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With the widespread use of avermectins (AVMs) for managing parasitic and

agricultural pests, the resistance of worms and insects to AVMs has emerged

as a serious threat to human health and agriculture worldwide. The reduced

penetration of AVMs is one of the main reasons for the development of the

resistance to the chemicals. However, the detailed molecular mechanisms

remain elusive. Here, we use the larvae of Drosophila melanogaster as the

model organism to explore the molecular mechanisms underlying the devel-

opment of penetration resistance to AVMs. We clearly show that the chitin

layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overex-

pressed in the AVM-resistant larvae epidermis. We reveal that the activation

of the transcription factor Relish by the over-activated epidermal growth

factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of

the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interest-

ingly, we discover for the first time, to the best of our knowledge, that

AVM directly interacts with EGFR and leads to the activation of the

EGFR/AKT/ERK pathway, which activates the transcription factor Relish

and induces the overexpression of DmeCHS1/2 and P-gp. These findings

provide new insights into the molecular mechanisms underlying the

development of penetration resistance to drugs.
1. Introduction
Avermectins (AVMs), which are macrocyclic lactones initially extracted from

Streptomyces avermitilis [1,2], are highly effective biological anthelmintics and

are widely used for the management of agricultural and parasitic infections.

AVMs, used as insecticides, acaricides and nematicides, can eradicate 80

kinds of worms and insects, such as nematodes, mites and lice [3]. With the

widespread use of AVMs, the resistance to AVMs in worms and insects as

well as the toxic effects of AVMs on the parasite carriers such as humans and

animals are becoming increasingly serious [4–7], and are detrimental to

human health and agriculture.

Numerous studies have revealed two important mechanisms for the develop-

ment of resistance to AVMs, i.e. target insensitivity and increased metabolism

of AVMs [8,9]. AVMs mainly bind to the glutamate-gated chloride channel and

g-aminobutyric acid-gated chloride channel and result in the release of chloride

in insects and worms [10,11]. This binding is essentially irreversible, leading to a

very long-lasting hyperpolarization or depolarization of the neurons or muscle

cells, subsequently blocking their further function [12,13]. Gene mutations or

downregulation of chloride channels can result in target insensitivity, which con-

fers the development of target resistance in animals to AVMs [8,14]. Meanwhile,
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Figure 1. Penetration resistance is observed in avermectin-resistant Drosophila larvae. (a) Percentage of surviving avermectin-susceptible larvae and adults spotted
with 0.25 ml of acetone or 1 mM avermectin (AVM). (b) Resistance ratio of larvae and adults to AVM. (c) Percentage of surviving larvae spotted with 0.25 ml of
100 mM AVM. (d ) Larvae were spotted with 0.25 ml of 10 mM AVM and then cultured in regular medium for 2 h. Permeability of AVM was then detected by HPLC
analysis. (e) Diagram of transverse section of a larva. ( f ) Immunofluorescence staining of AVM in the fat body tissue of AVM-susceptible strain (S) and AVM-resistant
strain (R) larvae which were treated with 1 mM AVM for 3 h. Blue: nuclei; red: AVM (scale bar, 20 mm). Data were expressed as mean+ s.e.m., *p , 0.01,
compared with the corresponding group, n ¼ 3.
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AVMs can be metabolized by oxidation and hydroxylation,

which increase the polarity of AVMs [15–17]. Elevated oxi-

dation activity of enzymes such as P450 and glutathione

S-transferase can result in metabolism resistance to AVMs in

insects [9,18].

Besides these two mechanisms, reduced penetration of

insecticides in insects is another mechanism underlying the

development of the resistance to insecticides [19–23]. Because

AVMs mainly kill worms and insect larvae via contact

[23,24], reduction in epidermal permeability is potentially

related to the AVM resistance in worms and insects. How-

ever, the molecular mechanisms underlying the reduction

of epidermal permeability in AVM-resistant worms and

insect larvae are still unclear.

Drosophila melanogaster is a widely used model organism

for insects. In addition, the Drosophila larvae are similar to

nematode worms in numerous biological processes [25–27].

