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Abstract 

Background:  Malaria remains a major challenge in sub-Saharan Africa and Ghana is not an exception. Effective 
malaria transmission control requires evidence-based targeting and utilization of resources. Disease risk mapping pro-
vides an effective and efficient tool for monitoring transmission and control efforts. The aim of this study is to analyse 
and map malaria risk in children under 5 years old, with the ultimate goal of identifying areas where control efforts 
can be targeted.

Methods:  Data collected from the 2016 Ghana demographic and health survey was analyzed. Binomial logistic 
regression was applied to examine the determinants of malaria risk among children. Model-based geostatistical meth-
ods were applied to analyze, predict and map malaria prevalence.

Results:  There is a significant association of malaria prevalence with area of residence (rural/urban), age, indoor 
residual spray use, social economic status and mother’s education level. Overall, parasitaemia prevalence among chil-
dren under 5 years old for the year 2016 is low albeit characterized by “hotspots” in specific areas.

Conclusion:  The risk maps indicate the spatial heterogeneity of malaria prevalence. The high resolution maps can 
serve as an effective tool in the identification of locations that require targeted interventions by programme imple-
menters; this is key and relevant for reducing malaria burden in Ghana.
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Background
The recent world malaria report estimated that 216 
million cases of malaria and 445,000 deaths occurred 
worldwide in 2016; the number of cases increased by 
approximately 5 million compared to the previous year 
[1]. Malaria burden is greatest in sub-Saharan Africa 
(SSA) where an estimated 90% of all malaria deaths 
occur, and children under 5 years old account for 78% of 
all deaths [2]. The World Health Organization (WHO) 
estimated that one child in SSA dies from malaria every 
2 minutes [3].

Malaria is a major threat to public health and a leading 
cause of morbidity and mortality especially among chil-
dren under 5 years old in Ghana [4, 5], with prevalence 
estimated at 21% as of 2016 [6]. Approximately 20,000 
children die from malaria every year in Ghana, 25% of 
whom are children under 5 years old. Malaria has been 
shown to be intimately connected to poverty; it is both 
a root cause and a consequence of poverty, such that the 
burden is most intractable in communities and coun-
tries that are the most poorest [7]. Ill-health in poor set-
tings leads to reduced ability of people to deal with the 
disease burden. Malaria burden exerts a negative impact 
on economic productivity due to human development 
and financial burden on the economy overall, and on the 
affected households specifically [8, 9]. It is estimated that 
a single episode of malaria in Ghana results in an average 
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loss of 5 workdays; 3 days for the patient and 2 days for 
the caretaker [10].

Evidence shows that malaria in children under 5 years 
can be attributed to a number of factors including not 
using insecticide-treated bed nets (ITNs), not sleeping 
in indoor residual sprayed (IRS) rooms, age of the child 
and lack of timely diagnosis of suspected cases, among 
others [5, 8, 11]. The Ghana Health Service (GHS) has 
set an ultimate goal of reducing malaria morbidity and 
mortality by 75% (using 2012 as baseline) by the year 
2020, through various integrated control programmes 
[12]. The national malaria control programme (NMCP) 
has been scaling up various malaria control interventions 
throughout the country [13]. These include vector moni-
toring and control, use of long-lasting insecticidal nets 
(LLIN), intermittent preventive treatment in pregnancy 
(IPTp), effective case management, and social and behav-
iour change communication (campaign on test, treat and 
track) [12]. These efforts need to be targeted to areas 
where they would have most health impact.

Malaria transmission in Ghana is driven mainly by two 
main vectors namely Anopheles gambiae (sensu lato) and 
Anopheles funestus. Their peak activities occur at the 
end of the wet season [14]. Like many malaria endemic 
countries in SSA, malaria transmission in Ghana is highly 
heterogeneous both spatially and temporally [15, 16]. The 
levels of transmission intensity in space and time are sig-
nificantly linked to changes in climate, altitude, topog-
raphy, land use/human settlement and environmental 
factors [17] among others; these factors profoundly influ-
ence the vector, and hence the parasite and transmission 
patterns. The southern (forest and coastal ecological 
zones) part of Ghana has transmission almost all year 
round while the northern (savannah ecological zones) 
part usually experiences seasonal transmission in the wet 
season [18–20]. Knowledge of the local spatial and tem-
poral heterogeneity of malaria transmission is essential 
for the planning and evaluation of malaria interventions 
[21]. This justifies the timely identification of locations 
requiring targeted interventions to optimize usage of 
resources in resource-limited settings.

