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Abstract: Integral membrane proteins (IMPs) fulfill important physiological functions by providing
cell–environment, cell–cell and virus–host communication; nutrients intake; export of toxic com-
pounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide
mutations, modifications in membrane properties and/or other environmental factors—resulting in
damaged binding to ligands and the adoption of non-physiological conformations that prevent the
protein from returning to its physiological state. Thus, elucidating IMPs’ mechanisms of function
and malfunction at the molecular level is important for enhancing our understanding of cell and
organism physiology. This understanding also helps pharmaceutical developments for restoring or
inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs’
structure and the relation between structural dynamics and function. Typically, these studies are con-
ducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane
mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural
and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nan-
odiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs
reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP
complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.

Keywords: integral membrane proteins; lipid membrane mimetics; detergent micelles; bicelles;
nanodiscs; liposomes

1. Introduction

Integral membrane proteins (IMPs) (Figure 1) reside and function in the lipid bilayers
of plasma or organelle membranes, and some IMPs are located in the envelope of viruses.
Thus, these proteins are encoded by organisms from all living kingdoms. In almost all
genomes, approximately a quarter of encoded proteins are IMPs [1,2] that play critical
roles in maintaining cell physiology as enzymes, transporters, receptors, and more [3–5].
However, when modified via point mutations, deletion, or overexpression, these proteins’
function becomes abnormal and often yields difficult- or impossible-to-cure diseases [6,7].
Because of IMPs’ important role in physiology and diseases, obtaining their high-resolution
three-dimensional (3D) structure in close to native lipid environments; elucidating their con-
formational dynamics upon interaction with lipids, substrates, and drugs; and ultimately
understanding their functional mechanisms is highly important. Such comprehensive
knowledge will greatly improve our understanding of physiological processes in cellular
membranes, help us develop methodologies and methods to overcome protein malfunction,
and improve the likelihood of designing therapeutics for protein inhibition. Notably, it is
remarkable that almost 40% of all FDA-approved drugs exploit IMPs as their molecular
targets [8,9].
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3 Å  or even higher resolution; improving data detection and processing for single-particle 

cryo-electron microscopy (cryoEM) to increase the number of resolved IMPs’ structures 

at ca. 3.5–3 Å  resolution [21–23]; the contribution from single-molecule FRET spectroscopy 

(smFRET) toward understanding IMPs’ conformational dynamics in real time under 

physiological environment conditions [24–26]; the growing number of highly sophisti-

cated studies using EPR spectroscopy via continuous wave (CW) and pulse methods to 

uncover the short- and long-range conformational dynamics underlying IMPs’ functional 

mechanisms [27–33]; advancing NMR spectroscopy [34–36] and particularly solid-state 

NMR applied to proteins in lipid-like environments [37–39]; conducting extensive studies 

using site-directed mutagenesis to identify the roles of certain amino acid residues in the 

IMPs’ function [40–42], molecular dynamics computational studies [43–45]; and more. De-

spite this substantial progress, IMPs are still understudied and require further research. 
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traversing strands (D) and can be either monomeric or oligomeric. The lipid membrane bilayer is shown in orange. The 

structures of IMPs with PDB accession codes 5EH6 (A), 2KSF (B), 5OR1 (C), and 4GPO (D) are shown in the figure. The 

membrane orientation was not considered. 
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must uncover and characterize numerous diverse functional mechanisms. Any step in the 

workflow, from gene to characterizing IMPs’ structure and function can present chal-

lenges, such as poor solubilization efficiency from the host cell membrane, limited long-

term stability, low protein expression, and more [46–48]. Another serious issue is identi-

fying and developing appropriate membrane protein hosts, i.e., lipid membrane-like mi-

metics, to which IMPs are transferred from the native membranes where they are ex-

pressed, or from inclusion bodies in the case of eukaryotic or viral proteins produced in 

E. coli. [49] This is needed for further purification and in vitro functional and structural 

studies [50–54]. In general, IMPs are difficult to solubilize away from their native environ-

ment in the cell membrane due to their hydrophobic regions [55]. Also, removing these 

proteins from their native cellular form sometimes results in evident functional and struc-

tural implications [54]. Thus, selecting a suitable membrane mimetic for each particular 

protein is critical for obtaining samples of functional proteins for in vitro studies on active 

or purposely inhibited protein states. Furthermore, the isolated and purified IMPs often 

need to be obtained at concentrations and purity, which are satisfactory for the biochem-

ical and biophysical techniques used for these proteins’ characterization. 