Because AVMs are a kind of larvicidal insecticide [28,29], we

use Drosophila larvae as the model organism in this study for

both worms and insects to explore the mechanisms underlying

the development of penetration resistance to AVM. In
addition, although the Drosophila adults were used in our pre-

vious study [30], we found that the larvae were more sensitive

to AVM than the adults (figure 1). Thus, we switched to using

larvae of D. melanogaster as the model organism in this study.

Here, we identify a clear molecular mechanism underlying the

penetration resistance to AVM in Drosophila.
2. Results
2.1. The penetration resistance shown in the

avermectins-resistant larvae
We first sought to compare the sensitivities of AVM-susceptible

strain Drosophila larvae and adults with AVM. We found that the

larvae died significantly faster than the adults when they were

exposed to the same doses of AVM (figure 1a). Meanwhile, we

found that the resistance ratio of the larvae was drastically

higher than that of the adults (figure 1b and electronic sup-

plementary material, figure S1). These findings indicate that

the larvae are more sensitive to AVM than adults. As a result,
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Figure 2. P-gp and chitin synthases are upregulated in avermectin-resistant Drosophila larvae. (a,b) Thickness of larvae body wall (a) and chitin layer (b) was
determined by microscopy. Microscopic pictures showed the cross section of the body wall or the chitin layer in cuticle. (c) The mRNA levels of chitin synthases
DmeCHS1 and DmeCHS2 in larvae detected by RT-PCR and q-PCR. (d ) The protein level of P-gp was detected by immunofluorescence and western blotting analysis.
Green: P-gp (scale bar, 100 mm). Data were expressed as mean+ s.e.m., *p , 0.05, **p , 0.01, compared with the corresponding avermectin-susceptible (S)
larvae group, n ¼ 3.
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Drosophila larvae were chosen as the model organism in this

study. Indeed, when exposed to the same concentrations of

AVM, the AVM-susceptible larvae (S larvae) died significantly

faster than the AVM-resistant larvae (R larvae; figure 1c),

which suggests that R larvae are resistant to AVM toxicity.

High-performance liquid chromatography (HPLC) analy-

sis results showed that the permeability of AVM in the larval

body of the resistant strain was only half of that in the suscep-

tible strain (figure 1d ). Previous studies have shown that

AVMs mainly exist in the original form in the body of ver-

tebrate animals [31,32], and metabolites of AVM in

Drosophila have not been reported as yet. Thus, in

this study, only the original form of AVM was detected by

HPLC, partly owing to the short treatment time. Immuno-

fluorescence analysis also showed that the amount of AVM

accumulated in the fat body of R larvae was lower than

that in S larvae, after the larvae were treated with the same

concentration of AVM for the same time (figure 1e,f ). These

results indicate that AVM can penetrate more easily into S

larvae, which leads to the faster death of S larvae. Thus, the

reduced penetration of AVM into R larvae results in their

resistance to AVM.
2.2. Upregulation of P-gp and chitin synthases in the
avermectins-resistant larvae

Epidermis is the first and most important barrier that restricts

the diffusion of chemicals including AVMs into the animal

body. To investigate whether the penetration resistance to

AVM is related to the epidermis, the structure of S and R

larvae body wall was examined with the optical microscope.

The semi-thin slice results showed that R larvae body wall

was about twice as thick as S larvae body wall (figure 2a). In

addition, electron microscopy showed that the chitin layer in

R larvae was approximately twice as thick as that in S larvae

(figure 2b). The alimentary canal is another important barrier

that restricts the diffusion of AVM. The peritrophic matrix

(PM) is composed of chitin and glycoproteins and lines the

insect intestinal lumen, and the PM can protect the midgut epi-

thelium from mechanical damage, pathogens and toxins [31].

The electron microscopy results showed that the thickness of

the PM of S and R larvae was the same (electronic supplemen-

tary material, figure S2). These results indicate that a thickened

chitin layer in the epidermis is probably one of the main

reasons for the reduced penetration of AVM in R larvae.
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In D. melanogaster larvae, there are two genes for chitin

synthases, i.e. DmeCHS1 and DmeCHS2, which belong to the

insect CHS-A and CHS-B gene families, respectively [33,34].

