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ABSTRACT A critical step in studies of the intestinal microbiome using meta-omics
approaches is the preservation of samples before analysis. Preservation is essential for
approaches that measure gene expression, such as metaproteomics, which is used to
identify and quantify proteins in microbiomes. Intestinal microbiome samples are typi-
cally stored by flash-freezing and storage at 280°C, but some experimental setups do
not allow for immediate freezing of samples. In this study, we evaluated methods to
preserve fecal microbiome samples for metaproteomics analyses when flash-freezing is
not possible. We collected fecal samples from C57BL/6 mice and stored them for 1
and 4 weeks using the following methods: flash-freezing in liquid nitrogen, immersion
in RNAlater, immersion in 95% ethanol, immersion in a RNAlater-like buffer, and com-
binations of these methods. After storage, we extracted protein and prepared peptides
for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis to
identify and quantify peptides and proteins. All samples produced highly similar
metaproteomes, except for ethanol-preserved samples that were distinct from all other
samples in terms of protein identifications and protein abundance profiles. Flash-freezing
and RNAlater (or RNAlater-like treatments) produced metaproteomes that differed only
slightly, with less than 0.7% of identified proteins differing in abundance. In contrast,
ethanol preservation resulted in an average of 9.5% of the identified proteins differing in
abundance between ethanol and the other treatments. Our results suggest that preserva-
tion at room temperature in RNAlater or an RNAlater-like solution performs as well as
freezing for the preservation of intestinal microbiome samples before metaproteomics
analyses.

IMPORTANCE Metaproteomics is a powerful tool to study the intestinal microbiome.
By identifying and quantifying a large number of microbial, dietary, and host pro-
teins in microbiome samples, metaproteomics provides direct evidence of the activ-
ities and functions of microbial community members. A critical step for metaproteo-
mics workflows is preserving samples before analysis because protein profiles are
susceptible to fast changes in response to changes in environmental conditions (air
exposure, temperature changes, etc.). This study evaluated the effects of different
preservation treatments on the metaproteomes of intestinal microbiome samples. In
contrast to prior work on preservation of fecal samples for metaproteomics analyses,
we ensured that all steps of sample preservation were identical so that all differen-
ces could be attributed to the preservation method.

KEYWORDS gut microbes, intestinal microbiome, LC-MS/MS, metaproteomics,
microbiota, sample preservation, storage

The intestinal microbiome is a highly diverse and metabolically active community
that has profound effects on its host (1). This complex community influences the

health of its host by altering the availability of nutrients (2–5) and the host’s susceptibility
to infection and disease (6, 7). The intestinal microbiome is integral to proper host immune
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function (8–10) and host well-being (11, 12). So far, most studies have used DNA sequencing
and taxonomy-based approaches to study the intestinal microbiome, providing critical insights
into taxonomic shifts in the community-related host genotype, diet, and disease state (13–16).
Taxonomic shifts, however, have been found to not always measure important functional
shifts in the microbiome, because different taxa can perform the same function (17), and
highly similar strains can perform different functions by encoding a few unique gene clusters
(18). Therefore, the use of function-focused multiomics approaches is essential for under-
standing the role of the intestinal microbiome in health and disease (19–22).

Metaproteomics is a valuable tool to study interactions in the intestinal microbiome
and the microbiome’s influence on host health (23–25). Metaproteomics allows for the
identification and quantification of large numbers of microbial, dietary, and host pro-
teins in microbiome samples in a high-throughput fashion (26–28). Because proteins
are central to all biological processes, metaproteomics provides direct evidence of the
activities and functions of microbial community members and their contributions to
disease (29). For example, metaproteomics revealed protein biomarkers of disease in
inflammatory bowel disease (IBD) and colorectal cancer and provided insights into the
role of the microbiome in such diseases (30, 31). In addition to quantifying differences
in protein abundances between samples, metaproteomics can also be used to assess
microbial community structure based on proteinaceous biomass (32–35) and track
incorporation of specific substrates using stable isotope content of peptides (36–39).

Metaproteomics workflows are complex and variability can be introduced at every
step, from sample preparation to data acquisition by liquid chromatography with tandem
mass spectrometry (LC-MS/MS) and data processing (35). There is no standardized work-
flow for metaproteomics of intestinal microbiome samples, but some of the individual
steps have been optimized in the past, such as protein extraction (40), database creation
(41), and database searching (42). A critical step that has not yet been optimized is the
storage and preservation of samples before analysis. Adequate storage of samples is criti-
cal because exposure to environmental changes could induce changes in protein profiles
of species in the samples and thus provide misleading study results. For example, expos-
ing samples to air can strongly bias colorectal cancer studies because oxidative stress and
enrichment of bacterial superoxide dismutase enzymes that will occur from air exposure
are also characteristics of colorectal cancer in the intestinal tract (30). Therefore, appropri-
ately storing samples immediately upon collection helps to avoid post-collection changes
in protein abundances. A suitable storage method should preserve the information con-
tained in the microbiome at the time of sampling without introducing substantial bias.

