclax (ORR 79%) versus idelalisib
(ORR 46%) [19]. Further, the use of BTK inhibitors post venetoclax progression is both
safe and efficacious [20]. Data from randomised, prospective trials are required to further
examine sequencing strategies for these compounds.

2.2. Combination Therapy

Despite its effectiveness, drug resistance, toxicity, burden on the patients and compro-
mised compliance can limit prolonged venetoclax monotherapy. Combination therapy with
anti-CD20 monoclonal antibodies (mAb) and/or other small molecules in CLL has been
the subject of great interest with the aim of achieving deeper and more durable responses
and allowing fixed-duration therapy.

The MURANO study demonstrated superior efficacy of venetoclax-rituximab (VenR)
compared with bendamustine-rituximab (BR) including higher rates of uMRD at the
9-month response assessment (62% vs. 13%). Although Grade ≥3 neutropenia was more
common in the VenR arm (57.7% vs. 38.8%), the rates of febrile neutropenia (3.6% vs. 9.6%)
and infections (17.5% vs. 21.8%) were lower than in the bendamustine arm. Grade ≥ 3
TLS occurred in 3% of patients in the VenR group [15]. Sustained PFS and overall survival
(OS) benefit of VenR when compared to BR (PFS 52.6 mo vs. 17 mo and 82% vs. 61%,
respectively) was recently reported in the 5-year follow-up analysis. Undetectable MRD
at EOT was predictive of longer PFS and most likely underpins the superior durability
of VenR. However, traditional high-risk genetic features including unmutated IGVH, del
(17p) and complex karyotype continue to confer an inferior long-term outcome, carrying a
higher risk of MRD conversion and relapse [21].

The CLL14 study established the venetoclax-obinutuzumab combination as a fixed-
duration treatment option for patients with treatment-naïve (TN) CLL with co-morbidities
including a Cumulative Illness Rating Score (CIRS) of greater than 6 or calculated creatinine
clearance (CrCl) of <70 mL/min [22]. At a median follow-up of 39.6 months with all
patients being off therapy for at least 2 years, the venetoclax-obinutuzumab cohort had
a significantly longer PFS than the chlorambucil-obinutuzumab arm (HR 0.31, 95% CI
0.22–0.44, p < 0.0001). The median PFS was not reached in the former and was 35.6 months
in the latter group. The most frequent Grade ≥3 adverse event (AE) was neutropenia
(53%) [23]. This has made available an effective chemotherapy-free treatment option for
patients with comorbidities and high-risk genetics.

Fixed-duration venetoclax-based regimes in the setting of treatment-naïve and RR
CLL call attention to the efficacy of re-treatment with venetoclax in those who progress
post the initial venetoclax therapy. A recent retrospective analysis of 25 patients reported
encouraging results including ORR 72.2% with an estimated 12-month PFS of 69% [24].
Similarly, a small group of 11 patients, with evaluable responses in the MURANO 4-year
follow-up, had ORR of 55% [25].

The phase 1/2 study investigated the combination of venetoclax with duvelisib, an
oral PI3Kd inhibitor, as an all-oral, fixed-duration MRD-guided regimen in patients with
Richter’s transformation and RR CLL including del (17p) (32% of patients) and TP53
mutation (45% of patients) [26]. After 12 cycles of combination therapy, those with uMRD
were able to discontinue therapy while those with detectable MRD continued on venetoclax
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maintenance. The recommended phase 2 dose (RP2D) of venetoclax in combination with
duvelisib was 400 mg. Interim analysis of 21 patients at a median number of cycles of
7.5 (range 1–22) was encouraging with ORR for the CLL/SLL group of 94% including CR
56%, PR 39% and PB uMRD 61%. The toxicity profile was manageable with neutropenia
(68%) and hypocalcaemia (32%) as the most common Grade ≥3 AEs. Liver function
abnormalities and diarrhoea were mild. Extended follow-up is required to ascertain long-
term outcomes, particularly in the group treated with only 12 cycles of therapy.

Venetoclax has also been combined with umbralisib, a PI3kd/CK1e dual inhibitor
and ublituximab, anti-CD20 mAb (U2-Ven) in RR CLL over 12 cycles with the option of
continuing umbralisib monotherapy in patients with detectable MRD. Interim analysis of
19 patients who had completed 12 cycles demonstrated promising results including ORR
100%, CR 42% and uMRD 95% and 68% in PB and BM, respectively, maintained in 4 of
5 (80%) patients at 24 months. The combination was tolerable with PI3Kd-associated Grade
3 AEs (colitis and diarrhoea) occurring in 2 patients [27]. The Ven-U2 combination in TN
and RR CLL will be further explored in the ULTRA-V study (NCT03801525).