DmeCHS1 and DmeCHS2 are mainly expressed in the epidermis

and other tissues, respectively. The RT-PCR and q-PCR analysis

results showed that mRNA levels of the two chitin synthases,

DmeCHS1 and DmeCHS2, in R larvae were higher than those

in S larvae (figure 2c), especially for DmeCHS1. These results

indicate that the overexpression of chitin synthases probably

contributes to the thickened chitin layer in R larvae.

In the epidermal cells of animals, P-glycoprotein (P-gp) is a

key factor that regulates the penetration of AVM, because it

can transport AVM out of cells [35]. P-gp is one of the ATP-

dependent membrane transport proteins, and P-gp is mainly

expressed in barrier tissues, such as epidermis, digestive epi-

thelium and the blood–brain barrier (BBB). Western blotting

and immunofluorescence analysis results showed that P-gp

was upregulated in R larvae, particularly in the body wall
(figures 2d and 3b). In conclusion, the higher expression of

P-gp and chitin synthases in resistant larvae probably leads

to the reduction of AVM permeability in R larvae.
2.3. Activation of EGFR/AKT/ERK pathway upregulates
the expression of P-gp and DmeCHS1/2

Chitin synthases are upregulated during development and epi-

dermal wound-healing [36], and the tyrosine kinase receptor

epidermal growth factor receptor (EGFR) signalling pathway

is also activated in epidermal wound-healing models [37].

Thus, the EGFR pathway may regulate chitin synthases in

insecticide resistance. In addition, the expression of P-gp was

found to be regulated by the EGFR/AKT pathway in Droso-
phila adults [30]. In order to investigate whether the EGFR/

AKT/ERK pathway is activated in Drosophila larvae, immuno-

fluorescence analysis and western blotting analysis were used.
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We found that the EGFR/AKT/ERK pathway was acti-

vated in epidermal cells of the resistant strain (figure 3a,c). In

addition, P-gp and p-EGFR were mainly expressed in the epi-

dermis of larvae and upregulated in the epidermis of R larvae

(figure 3b). P-gp expression in the susceptible strain was

inhibited after the treatment with the EGFR phosphorylation

inhibitor lapatinib, AKT phosphorylation inhibitor wortmanin

and ERK phosphorylation inhibitor U0126 (figure 3d). Further-

more, these inhibitors reduced the mRNA levels of DmeCHS1
and DmeCHS2 in S larvae (figure 3e). These results indicate

that the EGFR/AKT/ERK pathway regulates the expression

of P-gp and chitin synthases DmeCHS1 and DmeCHS2.

To demonstrate whether the activation of the EGFR/AKT/

ERK pathway indeed induces the overexpression of the pro-

teins P-gp, DmeCHS1 and DmeCHS2 in the resistant strain,

the larvae of the two strains were treated with AVM and

lapatinib. Western blotting analysis and q-PCR assay results

showed that AVM enhanced P-gp expression and DmeCHS1/
2 mRNA levels in both the two strains of larvae (figure 3f,g).

Moreover, lapatinib inhibited the basal level of P-gp expression

and DmeCHS1/2 mRNA levels in both S and R larvae,

and further inhibited the AVM-induced overexpression of

P-gp and DmeCHS1/2. Notably, the expression of P-gp and

DmeCHS1/2 in R larvae was suppressed by lapatinib to levels

comparable with those in S larvae (figure 3f,g). In addition,

wortmanin and U0126 had similar effects in regulating P-gp

expression compared with lapatinib. Both wortmanin and

U0126 reduced P-gp and DmeCHS1/2 mRNA levels in S and

R larvae and suppressed the overexpression of P-gp and

DmeCHS1/2 in R larvae (electronic supplementary material,

figure S3). Altogether, these findings suggest that the overex-

pression of P-gp and chitin synthases DmeCHS1/2 in R larvae

is induced by the activation of the EGFR/AKT/ERK pathway.