Typically, microbiome samples are frozen immediately upon collection, with flash-
freezing in liquid nitrogen followed by storage at 280°C. However, flash-freezing is not
always possible, and very little is known about suitable alternatives to flash-freezing for
the preservation of microbiome samples before metaproteomics analyses. For exam-
ple, clinical or diet studies involving human subjects usually require the subjects to
perform the sampling themselves at their homes, where they do not have access to liq-
uid nitrogen (43, 44). It can be difficult to maintain sample integrity also in resource-
limited fieldwork conditions (45) or out in a wild animal’s environment, where there is
no access to liquid nitrogen and cold storage (46). Even in the laboratory, immediate
freezing in liquid nitrogen can be difficult. One specific case is to work with gnotobiotic
animals, which are invaluable models to study and manipulate the microbiota in a con-
trolled system. Gnotobiotic animals reside in isolators where everything (food, bed-
ding, etc.) entering the isolators is sterilized through autoclaving, irradiation, or strong
chemicals before being introduced through a two-ended port (47). Removing samples
from the isolators causes long delays between sampling and sample storage, thus
exposing samples to environmental changes (air exposure, temperature change, nutri-
ent depletion, etc.) before they can be adequately stored.

Several studies have been conducted to test the effects of preservation methods on
nucleic acids, but the effects of such methods on proteins are poorly understood. Freezing
at 280°C is thought to maintain sample integrity similar to fresh samples (48, 49). The
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effectiveness of storage at room temperature is typically evaluated based on compari-
sons to frozen treatments. RNAlater is a popular storage solution that has been shown to
be effective at preserving DNA in gut microbiome studies, with negligible differences
compared to freezing (50, 51). Ethanol (95% or absolute) may also be suitable for the
preservation of nucleic acids in microbiome samples before taxonomic profiling as long
as it is used consistently (45, 46, 52). However, there are studies in which these storage
solutions significantly biased the downstream results (53), particularly in RNA sequencing
studies (54), and thus great care should be taken when selecting a preservation method.
While the effects of sample preservation on nucleic acids have been extensively studied,
to the best of our knowledge, only two studies have investigated the effects of sample
preservation on protein profiles. First, Saito et al. demonstrated that RNAlater has the
potential to preserve proteomes as effectively as immediate freezing (55). Their results
are promising; however, their study was performed on a single marine microorganism
(cyanobacterium Synechococcus WH8102) and thus does not indicate whether RNAlater
would preserve samples as complex as those from the intestinal microbiome. Furthermore,
their study was performed in earlier stages of proteomics when replication was expensive
and effort-intensive. For that reason, the researchers included only technical replication, and
therefore they could not assess the robustness of RNAlater in terms of within-treatment con-
sistency. Second, Hickl et al. observed vast differences in the identifications and relative
abundances of proteins from human fecal samples depending on the preservation and stor-
age procedure applied to the samples (56). They tested two preservation and storage meth-
ods: a flash-freezing-based approach (FF) and RNAlater (RL). The first method, FF, consisted
of flash-freezing in liquid nitrogen followed by storage at280°C, cryomilling, and storage at
220°C for 16 h while immersed in RNAlater ICE. The RL method simply consisted of immer-
sion in refrigerated RNAlater for 6 h. They found less than 50% overlap in protein identifica-
tions between the two treatments. Of the overlapping proteins, they found roughly 2,000
proteins that significantly differed in abundance by more than 1.5-fold between the two
treatments. The majority of the differences they observed were attributed to taxonomy. For
example, class Actinobacteria represented about 20% of the composition of the FF samples,
whereas Actinobacteria only made up less than 2% of the composition of the RL samples.
However, one cannot attribute the differences Hickl et al. (56) observed to a specific aspect
of the preservation and storage process because of the many variables in the sample proc-
essing. For example, the flash-frozen samples were cryomilled, which could favor lysis of
Gram-positive bacteria, such as Actinobacteria, and may explain the large difference in the
relative abundance of this taxon (57).

This study aimed to (i) compare the effects of different sample preservation methods
on intestinal microbiome metaproteomes, (ii) evaluate comparable aspects of sample
processing by limiting the number of variables, (iii) assess within-treatment variability,
and (iv) evaluate the methods over a longer period of preservation/storage time.

RESULTS

A fecal master mix (homogenate) was prepared from fecal samples of healthy adult
conventional C57BL/6 mice. Aliquots of the master mix were randomized and then pre-
served using different methods. After 1 and 4 weeks of storage, the proteins were extracted
and analyzed by LC-MS/MS. Preservation methods were assessed based on the amount of
variability between replicates, and the degree of bias was compared to the degree of bias
with other methods, particularly flash-freezing.

Minimal differences in total numbers of identified features for coextracted
samples. We compared the number of peptide spectrum matches (PSMs), peptides,
proteins, and protein groups identified at a false discovery rate (FDR) of 5% between
the different treatments and time points (Fig. 1) to determine whether the preservation
treatment impacted the number of features identified. Samples that were preserved
for 1 week and coextracted as part of the first extraction batch did not significantly differ
in their total counts, regardless of the preservation method. The numbers of features for
the 4-week time point (second extraction batch) and the 1-week time point differed
slightly, but the differences did not test significant except for the samples preserved at
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280°C in RNAlater (“RF” samples). This difference is likely due to batch effects in sample
preparation and peptide quantification via microBCA assay because the 1- and 4-week
samples were prepared separately. At the 4-week time point, flash-frozen (FF) samples
preserved for 4 weeks at 280°C were significantly lower in their total counts compared
to RF samples or samples preserved in the nucleic acid preservation (NAP) buffer (N) or
autoclaved NAP buffer (AN) at room temperature.