Based on synergy observed in preclinical models [28], another strategy is combination
of venetoclax with BTK inhibitors, which are administered as monotherapy for the first
2–3 cycles to allow mobilisation of CLL cells from the lymph nodes and reduction in
tumour burden with a view to mitigating TLS risk. Venetoclax is subsequently added as
fixed-duration therapy or MRD-guided treatment discontinuation. In the CAPTIVATE
study, 12 months of front-line combination therapy with ibrutinib and venetoclax resulted
in 58% of undetectable MRD (uMRD). These patients were subsequently randomised to
either ibrutinib or placebo with similar 1-year PFS of ≥95% across the two groups making
a compelling argument for fixed-duration therapy in those who achieve uMRD. The
group with detectable MRD was randomised to continue venetoclax-ibrutinib combination
therapy or ibrutinib monotherapy. The 30-month PFS from treatment initiation was >95%
in the uMRD and detectable MRD groups [29]. Sustained responses were also observed in
the CLARITY phase 2 study, which, in 50 patients with RR CLL, examined the addition of
venetoclax after 2 cycles of ibrutinib [30]. At the 38-month time point (M38), 23 patients had
stopped therapy at or before M38, largely (74%) due to uMRD. A further patient achieved
uMRD after M38 and was able to stop therapy. Importantly, the majority (78%) of patients
who achieved MRD negativity on therapy had sustained responses despite discontinuation.
The 27 patients who remained on the therapy, due to persistent MRD after 12 months of
combination therapy, had an encouraging ORR of 81% with MRD responses continuing to
improve over time [31].

Furthermore, response-adapted addition of venetoclax to ibrutinib as consolidation
was explored in patients with one or more high-risk genetic and biochemical features. The
combined therapy was continued for a maximum of 2 years while uMRD at 2 consecu-
tive time points, 6 months apart, permitted discontinuation of venetoclax. Initial results
demonstrated encouraging rates of uMRD but longer-term, serial MRD analysis is required
for more robust conclusions [32]. Combination of venetoclax with zanubrutinib in TN
CLL patients with del (17p) will be evaluated in the SEQUOIA study (NCT03336333).
Preclinical data also suggest that the combination of venetoclax with the third generation
BTKi LOXO-305 may have increased efficacy in B-cell malignancies [33].

Lastly, triplet combination therapy of venetoclax with BTK inhibitors and anti-CD20
monoclonal antibodes has recently been shown to be well tolerated and to produce deep
remissions in the upfront and RR setting. A phase 2 study of venetoclax was combined
with ibrutinib and obinutuzumab for a total of 14 cycles in TN (n = 25) and RR (n = 25)
CLL patients. Two months after completion of therapy, ORR was 84% and 88% in TN and
RR patients, respectively. Twenty-eight percent of patients in both groups had achieved
CR including uMRD in both blood and bone marrow. Median progression free survival
was not reached at 24.2 months and 21.5 months in TN and RR groups, respectively [34].
Similarly, fixed-duration, triplet combination of venetoclax with acalabrutinib and obinu-
tuzumab (AVO) or rituximab (AVR) in TN (n = 12) or RR CLL (n = 12) patients, respectively,
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demonstrated high CR/CRi rates of 50% in both cohorts, all of which achieved uMRD [35].
The AVO triplet therapy combination was also active in a phase 2 study of 44 patients with
TN CLL, including 40% with TP53 mutation. The majority (78%) achieved bone marrow
(BM) uMRD after 15 months of fixed-duration therapy [36]. AVO and AVR combinations
both showed tolerable toxicity profiles consistent with the individual drugs.

The addition of venetoclax to zanubrutinib and obinutuzumab was explored in the
BOVen study using a MRD-directed discontinuation strategy after completion of a min-
imum of 10 and maximum 24 cycles of therapy. At a median follow-up of 14 months
(3–18), high rates of uMRD in PB (92%) and BM (84%) were observed, prompting 77%
discontinuation rates at pre-specified MRD end-points. The triplet combination therapy
was well tolerated with low rates of Grade ≥3 AEs (5%), most commonly neutropenia [37].