Due to the high importance of membrane mimetics for accommodating and maintain 

IMPs’ native state, special attention must be paid to the current state and further prospec-

tive when developing these nano-sized membrane platforms. Therefore, we focus here on 

reviewing the most widely used and emerging membrane mimetics, which are detergents, 
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Figure 1. Representative types of IMPs: The α-helical IMPs can have just one helix (A) or multiple helices (B) that traverse
the membrane; they can be multimeric as well (C). The β-barrel membrane proteins typically have multiple membrane-
traversing strands (D) and can be either monomeric or oligomeric. The lipid membrane bilayer is shown in orange. The
structures of IMPs with PDB accession codes 5EH6 (A), 2KSF (B), 5OR1 (C), and 4GPO (D) are shown in the figure. The
membrane orientation was not considered.

Undeniably, functional and structural studies of IMPs have greatly advanced in recent
decades by developing diverse in-cell and in-vitro functional assays [10–13]; advancing the
X-ray crystallography applications for membrane proteins in detergents [14,15], bicelles,
nanodiscs, and lipidic cubic phases [15–20] to determine the structure at a typical 3 Å
or even higher resolution; improving data detection and processing for single-particle
cryo-electron microscopy (cryoEM) to increase the number of resolved IMPs’ structures at
ca. 3.5–3 Å resolution [21–23]; the contribution from single-molecule FRET spectroscopy
(smFRET) toward understanding IMPs’ conformational dynamics in real time under phys-
iological environment conditions [24–26]; the growing number of highly sophisticated
studies using EPR spectroscopy via continuous wave (CW) and pulse methods to un-
cover the short- and long-range conformational dynamics underlying IMPs’ functional
mechanisms [27–33]; advancing NMR spectroscopy [34–36] and particularly solid-state
NMR applied to proteins in lipid-like environments [37–39]; conducting extensive studies
using site-directed mutagenesis to identify the roles of certain amino acid residues in the
IMPs’ function [40–42], molecular dynamics computational studies [43–45]; and more.
Despite this substantial progress, IMPs are still understudied and require further research.

The enormous diversity and complexity of IMPs challenges researchers because they
must uncover and characterize numerous diverse functional mechanisms. Any step in the
workflow, from gene to characterizing IMPs’ structure and function can present challenges,
such as poor solubilization efficiency from the host cell membrane, limited long-term
stability, low protein expression, and more [46–48]. Another serious issue is identifying
and developing appropriate membrane protein hosts, i.e., lipid membrane-like mimetics,
to which IMPs are transferred from the native membranes where they are expressed, or
from inclusion bodies in the case of eukaryotic or viral proteins produced in E. coli [49].
This is needed for further purification and in vitro functional and structural studies [50–54].
In general, IMPs are difficult to solubilize away from their native environment in the
cell membrane due to their hydrophobic regions [55]. Also, removing these proteins
from their native cellular form sometimes results in evident functional and structural
implications [54]. Thus, selecting a suitable membrane mimetic for each particular protein
is critical for obtaining samples of functional proteins for in vitro studies on active or
purposely inhibited protein states. Furthermore, the isolated and purified IMPs often need
to be obtained at concentrations and purity, which are satisfactory for the biochemical and
biophysical techniques used for these proteins’ characterization.