A growing emphasis is now being placed on the need to 
timely identify sub-national variation and areas that lag 
behind in performance of malaria control and prevention 
despite the current increasing efforts to curb the burden 
[22–24]. Risk mapping provides an effective and efficient 
tool for disease monitoring and control [24, 25]. In the 
past, several methods have been adopted in producing 
malaria risk maps, including theoretical climatic mod-
els, reservoir or vector surveys and expert opinion [26]. 
In 2013, the Ghana NMCP together with its partners 
presented a comprehensive epidemiological profile for 
malaria risk in children aged 2–10 years. This nationwide 

study reported national- and district- level estimates 
[27]. Kumi-Boateng et al. [16] presented a spatial multi-
criteria decision analysis (MCDA) incorporated into geo-
graphic information system (GIS), where they mapped 
the effect of several covariates on endemicity of malaria 
prevalence in Ghana. In a different study, Kumi-Boateng 
et al. [28] used GIS, satellite remote sensing (RS) and ana-
lytical hierarchy process to develop malaria risk map for 
New Juaben municipality in the Eastern region of Ghana. 
These studies provide estimates at either district, regional 
or national level. Meanwhile, the global malaria elimi-
nation programme classifies Ghana and much of West 
Africa among nations considered to be in the control 
phase [1]. Despite these recent positive outcomes, some 
areas are still lagging behind in performance and need 
urgent identification for targeted interventions. This 
calls for risk mapping at finer scales than those reported 
previously.

In this study, spatial patterns of malaria prevalence in 
children under 5 years were mapped at a fine-scale of 
5 ×  5 km resolution in order to identify “hotspots” (i.e. 
geographic areas where malaria prevalence is above aver-
age or some threshold) using the model-based geostatis-
tical (MBG) techniques. Geostatistical techniques and 
models are increasingly finding their application in the 
analysis and mapping of malaria incidence and preva-
lence, among other fields. The methods permit simulta-
neous modeling of related issues such as risk assessment, 
spatial dependence, prediction and quantification of 
uncertainty [29, 30]. Geostatistical methods provide a 
feasible and statistically principled approach to model 
spatio–temporally referenced survey data from low-
resource settings [31]. The fine-scale risk maps produced 
will enable the Ghana NMCP to identify areas that can 
be targeted with health interventions in order to have the 
most health impact. It is thought that strengthened con-
trol in malaria hotspot areas is imperative to efficiently 
achieve malaria elimination [32–35]. Previous research 
has shown that reducing transmission in hotspots may 
reduce transmission in the wider community [36, 37] 
and, therefore, a more cost-effective means to approach 
elimination [33], and may ethically justify “unequal, but 
equitable,” allocation of resources [38].

Materials and methods
Study area, design and sample
Ghana is located between latitudes 4◦ and 12◦ N and lon-
gitudes 4◦ W and 2◦ E, see Fig. 1. Geographically, Ghana is 
closer to the centre of the world than any other country, 
and the Greenwich Meridian passes through the country. 
Ghana has a total land area of 238,538 km2 ; with 840 km 
distance from South to North and 554 km from East to 
West. Ghana shares border with Togo to the East, Cote 
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Fig. 1  The 10 administrative regions covering the study area for Ghana demographic health survey
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d’Ivoire to the West, Burkina Faso to the North and has a 
coastline in the South along the Gulf of Guinea. There are 
10 administrative regions in Ghana [6].

In this study, data from the Ghana malaria indicator 
survey (MIS) were used; malaria indicator surveys are 
conducted as part of the demographic and health surveys 
(DHS) and are well known [6, 39, 40]. The 2016 Ghana 
DHS was conducted through the malaria indicator sur-
vey (MIS) implemented by the Ghana Statistical Service 
(GSS), in collaboration with the Ghana NMCP and the 
national public health reference laboratory (NPHRL) of 
the GHS [6]. The 2016 Ghana MIS collected informa-
tion that complements routine administrative data which 
are used to inform strategic planning and evaluation of 
Ghana’s malaria control programme [6]. Information 
on malaria prevention, treatment and prevalence were 
obtained during the survey. Specifically, data were col-
lected on key malaria indicators such as the proportion 
of the ownership and use of ITNs, assessment of the cov-
erage of IPT to protect pregnant women against malaria, 
estimated prevalence of malaria and anaemia among 
children aged 6–59 months, IRS coverage, wealth index 
of households, region where the survey took place, area 
of residence, gender, children’s age in months, mother’s 
education and others [6]. The response variable is the 
outcome of malaria test.