Treatments shared over 76% of protein identifications, accounting for over 99% of
PSMs. Comparing and quantifying the proteins identified by multiple treatments showed that
most proteins were detected in every treatment. Only low-abundant proteins were not
detected in some treatments. Fig. 2A and B show Venn diagrams of the four most distinct
treatments in terms of physical and chemical properties: R, E, FF, and N. Each of these four
treatments produced metaproteomes that identified the same 4,641 proteins (76.3% of the
data set) and uniquely identified ;0.5 to 5% of proteins. In the E treatment, 281 proteins or
4.6% of the protein identifications were not detected; this was the largest proportion of unde-
tected proteins, followed by the FF treatment that did not detect 198 proteins or 3.3% of the
protein identifications. The differences were mainly proteins that were identified with very few
peptide spectral matches (PSMs). Proteins accounting for about 99.2% of all the PSMs were
detected in all four treatments. Fig. 2C and D represent the overlap of proteins between
chemically similar treatments: R, RF, N, and AN. Each of these four treatments produced meta-
proteomes that identified the same 4,878 proteins (80.4% of the data set) and uniquely identi-
fied;0.5 to 5% of proteins. The RF treatment was the most distinct of the comparison shown
in Fig. 2C (R, RF, N, and AN), with 74 unique protein identifications (;1.2%) that were not
detected in the other treatments. These 74 unique protein identifications accounted for only
327 PSMs (;0.02%), and the four treatments shared over 99.5% of PSMs.

Relative protein abundances were highly similar between all treatments except
for the ethanol treatment. Principal-component analysis (PCA), performed on the cen-
tered-Log-ratio (CLR) transformed data set of relative protein abundances, showed that

FIG 1 There were no significant differences in total numbers of PSMs, peptides, proteins, and protein groups between
samples coextracted after 1 week of preservation, and only minimal differences existed in samples coextracted after
4 weeks. FF, flash-freezing; R, RNAlater; RF, RNAlater 1 flash-freezing; N, NAP buffer; AN, autoclaved NAP buffer; E, 95%
ethanol; 1 week, preserved for 1 week and first extraction batch; 4 weeks, preserved for 4 weeks and second
extraction batch. Bars represent the arithmetic mean (n = 4 for all except 95% ethanol at 4 weeks, for which n = 3).
Error bars represent standard deviation. Asterisks indicate statistical significance (t test, P value of ,0.05). (A) Total
proteins identified at 5% FDR include the microbial, host, and dietary proteins. (B) Total protein groups identified at
5% FDR. (C) Total peptides identified at 5% FDR. (D) Total peptide spectrum matches (PSMs) identified at 5% FDR.
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the ethanol-preserved samples clustered together and clearly separated from samples
of all other treatments (Fig. 3A). If the preservation treatment did not affect protein profiles,
we would expect to see no clustering, but rather the samples would be randomly distrib-
uted over the PCA plot.

We then compared CLR-transformed relative protein abundances between treatments
using t tests corrected for multiple hypothesis testing (two-sided, FDR of 0.05 and S0 of
0.1) to identify proteins that significantly differed in abundance based on the preservation
treatment (Fig. 3B). We found no significant differences between RNAlater (R) and the
NAP buffer (N) or between the NAP buffer (N) and the autoclaved NAP buffer (AN). The
proteins not shared between these treatments (Fig. 2A and C) were sparse and lowly
abundant proteins that were not significantly different from an undetected protein
(Supplemental Data Set 2). The ethanol treatment was the most distinct treatment with,
on average, about 9.5% of the proteins significantly differing in abundance, with 247 pro-
teins being less abundant, compared to the other treatments (Supplemental Data Set 2).

FIG 2 Over 76% of microbial, host, and dietary protein identifications overlapped between treatments, and these proteins account for more than 99% of
all PSMs. Replicates of both time points were combined (n = 8 samples/treatment except for ethanol, for which n = 7). Proteins were included if they were
identified with an FDR of ,5% and at least one protein unique peptide and were present in at least three samples in the whole data set. The number of
PSMs that the proteins represent are displayed in panels B and D. (A and B) Comparison of treatments that differed most in terms of physical/chemical
properties: flash-freezing, RNAlater, 95% ethanol, and NAP buffer. (C and D) Comparison of the chemically similar treatments (RNAlater and RNAlater-like
treatments): RNAlater, RNAlater frozen, NAP buffer, and autoclaved NAP.
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Flash-frozen samples and the samples preserved in RNAlater or RNAlater-like solutions
produced metaproteomes that differed only minimally (,1% of proteins with different
abundances).