Due to the high importance of membrane mimetics for accommodating and maintain
IMPs’ native state, special attention must be paid to the current state and further prospective
when developing these nano-sized membrane platforms. Therefore, we focus here on
reviewing the most widely used and emerging membrane mimetics, which are detergents,
multilamellar lipid emulsions, unilamellar liposomes, Lipodisqs®/nanodiscs, bicelles,
amphipols, and lipidic cubic phases (LCPs), in IMP purification and structure–function
studies. Additionally, we describe applications of these mimetics for particular IMPs and
discuss how selecting a membrane mimetic affects these proteins’ properties. Of course,



Membranes 2021, 11, 685 3 of 29

due to rapidly increasing contributions in the field and space limitations, this review
cannot cover all the developments and applications of membrane mimetic systems and
their applications in membrane functional and structural molecular biology studies.

2. An Overview of the Most Widely Used Lipid Membrane Mimetics and Their
Applications in Functional and Structural Studies of Integral Membrane Proteins

The development of lipid membrane mimetics to make IMPs amenable for isola-
tion, purification, and in vitro characterization has a long history. Generally, a membrane
mimetic should reproduce the lipid bilayer properties, or at least recreate the hydropho-
bic core environment of a lipid bilayer in its most fundamental form [54,56]. Although
detergents have been the most widely used substitute for the membrane environment,
in the recent decades a great deal of effort has been invested to expand the diversity of
membrane mimetics and to use more lipid bilayer-like structures, which together with the
incorporated proteins have high solubility and stability. These novel membrane mimetics
provide the following advantages for the incorporated IMPs: (i) convenience to investigate
them via research technologies that are impossible or difficult to execute in the presence of
detergents, (ii) improved stability, and (iii) provision of an environment with a chemical
composition and/or physical characteristics closer to the native lipid membrane bilayer
environment [57]. However, all of these membrane mimetics have pros and cons, and not
all are compatible with various protein research techniques.

Here, we further describe these membrane mimetics and discuss their applications in
studying IMPs.

2.1. Detergents and Detergent Micelles in Studies of Integral Membrane Proteins
2.1.1. General Properties of Detergents and Detergent Micelles

Detergents are the archetypal lipid membrane mimetics and have been extensively uti-
lized for the solubilization and characterization of IMPs. They are amphipathic molecules
and, above a certain so-called critical micelle concentration (CMC), self-aggregate to form
micelles in aqueous solutions (Figure 2A). Saponins and naturally occurring bile salts
were the first detergents used for biochemical studies [58,59]. Currently, ample diverse
detergents with variable biochemical and biophysical characteristics are available.
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Figure 2. IMPs in detergents: (A) In aqueous solution, above a certain concentration (CMC), de-
tergent molecules self-associate to form close to spherical aggregates (micelles) with hydrophilic
and hydrophobic portions facing the aqueous environment and the micelle interior, respectively.
(B) Detergents are used for the extraction of IMPs from the native membrane of expression host—
detergent at a high concentration, much above its CMC, is mixed with the native membranes
containing the IMP of interest; due to its hydrophobic properties the detergent mixes with the mem-
brane lipids and solubilizes the membrane; as a result, mixed IMP–lipid–detergent, IMP–detergent
or detergent–lipid complexes are formed; thereafter, the lipid molecules are removed in the next
purification steps unless specific lipids are tidily bound to the IMP. (C) The chemical formulas of
some of the most widely used in studies of IMPs detergents are shown: SDS is negatively charged,
CHAPS is zwitterionic, DDM is non-charged; and 14:0 Lyso PG is negatively charged.
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Detergents fit into three major classes (Figure 2C): ionic detergents have either pos-
itively or negatively charged headgroups and are strong denaturants or harsh mem-
brane mimetics owing to their effect on IMPs’ structure, e.g., sodium dodecyl sulfate
(SDS) has negatively charged headgroups; zwitterionic detergents, e.g., the traditional 3-[(3-
cholamidopropyl)dimethyl-ammonio]-1-propane-sulfonate (CHAPS) or Lauryl-dimethylamine-
N-oxide (LDAO), have zero overall molecular charge, exhibit a less pronounced denatura-
tion effect compared to ionic detergents and a stronger solubilization potential compared
to non-ionic detergents, and are hence categorized as an intermediate between non-ionic
and ionic detergents; and non-ionic detergents are comparatively mild, have non-charged hy-
drophilic groups, tend to shield the inter- and intra-molecular protein–protein interactions
and maintain the structural integrity of solubilized proteins, e.g., dodecyl-L-D-maltoside
(DDM), lauryl-maltose neopentyl-glycol (LMNG), and octyl-L-D-glucoside (OG) [54,60,61].
Phospholipid-like detergents are either charged, like 14:0 Lyso PG (1-myristoyl-2-hydroxy-
sn-glycero-3-phospho-[1′-rac-glycerol]) and 16:0 Lyso PG (1-palmitoyl-2-hydroxy-sn-glycero-
3-phospho-[1′-rac-glycerol]), or zwitterionic, like 14:0 Lyso PC (1-myristoyl-2-hydroxy-sn-
glycero-3-phosphocholine) and Fos-Choline 12. These have also been extensively used in
studies of IMPs [62,63].