The 2016 Ghana MIS was designed and conducted to 
provide estimates of key malaria indicators for the whole 
country, for urban and rural areas separately, and for 
each of the ten administrative regions [6]. The adminis-
trative regions are Ashanti, Brong Ahafo, Central, East-
ern, Greater Accra, Northern, Upper East, Upper West, 
Volta and Western. The sample frame used was the 2010 
population and housing census (PHC), using a complete 
list of enumeration areas (EA). In this two-stage design, 
the first stage was to select 200 EAs with probability pro-
portional to EA size. In the second stage, a fixed num-
ber of 30 households were then sampled from each of the 
selected EAs, giving a nationally representative sample of 
6000 households.

Ghana MIS collected data via both the computer-
assisted personal interviewing (CAPI) system on tablet 
computers and paper-based questionnaires. The three 
main questionnaire types used were the household ques-
tionnaire, the woman’s questionnaire and the biomarker 
questionnaire [6]. Blood samples for malaria testing were 
collected by finger- or heel-prick from children aged 
6–59 months, and then tested for malaria with SD bioline 
malaria Ag P.f./pan rapid diagnostic test (RDT). Malaria 
RDT results were recorded in the biomarker question-
naire and the result shared with the child’s parent or 
guardian [6]. Additionally, microscopy results were read 
in the laboratory. Children who tested positive or showed 

signs and symptoms for malaria were either offered a full 
course of medication according to standard treatment 
protocol in Ghana or were referred to a health facility [6]. 
In the current analysis, only RDT tests results were used.

Statistical analysis
The formulation of the geostatistical model in the current 
study follows from the standard geostatistical model for 
prevalence surveys in Diggle et al. [41]. Consider a field 
team that visit communities at different locations xi in 
a study region say G ⊂ R

2 , and sample mi : i = 1, . . . , n 
individuals at risk in each community, as well as taking 
the records of whether each individual tests positive or 
negative for the disease under study. Let Yi denote the 
number of positive malaria RDT outcomes out of mi 
individuals tested at locations xi in a region of interest 
G ⊂ R

2 , and a vector of associated covariates d(xi) ∈ R
p . 

The standard geostatistical model then assumes that 
Yi ∼ Binomial(mi, p(xi)) , where p(xi) measures the dis-
ease prevalence at locations xi . Adopting the logistic link 
function, the model further assumes that:

where α is the intercept parameter, S(x) is an unobserv-
able random effect which is Gaussian process with zero-
mean and a constant variance σ 2 ; d(·) represents a vector 
of observed spatial explanatory variables associated with 
the response Y,   and β is a vector of spatial regression 
coefficients for the covariates. The empirical logit trans-
form is defined as follows:

and the underlining assumption is that:

where Zi are mutually independent zero-mean Gaussian 
random variables with variance τ 2 . The index i represents 
the household and the index j represents an individual 
within the household. The transformation in Eq. (2) was 
preferred here as it allows for a computationally simpler 
non-hierarchical approximate model fitting [42], this is 
especially advantageous where computational resources 
are limited.

Throughout the analysis, a Matérn parametric family 
of correlation functions for the process S(x) is assumed, 
to enable the definition of a legitimate class of covariance 
functions for the data. The Matérn correlation function 
is positive definite and sufficiently flexible [30]. The pro-
cess S(x) is assumed to have mean of zero, stationary and 
isotropic Gaussian process, that is, with invariant distri-
bution under translation and rotation [43]. The Matérn 

(1)log
{ p(x)

{1− p(x)}

}
= α + d(x)′β + S(x)

(2)Y ∗
ij = log

{ (Yij + 0.5)

(mij − Yij + 0.5)

}

(3)Y ∗
ij = α + d(xij)

′β + S(xi)+ Zi,
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correlation function [44] for stationary Gaussian pro-
cesses is a two-parameter family given by:

in which u denotes the distance between two locations x 
and x′ , φ > 0 is a scale parameter that determines the rate 
at which correlation decays to 0 as the distance increases, 
and κ > 0 , is a shape parameter which determines the 
analytic smoothness of the underlying process S(x). Also, 
Ŵ(κ) denotes the smallest integer greater than or equal to 
κ , and Kκ(·) denotes a modified Bessel function of order 
κ > 0 [30].