2.4. Activation of Relish mediates the overexpression
of P-gp and DmeCHS1/2

To determine how the activation of the EGFR/AKT/ERK

pathway induces the overexpression of P-gp and DmeCHS1/
2, we detected the activity of transcription factor Relish

(NF-kB) in the larvae. The full-length Relish (110 kDa) is

not functional. Upon activation and cleavage, the N-terminal

fragment of Relish migrates into the nucleus and serves as a

transcriptional factor, whereas the C-terminal fragment

(49 kDa) remains in the cytoplasm, and can be used as an

indicator for Relish activation [38]. Compared with S larvae,

Relish in R larvae was activated (figure 4a). To determine

whether activation of Relish leads to the overexpression of

P-gp and DmeCHS1/2, the larvae of the two strains were

exposed to different concentrations of Relish activation

inhibitor pyrrolidinedithiocarbamic acid (PDTC). PDTC treat-

ment decreased P-gp expression in both of the S and R larvae

and decreased DmeCHS1/2 mRNA levels in R larvae

(figure 4b,d). Meanwhile, PDTC inhibited P-gp expression

in S and R larvae treated with AVM (figure 4c).

We next investigated the relationship between the EGFR/

AKT/ERK pathway and Relish. In the susceptible strain,

lapatinib, wortmanin and U0126 inhibited the activation of

Relish dose-dependently (figure 5a). In addition, lapatinib,

wortmanin and U0126 suppressed the expression and acti-

vation of Relish in both the S and R larvae, whereas AVM

induced the activation of Relish (figure 5b–d). Moreover, in

S2 cells, AVM induced the activation of Relish dose-

dependently and lapatinib, wortmanin and U0126 suppressed

the activation of Relish induced by AVM (figure 5e). Taken

together, our results suggest that AVM and the EGFR/AKT/

ERK pathway induces the activation of Relish, which

regulates the overexpression of P-gp and DmeCHS1/2.
2.5. Avermectin directly interacts with epidermal
growth factor receptor and activates EGFR/AKT/ERK
pathway

To explore the mechanism of the activation of the EGFR/

AKT/ERK pathway in R larvae and determine whether

AVM directly or indirectly activates EGFR, we examined the

activation of the EGFR/AKT/ERK pathway in S2 cells
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Figure 6. AVM directly interacts with EGFR and activates EGFR/AKT/ERK signalling pathway. (a – c) The protein levels of p-EGFR, p-AKT and p-ERK in S2 cells treated with
1 mM avermectin (AVM) for different times (a), 0 – 5 mM AVM for 30 min (b) or 1 mM AVM for 30 min plus 10 mM lapatinib (Lap) pretreatment for 120 min (c). (d – f ) The
co-localization of AVM with p-EGFR was detected by immunofluorescence. The S2 cells (d ), primary Drosophila epidermal cells (e) and avermectin-susceptible larvae (S; f ) were
treated with 1 mM AVM for 30 min (d,e) or 1 h (f ) with or without pretreatment with 10 mM lapatinib for 120 min. Blue: nuclei stained by Hoechst33258; green: target
proteins; red: AVM (scale bar, 10 mm). (g) The interactions of AVM with EGFR and p-EGFR were determined by co-immunoprecipitation assay in S2 cells. ‘IP’ indicates cell lysates
immunoprecipitated with non-specific IgG or anti-AVM antibody. ‘Con’, ‘AVM’, ‘Lapþ AVM’ indicates cells treated with vehicle, 1 mM AVM for 30 min and 1 mM AVM for
30 min plus 10 mM lapatinib pretreatment for 120 min, respectively. ‘IgG’ indicates the vehicle-treated cell lysates immunoprecipitated with non-specific IgG. ‘WCL’ indicates
the whole cell lysates.
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exposed to AVM. The treatment of AVM dose-dependently

and time-dependently activated the EGFR/AKT/ERK path-

way within 1 h (figure 6a,b). In addition, lapatinib inhibited

the activation of the EGFR/AKT/ERK pathway induced by

AVM (figure 6c). These results suggest that AVM activates

the EGFR/AKT/ERK pathway immediately upon contacting

the cells, which raises the possibility that AVM directly inter-

acts with the membrane protein EGFR when it contacts cells.