2.1.2. Detergent Applications in Integral Membrane Proteins Solubilization, Purification,
and Stabilization

Typically, the first step in transmembrane protein purification is extracting it from
the host membrane or inclusion body. The protein extraction from the host membrane
is carried out by adding an appropriate detergent at a high concentration (several times
above the CMC) to the homogenized proteo-lipid membrane, which solubilizes the mem-
brane (Figure 2B). Initially, destabilization and fragmentation of lipid bilayer occur due to
inserting the detergent molecules into the membrane. Subsequently, the lipid membrane is
dissolved, and then IMP-detergent, lipid-detergent, and lipid-IMP-detergent mixed com-
positions are formed [64]. Various detergents exhibit different capacities for solubilizing
biological membranes. Similarly, the type of detergent used for solubilization can affect the
preservation of specifically bound lipid molecules in the IMP’s final detergent-solubilized
state [65]. Multiple detergents must be screened to identify those that maintain the IMP’s
structural integrity and functional activity, and suit downstream applications [54]. For
instance, detergents with a low CMC can effectively solubilize most membranes but are
less appropriate for methods requiring detergent removal because they can be difficult
to remove later [66]. Also, using a mild detergent that only binds to the transmembrane
region of a given IMP and can retain key lipid interactions is essential for successful
studies [67]. Once solubilized, the IMPs’ purification follows the same principles as for
purifying soluble proteins, utilizing chromatographic methods like affinity, gel filtration,
and/or ion-exchange chromatography. Alternatively, when IMPs are deposited into inclu-
sion bodies, such as eukaryotic proteins or prokaryotic outer membrane proteins expressed
in E. coli, their refolding into detergent micelles is an efficient approach to obtain solubilized
membrane proteins in a physiologically-relevant state. Thus, due to their convenience and
large variability, detergents are one of the most extensively used membrane mimetics and
are almost unavoidably utilized for extracting and solubilizing IMPs from host membranes
and for screening for optimal IMP stability [68,69]. In many studies, detergents are also
used as intermediate IMP hosts from which the IMP is transferred into more lipid-like
and lipid-bilayer-like mimetics, such as nanodiscs, liposomes, and other for additional
downstream investigations [54].

On the other hand, the hydrophobic tails of detergent molecules in the micelle, which
are shorter and more mobile compared to lipids’ alkyl tails, make an inadequate mimic
of the lipid bilayer. Due to a mismatch in hydrophobic thicknesses, the isolated IMPs
and the detergent micelle can also influence each other’s shape, leading to the adoption
of non-physiological IMP conformations [70]. In addition, the hydrophobic packing in
proteo-micelles is weaker than those for IMPs in a lipid bilayer, allowing increased water
penetration into the detergent micelle and leading to IMPs’ structural instability [71].
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Despite these deficiencies, the detergents and detergent micelles are currently among the
most widely used membrane mimetics for in vitro studies of IMPs.