A non-spatial generalized linear model (GLM) was fit-
ted in the first step. For variable selection in the GLM, 
ordinary binomial logistic regression model was used, 
retaining covariates with nominal p-values less than 
0.05. The resulting covariates are presented in Table  2 
with terms for residence, age, indoor residual spray use, 
wealth index and mother’s education. In the second step, 
a spatial model was fitted. The Matérn shape parameter κ 
and relative variance parameters τ 2 were fixed at 1.5 and 
0, respectively.

In the spatial analysis, estimates of the model param-
eters were obtained and used to make spatial predictions 
over a fine grid of 5 × 5 km, over the whole of Ghana. 
Under a predefined control scenario, malaria risk of 
children aged 24–36 months, middle household wealth 
status, middle mothers’ education level, with no indoor 
residual status and assumed rural residence for all the 
unsampled locations, was mapped. All the analysis and 
mapping were carried out using the R statistical software 
environment version 3.5.0 [45].

Policy relevant criteria for interventions
One of the objectives of the current study is to identify 
“hotspots” (here defined as areas that are above a preva-
lence threshold, say t). In prevalence estimation analyses, 
it is worthy noting that the resulting estimates p(x) at a 
location x have uncertainty that needs to be taken into 
account. It has been shown that classifying areas into dif-
ferent endemic levels purely based on estimates of p(x) at 
location x can lead to unwarranted policy decisions [31]. 
To overcome this issue, the geostatistical model devel-
oped in the statistical analysis section above, was used 
to derive a distribution of the most likely values that p(x) 
can take. This distribution was then used to quantify how 
likely p(x) is to be above a threshold t through the so-
called exceedance probability (EP), formally expressed as:

where t is the prevalence threshold, set to 20% in the cur-
rent analysis. In other words, EP expresses how likely 
prevalence is to be above the threshold t based on the 

(4)ρ(u,φ, κ) = {2κ−1Ŵ(κ)}−1(u/φ)κKκ(u/φ),

(5)EP = Probability{p(x) > t|data}

available survey data. An EP close to 100% indicates that 
prevalence is highly likely to be above the threshold t; if 
close to 0%, prevalence is highly likely to be below the 
threshold t; finally, if close to 50%, prevalence, is equally 
likely to be above or below the threshold t, hence this 
corresponds to the highest level of uncertainty. This is 
important when defining the level of certainty that a 
locality is above 20% and might be considered suitable 
for targeted interventions or proves that an area is highly 
intractable to interventions applied in that area to-date. It 
is desirable to be ≥ 80% or ≥ 90% certain that this is a real 
value based on the available data. If a locality does not 
reach the required level of certainty, additional sampling 
effort or surveys are required in order to classify that into 
the appropriate endemic level.

In some cases, the interest may be in delineating areas 
where p(x) is less than the threshold t, that is, areas that 
are below a prevalence threshold, through non-exceed-
ance probability (NEPs), formally expressed as:

NEP expresses how likely p(x) is below the threshold t 
based on the available survey data. A NEP close to 100% 
indicates that p(x) is highly likely to be below the thresh-
old t; if close to 0%, p(x) is highly likely to be above the 
threshold t; finally, if close to 50%, p(x) is equally likely to 
be above or below the threshold t, hence this corresponds 
to the highest level of uncertainty. Here, areas that have 
20% or less malaria prevalence based on the available 
2016 GDHS data are shown, with 80% and 90% certainty. 
The 20% threshold was chosen based on the prevailing 
malaria prevalence in Ghana, which was 21% as per the 
MIS in 2016 [6]

Model validation
In order to justify the need for modeling using the spatial 
geostatistical model applied here, evidence against the 
residual spatial correlation in the data was tested using 
the following 5-step variogram-based validation algo-
rithm [31, 46].

1.	 Generate a point estimate of Z(xi) i.e. Z̃(xi) from a 
non-spatial model, for each observed location xi . 
This model assumes the absence of any residual spa-
tial correlation such that S(x) = 0 ∀ x;

2.	 Permute the order of the data, including Z̃(xi) , while 
holding (xi) fixed;

3.	 Compute the empirical semi-variogram for Z̃(xi);
4.	 Repeat steps (1) and (2) a large number of times, T, 

say T = 1000;
5.	 Use the resulting T empirical variograms to generate 

95% confidence intervals at each of the pre-defined 
distance bins.

(6)NEP = Probability{p(x) < t|data}
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To conclude that there is no evidence against the adopted 
spatial model correlation, the empirical semi-variogram 
from the original data must fall within the generated 95% 
confidence intervals.