To test this possibility, we analysed the co-localization of

AVM and EGFR. EGFR and p-EGFR in S2 cells co-localized

with AVM after cells were exposed to AVM for 30 min.

However, pretreatment with lapatinib prevented p-EGFR

from co-localizing with AVM (figure 6d). Moreover, in primary
epidermal cells from wing imaginal discs and epidermal cells of

S larvae, AVM induced the activation of EGFR and co-localized

with p-EGFR, and pretreatment with lapatinib blocked these

effects (figure 6e,f). Furthermore, we found that EGFR and

p-EGFR co-immunoprecipitated with AVM in S2 cells and

their interactions were disrupted by lapatinib pretreatment

(figure 6g). In summary, these observations suggest that AVM

interacts with EGFR directly, which induces the activation of

the EGFR/AKT/ERK pathway.

To further confirm the interaction mode of AVM and EGFR,

we docked the AVM B1a onto the three-dimensional structures

of the ectodomain of Drosophila EGFR. We found that the

AVM most likely bound to the domain II of EGFR (electronic
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supplementary material, figure S4), which is different from

EGF [39].
sob.royalsocietypublishing.org
Open
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3. Discussion
Our study reveals that the EGFR/AKT/ERK/Relish signalling

pathway plays pivotal roles in regulating the penetration

resistance to AVM in D. melanogaster larvae. In addition,

AVM interacts with EGFR directly and activates the EGFR/

AKT/ERK signalling pathway in Drosophila epidermal cells.

This study shows firstly that the decrease of epidermal pen-

etration of AVM is related to the upregulation of DmeCHS1/2 in

AVM-resistant Drosophila larvae compared with that in

the susceptible larvae. However, an earlier study showed

that AVMs can inhibit chitin synthesis in Mucor miehei and Arte-
mia salina [40]. The difference may be due to the different doses

of AVM used in these studies. In addition, the signalling path-

ways that regulate the chitin synthases in Drosophila larvae and

Mucor miehei may not be the same.

There are notable differences in P-gp expression between

Drosophila adults and larvae. The upregulation of the AVM

efflux-transporter P-gp in BBB was found to confer the resist-

ance to AVM in Drosophila adults [30]. Unlike the adults,

which have a complete BBB structure, Drosophila larvae have

an immature one [41–43]. P-gp is mainly expressed in the epi-

dermis and gut of larvae (figure 3b), whereas P-gp is mainly

expressed in the head of adults [30]. Our results suggest that

the efflux-transporter P-gp and chitin synthases can serve as

the targets of integrated pest management to resolve the pro-

blem of insecticides resistance. However, how much role the

two play in the decrease of the penetration of AVM is

unknown. Moreover, other mechanisms may be involved in

the development of the penetration resistance, which merit

further investigation.

Identification of the signalling pathway to regulate the over-

expression of P-gp and chitin synthases is crucial for illustrating

the mechanism of penetration resistance. Our findings are con-

sistent with earlier reports showing that P-gp expression is

regulated by the EGFR signalling pathway [44,45]. The EGFR

signalling pathway also plays key roles in the development

and homeostasis of epidermal tissues [46]. The previous study

showed that the activation of the EGFR/AKT pathway could

be detected in AVM-resistant Drosophila adults [30]. However,

how EGFR/AKT was activated was unknown. Notably, we

reveal for the first time that EGFR is indeed a direct target of

AVM, and the interaction of AVM with EGFR activates the

downstream signalling pathways. The result of our docking

analysis suggests that the interaction of AVM and EGFR is differ-

ent from that of the EGF, which indicates that the mode of

binding and activation of AVM to EGFR may be novel. The

details of the mechanisms merit further studies. Over-activation

of EGFR and its downstream signalling pathways is prominent

in drug-resistant tumour tissues [47,48]. Thus, the interaction of

drug and EGFR may be responsible for the over-activation of

EGFR signalling pathways in cancers.

In this study, we discovered that the transcription factor

Relish (NF-kB) was activated by EGFR and induced the overex-

pression of chitin synthases and P-gp. Relish (NF-kB) can be

activated in a wound-healing model of Drosophila larvae [49].