2.3. Resistance Mechanism

Despite its promising efficacy, the majority of patients ultimately relapse, placing
emphasis on better understanding of resistance mechanisms. It has become apparent
that in patients with relapsed disease, clonal heterogeneity is the norm with multiple
mechanisms contributing to disease escape. The resistance mechanisms that are emerging
include mutations in the BCL-2 gene conferring reduced venetoclax binding, upregulation
of BCL-2 related anti apoptotic family members, alterations in the microenvironment and
TP53 pathway dysfunction. Adding to the multifaceted picture is the complex interplay
between co-existing modes of resistance and clonal heterogeneity.

Upregulation of anti-apoptotic proteins, particularly MCL-1 and BCL-XL, promotes
cell survival and has been identified recurrently in patients with venetoclax resistance.
Selection of sub-clones, which are dependent on or over-express alternate BCL-2 fam-
ily members such as MCL-1 or BCL-XL, appears to be a significant resistance pathway
in many cases [38–41]. Pharmacological inhibition of these proteins restores sensitivity
to venetoclax in resistant cells, further emphasizing the importance of these resistance
mechanisms [39,40,42]. Recent data provide insight into the hierarchy of anti-apoptotic
BCL-2 members in venetoclax resistance, suggesting that BCL-XL may be more important
than MCL-1 [43].

Genomic instability has been implicated as a cause for resistance. For instance, patients
with a complex karyotype and TP53 dysfunction have a significantly higher risk of disease
progression on venetoclax therapy [44]. Furthermore, loss of pro-apoptotic genes such as
PMAIP1 and BAXA as well as genes that regulate lymphoid development (OTUD, IKZF5,
NFKB1A, ID3, UB35m NF1A and EP300) appear to correlate with resistance in CLL cell
lines [40]. Moreover, whole exome sequencing and methylation profiling in a group of eight
pre-treated patients with venetoclax-resistant del (17p) CLL identified recurrent mutations
in several cancer-related genes including TP53, NOTCH1, CDKN2A/B, BRAF, CD274,
SF3B1 and BTG1 [45]. Notably, a direct causal link between the mutations and venetoclax
resistance was not demonstrated, but it highlighted diverse patterns of clonal evolution.

Acquired BCL-2 mutations (G101V [46] and D103Y [47]) have recently been identified
in venetoclax-resistant CLL patients. The first to be described was the G101V mutation,
observed exclusively among patients on venetoclax treatment [46]. This mutation causes
reduced venetoclax binding to BCL-2, conferring an outgrowth advantage and increased
survival of the mutant cells over wild type cells in competition assays [46,48]. However
even among the patients harbouring G101V mutations, it only accounts for a component of
their resistance to venetoclax.

Additionally, recurrent subclonal amplification of 1q23 encompassing MCL-1 and
PRKAB2 has been found in a number (4/6) of patients with venetoclax-resistant CLL [40].
Mitochondrial energy metabolism and “metabolic stress” pathways appear to play a role
with cells enriched with genes of the AMPK pathway, such as PRKAB2, having higher
survival rates on venetoclax therapy [40].

The CLL microenvironment promotes cell proliferation and survival by stimulating
the transcription of anti-apoptotic genes. Furthermore, CD40L/CD40-mediated interaction
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between CLL and T-cells facilitates increased expression of anti-apoptotic proteins, such as
BCL-XL and MCL-1 and significantly reduced sensitivity to venetoclax [49]. Importantly,
pre-clinical data suggest that the sensitivity can be restored by combination with anti-CD20
antibodies and BTK inhibitors [50,51].

Finally, more traditional high-risk features such as del 17(p), TP53 mutation, NOTCH1
mutation and unmutated IGHV status; previous Bruton kinase inhibitor (BTKi) therapy,
3 or more lines of therapy,fludarabine-refractoriness and bulky lymphadenopathyalso
correlate with increased risk of BCL-2 inhibitor resistant disease [44,52]. Depth of response
and MRD status are increasingly recognised as a predictor of outcome in patients treated
with venetoclax-based therapy [15,29,30,52].