Results
There were a total of 2537 children in the dataset. Table 1 
summarizes the proportions of children with a positive 
malaria outcome. Overall, malaria prevalence among 
children under 5 years in Ghana for 2016 was estimated 
at 22.1%. Prevalence was shown to increase with child’s 
age, younger children have the lowest prevalence at 16% 
among children below 12 months, and older children 
showing the highest prevalence at 28% among children 
between 48 and 59 months. Minor difference in preva-
lence were observed between males and females, with 
males having a slightly higher prevalence at 23% com-
pared to 22% for females.

Children of mothers with no education were shown to 
have the highest malaria prevalence at 31% compared to 
children of mothers with higher education level (6%). A 
general trend observed showed that increasing levels of 
education were associated with decreasing malaria prev-
alence in children. Children from the poorest households 
had the highest proportion of a positive malaria outcome. 
Table 1 shows that the proportion of malaria prevalence 
decreases with an increase in the wealth status of house-
holds. Children from the poorest households recorded 
the highest proportion of 32%, whilst those from the 
highest wealth status recorded the lowest proportion at 
only 3%. This may be an indication that children from 
well-endowed households are less prone to malaria than 
those from poor households. Children from households 
that did not receive IRS treatment had a high parasitae-
mia prevalence at 23% as compared to 19% of children 
from IRS treated households.

Malaria prevalence was high in rural areas at 29% 
compared to 11% among children in urban settings. 
This result agrees with previous studies, for example, 
Nyarko and Cobblah [5] found that malaria preva-
lence was highest among children from rural settings 
compared to urban settings. At 32% prevalence, the 
Northern region had the highest under 5 malaria, this 
is followed by Central and Eastern regions, recording 
30 and 31%, respectively. Greater Accra region had the 
lowest prevalence at 4%. It is worthy noting that the 
Greater Accra region is the most urbanized region in 
Ghana with 87.4% of its total population living in urban 
centers [47]. The climate of Ghana has a principal fea-
ture of alternate wet and dry seasons caused by the 
interaction of the Inter-Tropical Convergence Zone and 
the West African Monsoon [48]. The Southern Ghana; 

of which the Central, Eastern and Greater Accra 
regions are part, is characterized with two distinct 
wet seasons, while Northern Ghana has only one wet 
season that begins in May and ends in October. In the 
Southern Ghana, the first rainy season is from May to 
June, with the heaviest rainfall occurring in June while 
the second rainy season is from September to October 
[48].

Table 1  Proportions of  malaria among  children 
aged under  5 years with  respect to  covariates 
under consideration

Total RDT

Negative Positive

Age (in months)

 < 12 289 (11%) 244 (84%) 45 (16%)

 12–23 602 (24%) 490 (81%) 112 (19%)

 24–35 588 (23%) 454 (77%) 134 (23%)

 36–47 551 (22%) 421 (76%) 130 (24%)

 48–59 507 (20%) 367 (72%) 140 (28%)

Gender

 Male 1293 (51%) 1002 (77%) 291 (23%)

 Female 1244 (49%) 974 (78%) 270 (22%)

Mothers educ.

 No education 876 (35%) 605 (69%) 271 (31%)

 Primary 509 (20%) 398 (78%) 111 (22%)

 Middle 798 (31%) 644 (81%) 154 (19%)

 Secondary 228 (9%) 210 (92%) 18 (8%)

 Higher 126 (5%) 119 (94%) 7 (6%)

Wealth status

 Lowest 892 (35%) 605 (68%) 287 (32%)

 Lower 486 (19%) 344 (71%) 142 (29%)

 Middle 411 (16%) 342 (83%) 69 (17%)

 Higher 413 (16%) 360 (87%) 53 (13%)

 Highest 335 (13%) 325 (97%) 10 (3%)

IRS

 No 2055 (81%) 1584 (77%) 471 (23%)

 Yes 482 (19%) 392 (81%) 90 (19%)

Residence

 Urban 995 (39%) 884 (89%) 111 (11%)

 Rural 1542 (61%) 1092 (71%) 450 (29%)

Region

 Ashanti 275 (11%) 237 (86%) 38 (14%)

 Brong Ahafo 239 (9%) 187 (78%) 52 (22%)

 Central 217 (9%) 152 (70%) 65 (30%)

 Eastern 208 (8%) 143 (69%) 65 (31%)

 Greater Accra 229 (9%) 219 (96%) 10 (4%)

 Northern 431 (17%) 295 (68%) 136 (32%)

 Upper East 289 (11%) 244 (84%) 45 (16%)

 Upper West 228 (9%) 178 (78%) 50 (22%)

 Volta 213 (8%) 164 (77%) 49 (23%)

 Western 208 (8%) 157 (75%) 51 (25%)
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Model results
The response variable for each child was the binary out-
come of the test for presence/absence of malaria from a 
finger- or heel-prick blood sample. Results from a GLM 
model are presented in Table  2. The binomial logistic 
model in Eq. (1) was fitted to obtain the Monte Carlo 
maximum likelihood [49] estimates of the parameters 
and associated 95% confidence intervals, as shown in 
Table 2. The σ 2 and φ are variance of the Gaussian pro-
cess and scale of the spatial correlation, respectively.