In the non-activated state, Relish binds with I-kB, which inhi-

bits the activation of Relish [50]. The phosphorylation and

degradation of I-kB can induce the cleavage of Relish and the
nuclear translocation of the N-terminal fragment of Relish

[51]. AKT and ERK can regulate the phosphorylation and

degradation of I-kB by phosphorylating relevant kinases

[52,53]. NF-kB can regulate P-gp expression by directly indu-

cing the MDR1 gene transcription [54]. Thus, the EGFR/

AKT/ERK/Relish pathway may also serve as a target for resol-

ving the insecticide resistance. Note that in our earlier study, we

found that in S2 cells, Ca2þ signalling activated Relish and the

overexpression of P-gp upon AVM treatment [55]. It is likely

that the Ca2þ signalling pathway has crosstalk with the

EGFR signalling pathway, which merits further investigation.

In summary, the epidermal penetration of AVM drastically

reduces in AVM-resistant Drosophila larvae, compared with the

sensitive larvae, owing to the elevated expression of the efflux

transporter P-gp and the thickened chitin layer in the epidermis.

Furthermore, AVM directly interacts with EGFR and activates

the EGFR/AKT/ERK/Relish pathway to induce the overex-

pression of P-gp and chitin synthases in Drosophila epidermal

cells. Altogether, these findings provide new insights into

the mechanisms underlying insecticide resistance and have

important implications for drug resistance biology (figure 7).
4. Material and methods
4.1. Chemicals and reagents
AVM (containing 93% avermectin B1a and 7% avermectin

B1b) was obtained from the ZND Bio-technology Co., Ltd.

(Beijing, China), and the anti-AVM antibody was a gift

from Professor Shen in CAU (Beijing, China). The procedures

for preparing the anti-AVM antibody were as follows. First,

the structure of AVM was modified by succinylation. Then,

the 400-O-succinyl-AVM was conjugated to bovine serum

albumin (BSA). This immunizing antigen was then injected

into rabbits, and the polyclonal antibody was acquired [56].

Lapatinib (EGFR phosphorylation inhibitor) was purchased

from Selleck (Houston, TX). Wortmanin (phosphoinositide-3-

kinase (PI3K) inhibitor) and U0126 (mitogen-activated protein

kinase kinase (MEK) inhibitor) were purchased from Kinase-

chem (UK). The Relish inhibitor pyrrolidinedithiocarbamic

acid (PDTC) was purchased from Sigma-Aldrich (St Louis,

MO). The mouse monoclonal anti-P-gp antibody (C219) was

purchased from Calbiochem (Darmstadt, Germany). Anti-p-

AKT antibody, anti-p-ERK antibody, anti-AKT antibody and

anti-ERK antibody were purchased from Cell Signaling Technol-

ogy (Boston, MA). Anti-EGFR antibody was purchased from

Santa Cruz Biotechnology (Dallas, TX). Anti-p-Tyr antibody

was purchased from BD Biosciences (Franklin Lakes, NJ).

Anti-Relish antibody was purchased from the Developmental

Studies Hybridoma Bank (University of Iowa, Iowa City, IA).

4.2. Selection of avermectin-resistant fly and culture
of fly

The w1118 strain D. melanogaster was used as the AVM-

susceptible strain (S). To obtain the AVM-resistant strain (R),

we exposed susceptible D. melanogaster to AVM in standard

fly medium prepared according to the method used previously

[30]. AVM concentration was raised stepwise from 20 nM to

1.5 mM in 60 months after 100 generations. The resistant

strain can survive and reproduce in the medium containing

1.5 mM AVM. The resistance ratio of larvae (see below) was
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about 50. The third-instar larvae of the same size were used in

the experiment. All flies were cultured at 258C and 70%

humidity.