Within-treatment variability of relative protein abundances was low.We assessed
the amount of within-treatment variability in terms of quantified protein abundances
by fitting linear scatterplots for all replicates against all replicates and evaluating the
Pearson correlation coefficients (Fig. S1 to S6). The means of the Pearson correlation coeffi-
cients (Table 1) showed high correlation between replicates, indicating that within-treatment
variability was low for all treatments.

Small but significant differences in the taxonomic composition of themetaproteomes
based on the preservation method. The relative taxonomic composition of the samples
in terms of proteinaceous biomass contribution was consistent across replicates and
preservation treatments (Supplemental Text and Fig. S7). The biomass contribution is
shown per phylum in Fig. 4A and per genus in Fig. 4B for the most abundant genera:
Clostridium, Eubacterium, Butyrivibrio, Lactobacillus, Turicibacter, Blautia, Roseburia, and
Coprococcus. The abundances of specific taxa significantly differed at the phylum and
genus levels. At the phylum level, Firmicutes was overrepresented in the ethanol-preserved
samples compared to the flash-frozen and NAP-buffer preserved samples. At the genus
level, Clostridium and Blautia were subtly but significantly overrepresented in the ethanol-
preserved samples compared to all other treatments (t test, paired, two-tailed, P , 0.05).

FIG 3 Ethanol-preserved samples were distinct from all other samples in their protein abundance profiles. (A)
Principal-component analysis (PCA) of the relative protein abundances from each sample (CLR-transformed).
Diamonds, 1 week; circles, 4 weeks. (B) Number of significant differences between each treatment (two-sided t test,
FDR of 0.05, and S0 of 0.1). A significant difference represents one protein that is more abundant in one treatment
over the other for each paired comparison (refer to Supplemental Data Set 2 for directionality). Percentages in
parentheses indicate the percentage of significant proteins out of the total proteins considered (n = 6,086).
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Furthermore, NAP buffer and ethanol-preserved samples differed in their representation
of the genus Butyrivibrio, and RNAlater and ethanol-preserved samples differed in their
representation of the genus Roseburia.

The preservation methods did not bias toward specific biochemical properties
of proteins. We investigated whether the preservation treatment biased toward or
against proteins with a specific isoelectric point (pI), molecular weight (Supplemental
Data Set 3), or transmembrane domains (Supplemental Data Set 4) by comparing the
distributions of these properties in each treatment. Distributions did not differ between
treatments, indicating no bias (Fig. 5).

DISCUSSION

This study evaluated the effects of different preservation treatments on the meta-
proteomes of intestinal microbiome samples to identify a preservation method suitable to
use when flash-freezing is not an option. The data show that the metaproteomes of sam-
ples preserved at room temperature while immersed in RNAlater or RNAlater-like solutions
(NAP buffer and autoclaved NAP buffer) were highly similar to the metaproteomes of sam-
ples preserved by flash-freezing and storage at 280°C, with only negligible differences.
On the other hand, samples preserved by immersion in 95% ethanol differed substantially
from the flash-frozen samples and other samples. Because methods sharing the largest
number of discoveries/values with most of the other methods tested may be more likely

TABLE 1 Linear correlation of replicatesa

1 wk 4 wks
NAP buffer 0.9376 0.024 0.9636 0.006
Autoclaved NAP buffer 0.9656 0.008 0.9586 0.02
RNAlater 0.9576 0.01 0.9576 0.017
RNAlater1 flash-freezing 0.9386 0.034 0.9676 0.008
Flash-freezing 0.9616 0.009 0.9436 0.019
95% ethanol 0.9576 0.01 0.956 0.015
aThe table shows the mean Pearson coefficients of the linear correlation between replicates of the same
treatment and preservation duration (n = 4, except for 95% ethanol at 4 weeks, for which n = 3). We fit a linear
model for each pair of samples within a treatment and time point in R (version 4. 0. 2; psych_2.1.3 package)
using the data set of the percentage of normalized spectral abundance factors (%NSAFs).

FIG 4 Small but significant differences in the representation of microbial taxa in the metaproteomes based on the preservation method. Bars represent the
mean percent proteinaceous biomass for each taxon at the phylum level (A) or the genus level (B). Biomass contributions of specific taxa were calculated
using the method described by Kleiner et al. (32). Error bars represent the standard deviation (n = 8, except for the ethanol treatment, for which n = 7).
Asterisks represent statistical significance (t test, paired, two-tailed, P , 0.05). The eight most abundant genera are displayed in the figure. Percentages are
low because genus-level taxonomy could be assigned for 11.1 6 0.53% (n = 47) of the total proteinaceous biomass in our samples, distributed over 28
different microbial genera.
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to produce valid results (58), our results suggest that the 95% ethanol treatment creates
the largest bias in the metaproteomes. In contrast, the flash-freezing, RNAlater, and
RNAlater-like treatments are most likely to represent the protein profiles at the time of col-
lection accurately. The majority of the differences of the ethanol treatment were found at
the protein abundance level. Roughly 9.5% of all the proteins in the ethanol-preserved
samples differed in abundance from all other samples, suggesting that ethanol preserva-
tion could strongly influence study results. Taxonomic abundances also differed under the
ethanol treatment with the genera Clostridium and Blautia being overrepresented com-
pared to all other treatment samples. However, although ethanol preservation introduces
biases, within-treatment variability was low in ethanol-preserved samples. These results
suggest that ethanol may be appropriate in some studies if it is used consistently.