Better understanding of resistance mechanisms is critical not only to elucidate ratio-
nally derived combinations but also for development of new agents in order to overcome
resistance pathways. Next generation BCL-2 inhibitors, such as BGB-11417, have been
shown in pre-clinical studies to have increased selectivity and potency compared to veneto-
clax, as well as activity against G101V mutated BCL-2 [53]. Furthermore, MCL-1 inhibitors,
although in their infancy [54], present a promising option for combination therapy with
venetoclax in order to combat overexpression of MCL1 protein in response to venetoclax.
Safety of these drugs and best therapeutic strategy warrant further evaluation. ROR1
inhibitors have also shown promising efficacy [55]. Other approaches to overcome treat-
ment resistance include tailoring therapy to the patient and their disease, combination of
agents with synergistic mechanisms of action, temporal sequencing of drugs and real-time
monitoring of disease response.

3. Venetoclax in AML

Patients with AML who are ineligible for or refractory to intensive induction chemother-
apy have a poor prognosis and limited therapeutic options despite a recent expansion
in the range of new agents used in this disease. Similar to myeloma cells, BCL-2 over-
expression in AML is heterogeneous [56], and not always present, but there is evidence
to support apoptosis dysregulation [57]. Furthermore, BH3 profiling has demonstrated
BCL-2 dependence of myeloblasts, which is in line with preclinical activity of venetoclax in
AML [58–62], highlighting it as an attractive therapeutic strategy. Combination of veneto-
clax and azacitidine inhibits amino acid uptake and catabolism in leukaemia stem cells,
thus offering a synergistic and novel molecular mechanism to induce cell death [63,64].

3.1. Venetoclax Monotherapy

Efficacy and safety of venetoclax monotherapy in relapsed and refractory AML pa-
tients was first explored in a phase 2 study [65], which despite modest efficacy with an
ORR of 19%, demonstrated compelling evidence that BCL-2 dependence was a predictive
marker of response. Toxicity was tolerable and included nausea, diarrhoea and vomiting as
the most common AEs withfebrile neutropenia and hypokalaemia as most common Grade
≥3 AEs. Tumour lysis syndrome was not recorded.

3.2. Venetoclax Combination Therapy

Subsequently, several studies have combined venetoclax with standard of care hy-
pomethylating agents (HMA) or low dose cytarabine (LDAC) in unfit patients with newly
diagnosed or RR disease. A phase Ib, dose escalation and expansion study evaluated veneto-
clax with HMA decitabine or azacitidine in previously untreated AML patients who were
ineligible for intensive chemotherapy induction. The 400 mg venetoclax daily dose in the ex-
pansion cohort was administered in a three-day ramp-up and combined with either decitabine
20 mg/m2 day(D) 1–5 or azacitidine 75 mg/m2 D1–7 of 28-day cycles. The combination
resulted in high rates of rapid and durable responses including CR rates of up to 74%, nearly
half (45%) of which achieved uMRD (10−3). At a median follow-up of 15.1 months, the
overall survival for all groups was 17.5 months. Most frequent Grade ≥3 AEs included
haematological toxicity, febrile neutropenia and pneumonia [64,66]. This encouraging efficacy
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and safety data paved the way for a phase 3 study, randomizing 431 patients with previ-
ously untreated AML who were ineligible for standard induction chemotherapy to either
azacitidine-venetoclax or azacitidine alone. At a median follow-up of 20.5 months, the median
overall survival was longer in the combination arm (14.7 vs. 9.6 months, p < 0.0001). Similarly,
the rates of composite complete remission were higher in the combination arm (66.4% vs.
28.3%; p < 0.001) across all AML genomic risk groups, including adverse cytogenetic risk,
secondary AML and those with high-risk molecular mutations. The safety data were in line
with known side-effect profiles of the two agents, although the combination arm had a higher
incidence of febrile neutropenia (42% vs. 19%) [67].

Similarly, the longer 10-day decitabine regimen in combination with venetoclax [68]
resulted in high activity as frontline therapy in AML as well as molecularly defined subsets
of RR AML excluding patients with favourable-risk cytogenetics. A post-hoc analysis of
the study showed that those who achieved MRD negativity at the time of morphological
remission had significantly longer OS (25.1 vs. 11.6 mo), highlighting the prognostic
significance of MRD negativity [69].