4.3. Topical drug treatment
Different concentrations of AVM were dissolved in acetone. The

third-instar larvae of the same size were chosen. The adults of

the same sizes were also used. A drop of AVM solution

(0.25 ml) was applied with a hand microapplicator (Burkard,

England) to the dorsum of the larvae and the abdomen of

adults lightly anaesthetized on ice. Control larvae and adults

were treated in the same way with acetone. Larvae and adults

were fed with fresh medium and kept at 258C and 70% humid-

ity. For each assay, 50 third-instar larvae and adults were

treated, and the whole assay was repeated three times.

4.4. Toxicity detection of fly larvae and adults
The LD50 of Drosophila adults and larvae to AVM was deter-

mined by using the topical drug treatment. Each treatment

group contains thirty larvae or adults of the same size.

Each Drosophila larva or adult was spotted with 0.25 ml differ-

ent concentrations of AVM and cultured in the standard

medium for 24 h. The AVM was dissolved in acetone. The

LD50 was calculated according to the mortality of Drosophila
at different concentrations of AVM. The resistance ratio was
the ratio of the LD50 of the R strain and the LD50 of the S

strain.
4.5. Cell culture
S2 cell line was a gift from Professor Li (Institute of Zoology,

Chinese Academy of Sciences, Beijing, China). S2 cells were

cultured in Hyclone insect medium (Thermo, Waltham,

MA) at 268C. The primary Drosophila wing epithelial cells

were obtained by culturing the imaginal discs of larvae

according to the previous report [57].
4.6. Chemical treatments of larvae
Drosophila larvae were treated with various concentrations of

AVM, lapatinib, wortmanin, U0126 and PDTC. The chemicals

were dissolved in DMSO to make stock solution and then diluted

in double distilled H2O (ddH2O) to make working solutions,

which were mixed with standard fly medium (1 : 1, v : v).

Drosophila larvae, susceptible or resistant to AVM, were trans-

ferred from standard medium into chemical-containing

medium. After 48 h treatment, the larvae were collected and

washed in ddH2O, dried by using absorbent paper and weighed.

The larvae samples were then prepared for western blotting

analysis or HPLC analysis.
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4.7. Western blotting analysis
Cells or larvae were lysed in buffer containing 50 mM Tris, pH

7.5, 150 mM NaCl, 1% Triton X-100, 10% glycerol, 1 mM

EDTA, 1% sodium deoxycholate, 1 mM PMSF and 1% protease

inhibitors. Lysates were centrifuged at 12 000 r.p.m., 48C for

15 min. Supernatants were boiled with the loading buffer for

5 min. The protein samples were electrophoresed in SDS–poly-

acrylamide gels and then transferred onto Millipore PVDF

membranes (Darmstadt, Germany). The membranes were

blocked in PBST buffer containing 5% fat-free milk (w/v) for

1 h at room temperature (RT), incubated with the corres-

ponding antibody at 48C overnight, then incubated with the

secondary antibody conjugated to horseradish peroxidase for

2 h at RT. Membranes were stained with standard ECL

reagents purchased from ComWin Biotech (Beijing, China)

and then photographed by DNR MicroChemi4.2 system

(Bio-Imaging Systems Ltd, Israel).

4.8. Immunofluorescence analysis
The larvae tissue frozen sections and S2 cells were fixed in 4%

paraformaldehyde for 10 min at RT, blocked in PBST contain-

ing 3% BSA for 1 h at 378C, incubated with the first antibody

at 378C for 1 h, then incubated with the appropriate fluorescent

probe-labelled secondary antibody for 1 h at 378C. The nuclei

were stained with Hoechst33258 for 10 min at RT. All images

were acquired using a Carl Zeiss LSM710 laser scanning

confocal microscope (Oberkochen, Germany).