2.1.3. Applications of Detergents in Functional Studies of Integral Membrane Proteins

Although IMPs’ activity assays have been conducted mostly in lipid bilayers and
predominantly on liposome-reconstituted IMPs, functional studies of detergent-solubilized
IMPs have also been carried out. Studies have investigated substrates’ binding affinities to
characterize a critical stage initiating the substrate translocation via membrane transporters
and channels. These studies monitored the binding of a radioactively labeled substrate in
the case of the prokaryotic Na/tyrosine transporter (Tyt1) [13], and isothermal titration
calorimetry (ITC) studies elucidated the binding of ligands (ions and other substrates) to
transporter/channel or receptor IMPs [72–75]. The ATPase activity of ABC transporters in
detergents was also examined [76,77]. It was found in such studies that a LmrA transporter
in FC-16 detergent has higher ATPase activity and ligand binding compared to LmrA
solubilized in DDM [78].

2.1.4. Detergent Applications in Studies of Integral Membrane Proteins Using Biophysical
and Structural Biology Methods

Detergent-solubilized IMPs have been extensively studied by almost all available
biophysical and structural biology techniques to determine physiologically relevant or
disease-linked protein conformations and conformational transitions with and without lig-
ands, e.g., substrates or inhibitors, bound to the protein molecules. Currently, most existing
atomic-resolution X-ray crystal structures are of detergent-solubilized IMPs. Importantly,
IMPs’ proper folding and monodispersity are critical for a successful crystallization. Several
approaches have been utilized to assess the IMP homogeneity: size exclusion chromatogra-
phy (SEC) with light scattering and sedimentation equilibrium centrifugation analyses [79],
fluorescence-detection SEC [80], polypeptide thermal stability using a thiol-specific fluo-
rescent reporter to monitor cysteine residue accessibility upon denaturation [81], nanoDSF
with light scattering [82], and thermal or chemical denaturation using circular dichroism
(CD) spectroscopy to monitor the stability of IMPs’ secondary structure [83,84]. Thus,
multiple detergents must be screened, and those that maintain protein homogeneity and
integrity are considered for further use [82,85]. Still, other factors appear key to successful
IMP crystallization. Given that not just the protein, but the protein–detergent complex must
crystallize [86], several analyses searched for a trend in the conditions used for obtaining
high-quality IMP crystals [87]. Regarding the detergent used, statistics as of 2015 show that
half of IMP crystal structures were obtained in alkyl maltopyranosides, followed by the
alkyl glucopyranosides (23%), amine oxides (7%), and polyoxyethylene glycols (7%) [87].
The most successful alkyl maltopyranoside detergent is n-dodecyl-β-D-maltopyranoside
(DDM), followed by n-decyl-β-D-maltopyranoside (DM) [87]. Thus, in addition to main-
taining protein stability, detergents with shorter chain provide a good environment for
IMP crystallization because they form smaller micelles, which facilitate tighter packing
in the crystal lattice and higher-quality crystal diffraction [82,88–90]. The IMP structures
from diverse families have been solved, and some of these structures capture the same
protein in distinct conformations. This information is invaluable for elucidating functional
and/or inhibition mechanisms. IMPs crystallized in detergent include glutamate receptor
GluA2 [91], neurotransmitter transporter homologue LeuT [92,93], betaine transporter
BetP [94], and many more. The protein data bank (PDB) provides detailed information
about IMPs’ deposited crystal structures in detergents.