Promising efficacy of azacitidine combined with alternating cladribine/LDAC (CLAD/
LDAC) [70] prompted the addition of venetoclax to the combination [70]. Among 48 evalu-
able older (age > 60 y) or unfit patients with newly diagnosed AML, the regimen resulted
in deep and durable responses including CR/CRi of 94%. Importantly, the rate of MRD
negativity among those in CR was 92%. At a median follow-up of 11 months, the median
OS had not been reached, while the 6- and 12-month OS rates were 86% and 70%, respec-
tively. The median survival in patients who had reached MRD negativity was significantly
longer than those who had not (10.6 m vs. NR, p = 0.09), yet again highlighting the prog-
nostic significance of the MRD status. The combination was well tolerated with febrile
neutropenia (42%) as the most common Grade ≥3 AE. Eight-week- mortality was 6%.

The addition of venetoclax to fludarabine, cytarabine, granulocyte-colony stimulating
factor and idarubicin (FLAG-IDA) in treatment-naïve and RR AML also translated into
high response rates including composite complete response of 90% in newly diagnosed and
67% in RR patients. A large portion achieved MRD negativity (69%). The deep responses
allowed bridging to the allogeneic stem cell transplant in more than half of the cohort (56%)
including 69% and 46% of treatment-naïve and RR patients, respectively. The most common
Grade ≥3 AEs included neutropenia (50%), bacteraemia (35%) and pneumonia (21%) [71].

Similarly, recent interim analysis of a Phase II study [72] combining venetoclax with
CPX-352, a liposomal formulation of cytarabine and daunorubicin, revealed encouraging
efficacy in RR AML (ORR 44%, CR 6%, CRi 31%), providing a viable option of bridging
onto a stem cell transplant in almost all responders. Most frequent Grade ≥3 AEs included
infection, nausea, pneumonia and myelosuppression.

Although venetoclax combination therapies have demonstrated promising efficacy,
there is a risk of clonal evolution and disease relapse. In particular, TP53 mutations
are associated with inferior response rates, shorter disease response and higher MRD
positivity in newly diagnosed AML patients treated with combination of venetoclax and
decitabine, highlighting the need for novel therapies in this patient group [73]. In contrast,
the combination of venetoclax with LDAC or HMA in patients with NPM1 and/or IDH
mutations is significantly higher and more durable, including a response rate of 93% and
RLF in excess of 4 years [74].

3.3. Resistance

Despite its promising efficacy, clonal evolution and drug resistance limit prolonged
durability of the responses in AML patients [67]. The complexity of venetoclax resistance
was discussed in the CLL section with some pathways present across different malignancies
and others being more cell-type dependent. Chronic exposure to venetoclax upregulates
MCL-1 and BCL-XL, resulting in acquired resistance. Importantly, sensitivity can be re-
stored by targeting these proteins, which is of substantial therapeutic interest despite
lingering concerns around the tolerability of this approach [75]. Similarly, combination of
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venetoclax with chemotherapy agents such as daunorubicin or cytarabine can, to a degree,
reverse the sequestration of BIM mediated by MCL1, therefore rendering the myeloblasts
more sensitive to venetoclax [76]. Several MCL-1 inhibitors have entered clinical stud-
ies. For example, AZD5991 in combination with venetoclax or bortezomib has shown
promising efficacy in pre-clinical AML and MM models, respectively [54,77]. It is cur-
rently being evaluated in a Phase I dose-finding study in patients with RR haematological
malignancies (NCT03218683).

Furthermore, while certain mutations such as NPM1 and IDH are associated with high
response rates and durable remissions, FLT3, RAS or TP53 confer resistance to venetoclax-
based therapies [78–80]. Preclinical studies using CRISPR/Cas9 in AML cells have also
linked mutations in BAX, TP53 and PMAIP1 genes to venetoclax resistance [80]. Sensi-
tivity to venetoclax therapy may also depend on the maturation phase of AML blasts
with reduced BCL-2 expression in more mature leukaemia cells and greater reliance on
MCL-1 to mediate oxidative phosphorylation [81]. Other proposed mechanisms include
alterations in the mitochondrial metabolism [82] and epigenetic changes [65,79,83]. Repeat
molecular studies can aid in the identification of new prognostically significant and/or
targetable mutations.

4. Venetoclax in Multiple Myeloma

Despite a vast array of new drugs in the treatment of multiple myeloma, it remains
an incurable condition with the majority of patients inevitably relapsing. BH3-profiling
has demonstrated that myeloma cells overexpress anti-apoptotic proteins in a heteroge-
neous manner, making their dependency on the BCL-2 survival signal rather variable.
Overexpression of BCL-2 in a subset of myeloma cells with BCL-2 survival dependency,
therefore, provides an attractive therapeutic target [84]. This is particularly relevant in
those harbouring the translocation (11;14), found in 15–20% of myeloma patients [85,86].