The validity of the adopted spatial structure used in 
the modeling exercise was tested using steps outlined in 
the model validation sub-section above. This is impor-
tant especially when identifying areas where preva-
lence lies below (i.e. NEP) or above (i.e. EP) pre-defined 
thresholds. The results of this process are shown in 
Fig.  2. Since the empirical semi-variogram (solid line) 
falls within the 95% confidence intervals (dashed lines), 
then the adopted covariance model is compatible with 
the malaria parasite prevalence data implying that the 
results of NEPs, EP and the model overall are valid.

From Table  2, residing in the rural areas and child’s 
age are associated with an increase in probability of a 
positive malaria outcome in children. Household wealth 
status and mother’s education are negatively associated 
with the probability of a positive outcome, whereas IRS 
shows a negative, but non-significant association.

The 5 × 5 km resolution maps for malaria prevalence 
in children under 5 years are presented. Overall, preva-
lence is low at national level, with an average of 22% but 
characterized by areas that are above average preva-
lence. Hotspots were observed to be mainly localized 
in the Northern, Upper West, Western, Eastern and 
Central regions. The region with the highest prevalence 
(deep orange) is the Northern region, particularly the 

communities surrounding the Mo and Oti rivers. The 
map of predicted malaria prevalence is shown in Fig. 3.

Figure  4 presents maps of malaria exceedance 
and non-exceedance probabilities, showing areas 
where p(x) ≥ 0.2 | data as well as areas where 
p(x) < 0.2 | data , with 80% and 90% certainty in both 
cases. Several regions, including, South western, Central, 
Upper West, Western, Eastern, Northern, and Ashanti 
have locations with predicted prevalence above 20%. The 
dark red areas show locations where prevalence is above 
20%, at 90% certainty and light red are all areas where 
prevalence is above 20% at 80% certainty. In the same 
Fig. 4, non-exceedance probabilities are presented, show-
ing areas where prevalence is less than 20% with 80% and 
90% certainty. The following regions: Upper East, Greater 
Accra, Volta and Brong Ahafo have locations where pre-
dicted malaria prevalence in children under 5 years is less 
than 20%.

Discussion
Malaria is a leading cause of death in most of SSA, espe-
cially among children under 5 years of age. Malaria moni-
toring and control programmes can benefit from the 
availability of accurate prevalence maps. Model-based 
geostatistical analysis in conjunction with active sur-
veillance is an effective, practical strategy for producing 
accurate local-scale maps that can pick up hotspot areas 
in disease burden that can benefit immensely from tar-
geted interventions. In this study, the Ghana 2016 MIS 

Table 2  Monte Carlo maximum likelihood estimates 
and  95% confidence intervals for  the  binomial logistic 
model fitted to  2016 GMIS under  5 malaria prevalence 
data

The scale parameter φ has units in kilometres

Term Estimate 95% confidence interval

Intercept − 1.733 (− 2.625, − 0.841)

Residence (R) 0.473 (0.095, 0.852)

Age 0.212 (0.128, 0.297)

IRS − 0.239 (− 0.703, 0.226)

Wealth index − 0.357 (− 0.500, -0.214)

Mothers educ. − 0.145 (− 0.276, -0.015)

σ 2 0.983 (0.652, 1.480)

φ 12.819 (8.043, 20.430)
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Fig. 2  Model validation plot, the solid line is the variogram based on 
the residuals from a non-spatial model (empirical semi variogram). 
The dashed lines are the 95% confidence intervals generated under 
the fitted spatial model
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data were analyzed using MBG models to delineate and 
map areas where prevalence is above (or below) a given 
threshold, which could be policy relevant. The analy-
sis also determined the risk factors on the geographical 
distribution of malaria prevalence in children under 5 
years. Malaria prevalence prediction maps at a 5 × 5 km 
resolution show disease burden at one of the finest scale 
possible.