In the last decade, EM and single-particle cryoEM in particular have made historic
progress in studying detergent-solubilized IMPs by expanding this technique’s applica-
tions to diverse families of IMPs and by determining these proteins’ 3D structure at high
resolution down to ca. 3 Å [21,95]. In contrast to X-ray crystallography, EM does not re-
quire protein-crystal formation and has much more potential to deal with conformationally
heterogeneous proteins and protein complexes. Nevertheless, successful IMP structure de-
termination via EM requires high stability and proper folding of the detergent-solubilized
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protein [95]. For this reason, detergents are screened similarly to the crystallization of IMPs.
In addition, EM sometimes experiences specific problems with detergents suitable for
crystallization, including the detergents DDM or LMNG. It can be difficult to distinguish
the protein particle from a detergent via a negative EM stain, as found in the study of
citrate transporter CitS in DDM and DM [96]. To reduce the background and facilitate
visualizing protein particles, free detergent micelles can be removed prior to the EM exper-
iments [97]. In contrast, other studies found that detergents with low CMC, such as DDM
and maltose-neopentyl glycols (MNGs), provide a better platform for a single-particle cry-
oEM of IMPs [98]. Another detergent used in cryoEM structure determination is digitonin
(an amphipathic steroidal saponin) [99]. Fluorinated Fos-Choline-8 detergent was also
used to stabilize and determine the structure of a homo-oligomeric serotonin receptor in its
apo, serotonin-bound, and drug-bound states [100–102].

Solution NMR spectroscopy has also benefited from detergent-solubilization in study-
ing the high-resolution structure of full-length (FL) IMPs or truncated IMP constructs and
in monitoring the conformational transitions in IMPs’ monomers and complexes [103].
Specifically for NMR, despite the significant technical and methodological advancements
in recent decades, this method is still limited by the protein’s size; in the case of IMPs,
this includes the size of a membrane mimetic-protein complex. Thus, the slow tumbling
of large-protein objects in a solution significantly shortens the traverse relaxation times
resulting in NMR line broadening, and ultimately causes a loss of NMR sensitivity [103].
The large size of protein molecules also produces overcrowded NMR spectra, which are
difficult to interpret. Therefore, the current size limit for proteins and protein complexes
studied by NMR in solution does not exceed 70 kDa even when advantageous pulse se-
quences are applied [103–105]. Given this, solution NMR studies on IMPs require detergent
micelles to be as compact (small) as possible but still adequately mimic the membrane
environment [103]. Care must be taken to achieve high monodispersity of the studied
IMP. The length of IMP transmembrane segments should also generally match the micelle
hydrophobic core to avoid inconsistent NMR data [106]. Historically, “harsh” detergents
like dodecylphosphocholine (DPC) and lauryldimethylamine-N-oxide (LDAO) that form
small micelles (20–25 kDa) and maintain IMPs functional states have been used to study
the human VDAC-1 [107], the human voltage-dependent anion channel [108], the outer
membrane protein G [109], and more. Mild detergents, like DM and DDM have been
used in NMR solution studies of bacteriorhodopsin [110], G-protein-coupled receptors
(GPCRs) [111,112], voltage-dependent K+ channels [113], and more. IMPs solubilized in mi-
celles of anionic lysolipids (e.g., 14:0 PG and 1-palmitoyl-sn-glycero-3-phospoglycerol [16:0
PG]) and short-chain lipids (e.g., 1,2-dihexanoyl-sn-glycero-3-phosphocholine [DHPC])
have been studied by NMR in solution [114–117].

EPR spectroscopy, continuous wave (CW), and pulse, in combination with spin la-
beling [27,30,31,118–123], have provided invaluable information about the conformational
dynamics and function/inhibition of IMPs. These studies were conducted exclusively or
partly on detergent-solubilized IMPs. Large structural rearrangements in DDM–solubilized
membrane transporters, which report on protein dynamics along the transport cycle or
the assembly into functional units, were uniquely captured by pulse EPR distance mea-
surements [28,32,124–131]. Viral, bacterial, and eukaryotic channels [29,132,133], recep-
tors [134,135], and more were also studied in detergent micelles (DDM, DM, lauryl maltose
neopentyl glycol [MNG], etc.) via CW and pulse EPR spectroscopy. Importantly, EPR
spectroscopy experiments have no specific requirements for the detergent used insofar
as the detergent supports protein stability. Also, there is no restriction on IMP’s size,
given that the protein can be successfully spin-labeled. Moreover, EPR spectroscopy can
investigate IMPs within a broad range of concentrations (e.g., ca. <5 µM to >100 µM),
allowing researchers to capture multimeric IMP intermediates in detergent micelles [29].