While we tested a diversity of popular preservation methods, there are potentially
other storage solutions and methods that could be used in addition to or instead of those
tested and described herein. There are, for example, a range of commercially available “micro-
biome” storage solutions designed for preservation of fecal material for amplicon sequencing.
These solutions could potentially also be used for metaproteomics; however, their compatibil-
ity with the proteomic workflow and quality of preservation would have to be carefully tested,
particularly as compatibility issues could arise if a preservation reagent is incompatible with
standard proteomic workflows. For example, some preservatives contain guanidinium chlo-
ride, which forms a solid if it contacts SDT lysis buffer (4% [wt/vol] SDS, 100 mM Tris-HCl, pH
7.6, 0.1 M DTT) that is used in many metaproteomics workflows.

Our results concur with the study by Saito et al. (55), which investigated sample
preservation effects on the proteome of the cyanobacterium Synechococcus WH8102.
They found RNAlater to be effective at preserving the proteome of a pure culture compared

FIG 5 Distribution of biochemical properties of identified proteins. (A) Molecular weight (MW; in kDa). (B)
Isoelectric point. (C) Number of predicted transmembrane helices (TMH). Bars represent the proportion (%) of
identified proteins belonging in each range.
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to frozen storage. Here, we demonstrated that RNAlater can also be effective at preserving
the metaproteomes of complex microbiome samples while minimizing storage effects.
Furthermore, it appears that using the cost-effective RNAlater-like solution “NAP buffer”
is a suitable alternative to the commercial RNAlater solution. Menke et al. (59) previously
demonstrated that the NAP buffer effectively preserves the DNA of intestinal microbiome
samples. Here, we demonstrated that the NAP buffer effectively preserved proteins of in-
testinal microbiome samples and did not affect protein abundances compared to sam-
ples preserved in RNAlater. Furthermore, autoclaving the NAP buffer did not significantly
affect the metaproteomes, suggesting that an autoclaved NAP buffer could be used in
studies that require sterile material (e.g., gnotobiotic isolators).

Conclusions. This study evaluated the effects of different preservation treatments
on the metaproteomes of intestinal microbiome samples. Based on our results, we recom-
mend preserving intestinal microbiome samples by freezing, in RNAlater, or in an RNAlater-
like solution before metaproteomics analyses. The consistent use of these methods appears
to minimize storage effects and thus improve the reliability of metaproteomics studies of
the intestinal microbiome.

MATERIALS ANDMETHODS
Preparation of fecal master mix and preservation treatments. Fresh fecal pellets were collected

from 12 conventional 5-month-old C57BL/6 mice obtained from the Jackson Laboratory. To remove
interindividual variation as a variable, the pellets were pooled and homogenized using a spatula to
make a fecal master mix. The master mix was split into aliquots of 8 mg each. The aliquots were either
resuspended in 200 ml of a preservation solution and stored at room temperature (;22°C) in the dark or
were flash-frozen using liquid nitrogen and stored at 280°C. The preservation treatments are discussed in
detail below. In brief, we tested six preservation treatments: flash-freezing in liquid nitrogen followed by stor-
age at 280°C (FF treatment); preservation at room temperature in RNAlater (RNAlater stabilization solution,
Invitrogen; R treatment); a combination of RNAlater and flash-freezing (RF treatment); an RNAlater-like preser-
vation buffer (NAP buffer) as described by Menke et al. (59) (N treatment); the same NAP buffer autoclaved
(AN treatment); and 95% ethanol (E treatment). We tested the effectiveness of the treatments at preserving
microbiome samples over two storage durations: 1 and 4 weeks. We prepared four replicate samples per treat-
ment and time point, with each replicate being an 8-mg aliquot of the fecal master mix described above.

Flash-freezing and storage at 280°C (FF). Immediate freezing followed by storage at 280°C is the
method most frequently used to preserve biological specimens and is regarded as the “gold-standard”
approach. Fouhy et al. observed that immediate freezing retains information similar to fresh samples in a
16S rRNA gene amplicon sequencing experiment of healthy human fecal samples (48). The only significant
differences they observed between frozen and fresh samples were in the relative abundances of the genera
Faecalibacterium and Leuconostoc; however, the differences were subtle and may be attributable to a batch
effect in DNA extraction rather than sample preservation. The effectiveness of storage solutions used at
room temperature is typically evaluated based on comparisons to frozen treatments (55).

Immersion in RNAlater and storage at room temperature (R). RNAlater stabilization solution is a
popular storage reagent. Its effectiveness can be attributed to its ability to quickly permeate tissue to stabilize
and protect RNA. RNAlater is effective at preserving nucleic acids for intestinal microbiome studies, with negli-
gible bias compared to freezing (50). RNAlater has the potential to preserve proteins because its main compo-
nent is ammonium sulfate, and ammonium sulfate precipitates proteins that can later be resolubilized without
degradation. Saito et al. demonstrated that RNAlater is effective at preserving the proteome of the marine cya-
nobacterium SynechococcusWH8102 (55). In our study, we immersed samples in RNAlater (Invitrogen) in a 1:10
sample:solution ratio and then stored them at room temperature (;22°C) in the dark.