4.9. Quantitative PCR analysis
The relative mRNA level of DmeCHS1 and DmeCHS2 in

Drosophila was determined by quantitative PCR using a

TaKaRa SYBR Premix Ex TaqTM (Tli RNaseH Plus) PCR kit

(Dalian, China). Each group of treated larvae weighing

100 mg was homogenized with 1 ml Trizol reagent (Invitrogen,

Carlsbad, CA) in a glass homogenizer on ice. Then, the mixture

was placed at RT for 10 min. 200 ml CHCl3 was added, and the

tubes were vortexed for 1 min and centrifuged at 12 000 r.p.m.

for 15 min at 48C. The supernatant was transferred into a new

centrifuge tube, mixed with 500 ml isopropanol, vortexed for

1 min and centrifuged at 12 000 r.p.m. for 10 min at 48C. The

precipitant was washed with 70% ethanol twice, dried and dis-

solved in 0.1% DEPC H2O. The total RNA concentration was

measured using a Biophotometer plus (Eppendorf, Hamburg,

Germany). Total RNA (1 mg) was reverse-transcribed into

cDNA by using a M-MuLV reverse transcriptase assay kit

(Fermentas, Ontario, Canada). Quantitative PCR assay was car-

ried out with a MX3000P real-time PCR thermocycler (Axygen,

California, USA). The PCR primers used are listed in the

electronic supplementary material, table S1.

4.10. Transmission electron microscopy
The larvae were dissected in PBS on ice to obtain the larva

body wall. The tissues were fixed in the fixative solution

containing 4% paraformaldehyde and 2.5% glutaraldehyde

for 24 h. Then, the tissues were fixed in 1% OsO4, dehydrated

stepwise in ethanol solutions and embedded in resin. After

48 h polymerization at 608C, the tissues were sliced at 200 or

100 nm thickness. The 200 nm slices were stained by 1% tolui-

dine blue (dissolved in 1% Borax solution) for 1 min and

observed using an optical microscope (Olympus, Tokyo,
Japan). The 100 nm slices were plated on the copper network,

stained with uranyl acetate for 10 min in the dark, washed

with PBS three times, stained with lead citrate for 30 min and

washed with PBS. The images were acquired using a

JEOL-1010 transmission electron microscope (JEOL Ltd., Japan).

4.11. HPLC analysis of avermectin permeability
After 1 h starvation in ddH2O, each larva was spotted by

0.25 ml of 10 mM AVM solution and cultured in common

corn medium for 2 h. The larvae bodies were washed with

acetonitrile three times to obtain the sample for AVM on

the surface of the larvae body. Then, the larvae were hom-

ogenized with acetonitrile on ice and centrifuged at 12

000 r.p.m. for 15 min at 48C. The supernatant was used as

the sample for AVM that has penetrated into the larvae body.

All the samples were filtered with 0.22 mm filters, blow-

dried with nitrogen and then dissolved in 60 ml acetonitrile.

Then the samples and the internalized samples were treated

with the trifluoroacetic anhydride (TFAA)–N-methyl imida-

zole (NMIM)–acetonitrile (ACN) method. First, 10 ml of a

mixture of 1-methylimidazole and acetonitrile (1/1, v/v)

was added to the sample vials. Then, 20 ml of a mixture of

TFAA and acetonitrile (1/2, v/v) was added to the sample

vials. The sample vials were vortexed for 30 s and derivatized

for 15 min in the dark. After the derivatization, 30 ml methanol

was added to the sample vials, and then vortexed for 1 min.

The AVM residues were detected with the Agilent 1100 series

HPLC system (California, USA). The amount of AVM residue

was calculated according to the standard curve. AVM per-

meability was calculated as the ratio of the amount of

internalized AVM and the sum of the amount of internalized

AVM and AVM on the surface of the larvae body.

4.12. Docking analysis
The Docking analysis of AVM B1a and Drosophila EGFR was

carried on the AutoDock. The molecule files were modified

for docking by using ADT software [58]. The PDB file of

AVM B1a was constructed by ChemBio3D. The code of

PDB file of the Drosophila EGFR ectodomain is 3I2T. The

AVM B1a was chosen as flexible ligand, and EGFR was

chosen as rigid receptor. Ten models with the lower binding

energy were shown in ADT. The docking model with the

lowest binding energy was chosen as a result.

4.13. Statistical analysis
All experiments were repeated at least three times. Data

were expressed as the means+ standard error. For statistical

analysis, Student’s t-tests were used to compare paired data

and a one-way analysis of variance followed by Dunnett’s

test was used for multiple comparisons. Values of p , 0.05

were considered significant; values of p , 0.01 were

considered extremely significant.
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