The MBG models fitted via Markov Chain maximum 
likelihood simulation methods were used to determine 
the adjusted effect of factors on malaria prevalence. Ordi-
nary logistic regression was used for variable selection in 
order to determine and choose the most important pre-
dictors for explaining variation in malaria prevalence. 
Risk factors pertaining to malaria prevalence considered 
in the current study are area of residence (urban/rural), 
age of the child in months, indoor residual spraying, 
household wealth status and mother’s education level.

The association between area of residence and malaria 
prevalence is well known. Living in rural areas was posi-
tively associated with the probability of a child having a 
positive malaria outcome. Similar results were reported 
by Nyarko and Cobblah [5] who analyzed and reported 

data from the 2008 GDHS. This can be explained by a 
number of factors including access to facilities; peo-
ple living in resource-limited rural settings tend to have 
lower access to health facilities as opposed to those living 
in urban settings. Malaria risk in urban areas is known to 
differ from those in rural areas, see, for example, Wilson 
et al., Hay et al. and Uzochukwu et al. [50–52]. Malaria is 
often referred to as a disease of poverty [53].

At the global level, malaria incidence has been shown 
to be concentrated in the world’s poorest countries, with 
90% of malaria deaths occurring in SSA. In this region, 
majority of the population reside in the rural areas. This, 
therefore, has implications that the high prevalence of 
malaria in children from rural areas can be attributed to 
rural poverty, as compared to urban settings. Living in 
rural areas is associated with inadequate health services 
coupled with poor housing conditions which expose chil-
dren to malaria transmitting vectors hence high malaria 
prevalence.

Older children were observed to be at an increased 
risk of being infected with malaria compared to infants. 
Similar outcomes have been observed in studies con-
ducted in Tanzania and Uganda, see, for example, Hen-
driksen et al. [54] and Ssempiira et  al. [55]. This can be 
explained by the fact that infants have immunity acquired 
from mothers, including passive transfer of antibodies 
through breastfeeding. With age, this immunity starts 
to wane hence children are at increased risk of malaria 
before they start to develop their own immunity follow-
ing repeated infections [56–58].

It has been argued previously that age distribution of 
malaria cases is mostly influenced by malaria transmis-
sion intensity, severity and seasonality, especially in SSA 
[59, 60]. A review by Snow and Marsh [61] indicates that, 
in areas where transmission is very low, all age groups 
are likely to be infected with malaria (most likely in older 
children and adults due to occupational risk); in areas 
with moderate transmission intensity, older children 
and adults are less likely to be infected with malaria. In 
contrast, in areas with high transmission, the majority 
of malaria infection occurs in young children under one 
year of age. This supports the global malaria elimination 
programme classification, which classifies Ghana and 
much of West Africa among nations considered to be in 
the control phase [1].

Indoor residual spray use was associated with reduced 
malaria risk, albeit not significant. Meanwhile, IRS has 
previously been shown to significantly reduce malaria 
prevalence. Coleman et al. [62] showed that there was a 
significant decline in parity rates of vectors as a result of 
IRS in Northern Ghana [62–64]. The study observed a 
steady increase in parity rates following withdraw of IRS 
in the study area. Coleman et  al. [62] further reported 

Fig. 3  Malaria prevalence predictions among children aged under 5 
years in Ghana
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that these rates were high in areas where IRS was not 
applied. Similar results have been reported in Uganda 
by Robert and Matthew and Ssempiira et al. [11, 55] who 
observed a significant reduction in child’s malaria risk 
due to IRS. It is unsurprising to see a non-significant rela-
tion between IRS and malaria prevalence. In the sample 
available in the current study, only 18.99% of the popu-
lation had IRS. A previous study has shown that there 
was no correlation between malaria prevalence and IRS 
due to low coverage of the latter, see, for example, Mum-
bengegwi et al. [65].

In the current study, it has been observed that house-
hold wealth status was negatively associated with malaria 
prevalence. Children living in wealthier households had a 

significantly lower malaria prevalence compared to chil-
dren living in poorer households. This finding is consist-
ent with findings from a study conducted in the Gambia. 
Sonko et al. [66] reported that children from the second, 
third, fourth and richest quintiles were significantly less 
likely to have malaria compared to children from the 
poorest quintiles. This can be explained in a number of 
ways, including that, highest wealth status households 
can afford malaria preventive measures, such as ade-
quate housing facilities with screens that block vectors, 
insecticide-treated bed nets, quick diagnosis and acquir-
ing of drugs in case of infection without depending on 
public facilities. Several studies have shown that malaria 
is highly correlated with poverty [67–69]. At a regional 

Fig. 4  Map showing areas where transmission is above or below 20% threshold. Exceedance ( ≥ 20%) and non-exceedance ( > 20% ) probabilities in 
Ghana in 2016
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level, it has been shown that malaria burden is highest in 
the poorest countries, particularly in SSA where 90% of 
malaria deaths occur [1, 53, 66].