Immersion in RNAlater and flash-freezing followed by storage at room temperature (RF). To
determine whether the use of a storage solution makes a difference compared to storing samples dry at
280°C, we immersed RF samples in RNAlater (Invitrogen) and flash-froze the tubes in liquid nitrogen
before storing them at 280°C. Observed differences between R and RF samples would provide evidence
regarding the effects of freezing on sample integrity.

Immersion in NAP buffer and storage at room temperature (N). The major limitation of RNAlater
is its high cost. It has been demonstrated that RNAlater-like buffers work as effectively as the commercially
available solution (60). Menke et al. even argue that their RNAlater-like solution called nucleic acid preservation
(NAP) buffer outperformed commercial RNAlater in preserving DNA for 16S rRNA gene amplicon sequencing
experiments based on comparisons with immediately frozen controls (59). NAP buffer was included as a treat-
ment in this study and was prepared as previously described by Camacho-Sanchez et al. (60). Briefly, 1.5 L of
NAP buffer (pH 5.2) contained 935 mL of ultrapure water, 700 g of ammonium sulfate, 25 mL of 1 M sodium ci-
trate, and 40 mL of 0.5 M EDTA. We prepared the solution fresh 2 days before the experiment. We immersed
the samples in the NAP buffer solution in a 1:10 sample:solution ratio before storing them at room tempera-
ture (;22°C) in the dark.

Immersion in Autoclaved NAP buffer and storage at room temperature (AN). RNAlater and
RNAlater-like buffers do not need to be autoclaved because their chemical composition inhibits the
growth of contaminants. The manufacturers of RNAlater recommend against autoclaving the reagent.
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However, in some cases, such as when working with gnotobiotic isolators, the solution needs to be auto-
claved to prevent the introduction of microorganisms into the isolators. We tested an autoclaved version
of the NAP buffer as an additional treatment to simulate real experimental conditions with gnotobiotic
isolators. The same solution described above as the N treatment, from the same batch, was autoclaved
(60 min at 121.5°C) 2 days before the start of the experiment. We immersed the samples in the auto-
claved NAP buffer solution in a 1:10 sample:solution ratio before storing them at room temperature
(;22°C) in the dark.

Immersion in 95% ethanol and storage at room temperature (E). Alcohol preservation is a com-
mon method in which biological specimens are preserved by dehydration. Hale et al. (46) found that
absolute ethanol worked as well as immediate freezing of DNA for preserving samples prior to metage-
nomics analysis. The effectiveness of ethanol as a preservation treatment depends on its concentration.
Sinha et al. (61) observed low stability of microbial DNA when preserved in 70% ethanol. Saito et al. (55)
observed that 90% was not ideal for the preservation of the proteome of the marine cyanobacterium
Synechococcus WH8102 as only ;75% of the proteins were recovered compared to flash-freezing.
Because the organism studied by Saito et al. (55) is very different from the intestinal microbiome, we
included ethanol (95%) as a treatment. We prepared 95% ethanol by mixing pure anhydrous (200 proof/
100%) ethyl alcohol (Koptec) with ultrapure water (Optima LC/MS Grade, Fisher Chemical).

Protein extraction and peptide preparation.We prepared samples for metaproteomics analysis at
two time points: after storing the samples for 1 week and 4 weeks. We removed the storage solutions
from the samples by centrifugation at 21,000 � g for 5 min and then resuspended the samples in 400 ml
of SDT lysis buffer (4% [wt/vol] SDS, 100 mM Tris-HCl, pH 7.6, 0.1 M DTT). Cells were lysed by bead-beat-
ing in lysing matrix E tubes (MP Biomedicals) with a Bead Ruptor Elite (Omni International) for 5 cycles
of 45 s at 6.45 m/s with 1-min dwell time between cycles, followed by heating at 95°C for 10 min. The
lysates were centrifuged for 5 min at 21,000 � g to remove cell debris. We prepared peptides according
to the filter-aided sample preparation (FASP) protocol described by Wi�sniewski et al. (62). All centrifuga-
tions mentioned below were performed at 14,000 � g. Samples were loaded onto 10-kDa molecular
weight cutoff (MWCO) 500-ml centrifugal filters (VWR International) by combining 60 ml of lysate with
400 ml of urea solution (8 M urea in 0.1 M Tris-HCl, pH 8.5) and centrifuging for 30 min. This step was
repeated twice until the filter capacity was reached. The filters were washed twice by applying 200 ml of
urea solution followed by 40 min of centrifugation. 100 ml IAA solution (0.05 M iodoacetamide in urea
solution) was then added to filters for a 20-min incubation followed by centrifugation for 20 min. The fil-
ters were washed three times with 100 ml of urea solution and 20-min centrifugations, followed by
buffer exchange to ABC (50 mM ammonium bicarbonate). Buffer exchange was accomplished by adding
100 ml of ABC and centrifuging three times followed by centrifugation for 20 min. Tryptic digestion was
performed by adding 0.85 mg of MS grade trypsin (Thermo Scientific Pierce, Rockford, IL) in 40 ml of ABC
to the filters and incubating for 16 h in a wet chamber at 37°C. The tryptic peptides were eluted by add-
ing 50 ml of 0.5 M NaCl and centrifuging for 20 min. Peptide concentrations were determined with the
Pierce micro BCA assay (Thermo Fisher Scientific) following the manufacturer’s instructions.