4.1. Pre-Clinical Development

Translocation (11;14) is associated with BCL-2 overexpression and a higher BCL-2 to
MCL-1 ratio, suggesting that a favourable BCL-2 family expression profile may increase
susceptibility to venetoclax [87]. As demonstrated in pre-clinical data [88], myeloma cell
lines and primary myeloma samples with t(11;14) exhibit high sensitivity to venetoclax.
Furthermore, the modulatory effect on BCL-2 expression by other anti-myeloma therapies
highlights the potential benefit of combination therapy. For instance, dexamethasone
renders myeloma cells more BCL-2 dependent while bortezomib and carfilzomib stimulate
expression of the MCL-1 inhibitor NOXA, therefore reducing MCL-1 mediated venetoclax
resistance [89–91]. Recently reported preclinical data demonstrated a synergistic cytotoxic
effect of venetoclax and daratumumab in myeloma cells harbouring t(11;14) with high
BCL-2expression [92].

4.2. Clinical Data to Date
4.2.1. Monotherapy

Single agent venetoclax at daily doses of 1200 mg in a heavily pre-treated cohort with
a median of 5 prior lines of therapy demonstrated encouraging efficacy, particularly in the
group with t(11;14) including ORR 40% and very good partial response (VGPR) or better
of 27%. Biomarker analysis highlighted a strong correlation between BCL-2/BCL-2L1 and
BCL-2/MCL-1 mRNA expression ratios and response rates to venetoclax [93].

4.2.2. Combination Therapy

The BELLINI phase 3 study compared the combination of venetoclax or placebo with
bortezomib and dexamethasone in 291 patients with 1–3 prior lines of therapy. Thirty-
five patients (12%) had detectable t(11;14) and 79% had high levels of BCL-2-2 protein by
immunohistochemistry. At a median follow-up of 22.7 months, the updated analysis [94]
demonstrated a significant PFS (22.4 m vs. 10.4 m, HR = 0.627) and MRD negativity [10−5]
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(13% vs. 1%) advantage in the venetoclax arm. The benefit was particularly evident in the
t(11;14) subgroup, where the median PFS had not been reached in the venetoclax arm (vs.
9.3 months in the placebo arm), while low BCL-2 expression by IHC was associated with
inferior outcomes. The spectrum of treatment-emergent adverse events (TEAEs) in the
venetoclax arm was as expected, including diarrhoea (59%), nausea (37%), constipation
(35%) as well as grade 3/4 neutropenia (18%), pneumonia (17%) and thrombocytopenia
(15%). Although rates of serious infections were comparable between the two arms,
treatment-related mortality was significantly higher in the venetoclax arm (14 vs. 1) with
overall survival in favour of the placebo group. As further defined on subgroup analysis,
the favourable risk-benefit trend was, therefore, only associated with t(11;14) or high
BCL-2 expression [95].

A phase 1/2 study (NCT03314181) exploring the combination of venetoclax with
daratumumab and dexamethasone with and withoutbortezomib in RR MM (VenDd +/− V)
is currently recruiting. The first interim analysis of 48 patients, including 24 (50%) with
t(11;14) at a median time on study of 3.6 months, demonstrated a tolerable safety profile
with encouraging efficacy data in the t(11;14) group, including ORR in the VenDVd and
VenDd arms of 92% and 88%, respectively. Rates of very good partial response (VGPR) or
better were comparable in the two arms [96].

5. Conclusions

Selective targeting of BCL-2 overexpression has proven to be a paradigm shifting
approach to the management of several haematological malignancies—most notably, CLL
and AML. For many patients, especially those with high-risk disease, venetoclax-based
therapy is more effective and better tolerated than traditional chemo-immunotherapy.
This promising risk-benefit profile has seen the use of venetoclax explored in a range of
both haematological and non-haematological malignancies with emerging evidence in a
number of additional indications. Despite this, venetoclax is not curative and treatment
is inevitably hamstrung by disease relapse over time. Ongoing research is shedding light
on the complex genomic and epigenomic environment that gives rise to disease resistance.
Understanding these mechanisms further will help elucidate rational drug combinations
to improve long-term outcomes in patients on venetoclax therapy.
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