Education level of the child’s mother was shown to be 
highly associated with reduced malaria risk in children. 
Children whose mothers had no education at all were 
at an increased risk compared to those whose mothers 
had higher education. This result is similar to the results 
reported by Snyman et  al., Robert and Mathew, Erhart 
et al. and Ssempiira et al. [11, 55, 70, 71], among others. 
In previous studies, higher education has been associ-
ated with better understanding of health issues generally. 
Again, it is assumed that mothers with higher educa-
tion are more likely to have high socio-economic status, 
therefore being able to afford health care and preventive 
measures for malaria. Thus, the importance of education 
in malaria prevention cannot be overstated.

Malaria prevalence in children under 5 years is gen-
erally low at 22.1% in 2016 in Ghana, characterized by 
several hotspots. Model-based geostatistical methods 
allowed us to map prevalence at a fine-scale resolution of 
5 × 5 km. Malaria transmission in Ghana is highly het-
erogeneous across space and time, peaking mostly in the 
wet season [15, 72]. High prevalence was observed in 
the Northern, parts of Upper West, Ashanti, Western, 
Central and some part of Brong Ahafo regions. Kumi-
Boateng et  al. [16] found a similar pattern, indicating a 
high prevalence in the central as well as the west-south-
ern parts of Ghana. Figure 3 shows that most areas have 
low prevalence in general, except for a few locations with 
elevated risk, most notably in the Northern region within 
the communities surrounding the Mo and Oti rivers. 
One of the possible explanations for this could be that the 
rivers around these communities are supporting favora-
ble conditions for the breeding of mosquitoes, hence 
increased transmission. In high transmission periods, 
hotspots tend to grow and fuel transmission; and they 
maintain transmission during low transmission periods 
[43, 73].

Model-based geostatistical methods are advanta-
geous in low-resource settings where data are sparse 
in the sense that they enable estimation of disease risk 
at health decision-making units as well as properties 
of uncertainty. To follow up on this point, exceedance 
and non-exceedance probabilities were used to quan-
tify uncertainty in estimates of malaria prevalence with 
respect to areas that are above or below a threshold of 
20%. The importance of mapping these areas is that it 
allows focusing control efforts and the limited resources 
to areas where they would have maximum health impact. 
Figure  4 shows that most areas in the northern part of 
the country are well below a threshold of 20% preva-
lence, with 80% or 90% certainty. This implies that in 

these areas, a shift in control efforts towards pre-elimi-
nation can be considered. On the other hand, a number 
of localities in south-western and central regions have 
prevalence above 20%, both at 80% or 90% certainty. For 
programme implementers, control efforts in these areas 
would be different, instead, the focus would be on reduc-
ing transmission through preventive interventions such 
as mass bed-net distribution and/or indoor residual 
spraying campaigns. Thus, in the identified high trans-
mission areas, control efforts would need to be more tar-
geted and tailor-made as opposed to universal coverage 
effort, in order to cut transmission as much as possible.

The results presented here should be considered within 
the context of some limitations. First, only spatial analy-
sis was carried out to show malaria prevalence heteroge-
neity in space. Malaria risk is known to be heterogeneous 
both in space and time, implying that the identified hot-
pots can potentially vary in size and location with season 
(time). Secondly, secondary data from Measure DHS’s 
malaria indicator survey database were used and ana-
lyzed. The database had limited variables that could have 
been included in the analysis to improve the understand-
ing of malaria burden in children under 5 years in Ghana.

Conclusion
The current study has shown that area of residence, 
child’s age, wealth status and mother’s education level 
are important risk factors for malaria prevalence in chil-
dren under 5 years in Ghana. The fine-scale risk maps 
presented here show the contemporary under 5 children 
malaria situation in Ghana. The high resolution maps can 
be used for planning, implementation, resource mobiliza-
tion, monitoring and evaluation of interventions in hot-
spots within the country. Thus, it is a useful tool for the 
GHS in reducing malaria morbidity and mortality by the 
targeted 75% by 2020, through integrated and targeted 
control measures. Fine-scale risk mapping is a relevant 
tool for all settings where there is a need for identifying 
hotspots in malaria endemic settings.
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