LC-MS/MS. The samples were analyzed by one-dimensional LC-MS/MS using a published method
(63) with several modifications. The samples were blocked and randomized according to Oberg and
Vitek’s method (64) to control for batch effects. For each sample, 600 ng of tryptic peptides were loaded
with an UltiMate 3000 RSLCnano liquid chromatograph (Thermo Fisher Scientific) in loading solvent A
(2% acetonitrile, 0.05% trifluoroacetic acid) onto a 5-mm, 30-mm-inner diameter C18 Acclaim
PepMap100 precolumn and desalted (Thermo Fisher Scientific). Peptides were then separated on a 75-
cm � 75-mm analytical EASY-Spray column packed with PepMap RSLC C18, 2-mm material (Thermo
Fisher Scientific) heated to 60°C via the integrated column heater at a flow rate of 300 nL min21 using a
140-min gradient going from 95% buffer A (0.1% formic acid) to 31% buffer B (0.1% formic acid, 80%
acetonitrile) in 102 min, then to 50% B in 18 min, to 99% B in 1 min, and ending with 99% B. Carryover
was reduced by wash runs (injection of 20 ml acetonitrile with 99% eluent buffer B) between samples.

The analytical column was connected to a Q Exactive HF hybrid quadrupole-Orbitrap mass spec-
trometer (Thermo Fisher Scientific) via an Easy-Spray source. Eluting peptides were ionized via electro-
spray ionization (ESI). MS1 spectra were acquired by performing a full MS scan at a resolution of 60,000
on a 380 to 1,600 m/z window. MS2 spectra were acquired using a data-dependent approach by select-
ing for fragmentation the 15 most abundant ions from the precursor MS1 spectra. A normalized collision
energy of 25 was applied in the high cell density (HCD) cell to generate the peptide fragments for MS2

spectra. Other settings of the data-dependent acquisition included a maximum injection time of 100 ms,
a dynamic exclusion of 25 s, and exclusion of ions of 11 charge state from fragmentation. About 60,000
MS/MS spectra were acquired per sample.

Protein Identification Database.We constructed a protein sequence database for identifying proteins
from the four main components of the sample: the host, wheat (the main component of mouse chow), the
microbiota, and potential contaminants. Protein sequences of the mouse host, Mus musculus, were down-
loaded from Uniprot (https://www.uniprot.org/proteomes/UP000000589). Protein sequences of wheat,
Triticum aestivum, were downloaded from Uniprot (https://www.uniprot.org/proteomes/UP000019116). For
the microbiota sequences, a public database constructed by Xiao et al. (65) was used. While the use of such
a reference database is not recommended for studies that address specific biological questions, because it
has been shown that such reference databases can lead to lower identification rates and species and protein
miss assignments (41, 66), it is sufficient for determining the overall effects of sample preservation and prep-
aration methods. The database from Xiao et al. (65) contains;2.6 million “nonredundant” genes from meta-
genomic sequencing of fecal material from 184 mice. The corresponding annotated protein sequences were
downloaded from GigaDB (http://gigadb.org/dataset/view/id/100114/token/mZlMYJIF04LshpgP). The
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taxonomy (available as a separate file) was integrated into the string of the sequence descriptions using the
join command in Linux. Most (67.8%) of the sequences were assigned a taxonomy at the phylum level, and
9.8% of the sequences were assigned at the genus level (65). Initial analyses suggested the presence of
sequences that were too similar for adequate discrimination in the downstream workflow, so the protein
sequences were clustered with an identity threshold of 95% using the CD-HIT tool (67). About 8% of the
sequences were combined into clusters, while the remaining ;92% remained as individual sequences. Also
included in the database were sequences of common laboratory contaminants (http://www.thegpm.org/
crap/). The database contained a total of 2,396,591 protein sequences and is included with the PRIDE sub-
mission for this study (PXD024115).

Protein identification and quantification. For peptide and protein identification, MS data were
searched against the above-described database using the Sequest HT node in Proteome Discoverer ver-
sion 2.3.0.523 (Thermo Fisher Scientific) with the following parameters: digestion with trypsin (full), max-
imum of two missed cleavages, 10-ppm precursor mass tolerance, 0.1-Da fragment mass tolerance and
maximum of 3 equal dynamic modifications per peptide. We considered the following dynamic modifi-
cations: oxidation on M (115.995 Da), carbamidomethyl on C (157.021 Da), and acetyl on the protein N
terminus (142.011 Da). Peptide false discovery rate (FDR) was calculated using the Percolator node in
Proteome Discoverer, and only peptides identified at a 5% FDR were retained for protein identification.
Proteins were inferred from peptide identifications using the Protein-FDR Validator node in Proteome
Discoverer with a target FDR of 5%. From the generated multiconsensus data set, we removed contami-
nant (cRAP sequences) and low confidence proteins (.5% FDR) and kept proteins that were identified
by at least 1 protein unique peptide. We used this filter instead of the frequently used “two-peptide
rule” because the two-peptide rule tends to increase the rate of false discoveries (58). To decrease the
number of “one-hit wonder” proteins, we removed proteins that were not detected in a total of at least
3 samples (n = 47 samples in total), which is the minimum number of replicates in one treatment and
time point. The data set contained 6,086 proteins after applying these filtering steps. The data were
then normalized by calculating normalized spectral abundance factors (NSAFs) (68) and multiplied by
100 to give the relative protein abundance as a percentage.

Quality assessment and outlier analysis. We assessed data quality by first inspecting raw data in
the Xcalibur software (Thermo Fisher Scientific) and then comparing the number of peptide spectrum
matches (PSMs), peptides, proteins, and protein groups identified in each sample individually. We tested
for statistical significance using Student’s t test (two-tailed, equal variability, FDR of 0.05). Samples in the
data set had on average 25,220 6 4.954 proteins identified at 5% FDR and 3,499 6 662 identified pro-
tein groups. Assuming the numbers of proteins identified per sample were normally distributed data,
about 99.7% of the samples in the data set were expected to have at least 10,358 detected proteins and
1,513 protein groups. These numbers correspond to the means stated above minus three standard devi-
ations. One ethanol-preserved sample (Sample E6) was deemed an outlier and was removed from the
data set because it had only 767 proteins and 84 protein groups. We suspect the protein extraction for
that particular sample failed because of leaks in the filter unit during sample preparation.

Data analyses. To investigate the degree of overlap in protein identifications between treatments,
we used the filtered data set of 6,086 proteins. If a protein was detected in at least one sample of a treat-
ment within this data set, it was counted as identified in that treatment. We imported the accession
codes of the identified proteins into Venny 2.1 (69) to create Venn diagrams representing the overlap
between treatments in terms of identified proteins.

To identify differentially abundant proteins between treatments that are statistically significant, we
performed a centered-log-ratio (CLR) transformation in R (version 4.0.2, compositions_2.0-1 package)
(70) on peptide spectrum matches (PSMs) before performing statistical tests. We added 1 to every PSM
value before performing the CLR transformation to protect against issues with missing values. Although
CLR-normalized counts lose interpretability, CLR is a method better suited for statistical analyses of com-
positional data such as metaproteomics data (71, 72). Pairwise comparisons of all treatments were per-
formed in the Perseus software platform (version 1.6.12.0) (42) using a Student’s t test corrected for mul-
tiple hypothesis testing with a permutation-based FDR of 5% (S0 = 0.1, both sides, not paired).

We used a principal-component analysis (PCA) to visualize how samples separate or cluster based
on relative protein abundances. We performed the analysis in the Perseus software platform (version
1.6.12.0) (42) on the CLR-transformed data set described above.

We investigated whether the preservation treatment affected the measured abundances of specific taxa
by comparing the relative biomass contributions of the taxa. We inferred taxonomy based on the annotations
that we obtained from http://gigadb.org/dataset/view/id/100114/token/mZlMYJIF04LshpgP. This database was
created by Xiao et al., who performed annotations based on gene alignments with the NCBI-NR database (65)
(see “Protein Identification Database” section above). Biomass contributions of specific taxa were assessed at
the phylum and genus levels using the method described by Kleiner et al. (32). Briefly, proteins were filtered
for at least two protein unique peptides to increase the confidence in taxonomic identifications, and PSMs
summed by taxon were used to estimate the biomass contribution of each taxon in the metaproteomes.

We investigated whether preservation treatments were biased toward proteins with specific bio-
chemical characteristics such as isoelectric point (pI), molecular weight, or presence of transmembrane
domains. We retrieved the pI and molecular weight associated with each identified protein from
Proteome Discoverer and detected transmembrane domains by searching sequences of the identified
proteins on the TMHMM 2.0 server (73). Then, we compared the distributions of these properties in each
treatment as histograms with defined ranges.

Lastly, we assessed the amount of within-treatment variation using linear regression scatterplots in R
(version 4. 0. 2; psych_2.1.3 package). We fit the scatterplots onto the percentage of normalized spectral
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abundance factors (%NSAFs) for each pair of replicates that received the same treatment (n = 4, except
for the ethanol treatment time point 4 weeks: n = 3 because sample E6 was removed). We then com-
pared the Pearson correlation coefficients.

Ethics approval. The protocols for husbandry and experimentation of all mice used in this study
were approved by the Institutional Animal Care and Use Committee at North Carolina State University
(Institution reference no. D16-00214).

Data availability. The mass spectrometry metaproteomics data and protein sequence database
were deposited to the ProteomeXchange Consortium via the PRIDE (74) partner repository with the data
set identifier PXD024115.
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