Another informative technique in studies of detergent-residing IMPs is fluorescence
spectroscopy/microscopy, exemplified by Förster resonance energy transfer (FRET) spec-
troscopy and particularly by the single-molecule FRET (smFRET) version [136]. It captures
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conformational motions within one protein molecule/complex in real time, although mea-
surements on many molecules/complexes are needed to average the effect of modulating
protein conformation by, for example, ligand binding. smFRET has been used in multiple
studies on detergent-residing IMPs to monitor their conformational responses to ligands,
changes in pH, or other stimuli [137–139].

2.2. Bicelles in Studies of Integral Membrane Proteins
2.2.1. General Properties of Bicelles

Introduced by Prestegard and colleagues in 1988, bicelles (binary/bi-layered mixed
micelles) are recognized as the first lipid membrane mimetic system capable of incor-
porating a substantial amount of lipids to create a bilayer-like environment for mem-
brane proteins [140]. Bicelles are disc-shaped nanoaggregates comprising bilayer-forming
long-chain phospholipids mixed with either detergent molecules or short-chain phos-
pholipids in an aqueous environment [69,140] (Figure 3A). They are an attractive mem-
brane mimetic for studying the structure and structural dynamics of membrane proteins.
For example, isotropic bicelles can be formed in aqueous solutions by mixing the long-
chain lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the detergent 3-
[(3-cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (CHAPS). They can also
be formed by mixing the long-chain lipids 1,2-dimyristoil-sn-Glycero-3-[Phospho-rac-(1-
glycerol)] (DMPG) and DMPC with the short-chain lipid DHPC [141,142]. Bicellar nanos-
tructures comprising various lipids with incorporated cholesterol, ceramides, cardiolipin,
and more have also been developed [143–145].

Membranes 2021, 11, x FOR PEER REVIEW 8 of 30 
 

 

average size of 10 nm [149]. This discrepancy can be explained by the limitations of dif-

ferent methods used to determine bicelles’ size. IMPs have been reconstituted and studied 

in both large and small bicelles [146,147].  

Due to bicelles’ small size, their suspensions are effectively homogeneous and trans-

lucent even after incorporating membrane proteins [151,152]. One major advantage of this 

membrane mimetic system is its resemblance to a small fragment of lipid bilayer. In addi-

tion, embedding IMPs in a native-like environment and a simple variation in the q value 

can help in the system’s size scalability [153]. Furthermore, native bicelles made of lysed 

eukaryotic-cell lipids mixed with DHPC were also prepared to provide diverse lipid types 

for specific interactions with proteins [154]. Thus, bicelles outperform detergents in main-

taining membrane proteins’ functional state. In addition, paramagnetic ions can be added 

to the lipid mixtures, so the resulting bicelles can align in an external magnetic field, aid-

ing magnetic resonance studies on IMPs [155,156]. 

 

Figure 3. IMPs in bicelles. (A) Bicelle-residing IMP containing multiple transmembrane helices is 

shown; the bicelle is composed of a patch of bilayer-forming lipids (e.g., DMPC) stabilized by 

short-chain lipid or detergent (e.g., CHAPS). The size of bicelles depends on the molar ratio be-

tween long- and short-chain lipids used in their preparation (Equation (1)). In addition, bicelle size 

is affected also upon dilution of the bicellar solution. (B) Two major protocols for incorporation of 

IMPs into bicelles are outlined: detergent/detergent micelles are mixed with proteoliposomes (left) 

or IMP in detergent micelles are mixed with lipids and bicelle-forming detergent (right). The fig-

ure shows simplified procedures. 

Notably, the presence of detergent-like short-chain lipids and a bilayer size is insuf-

ficient to provide membrane-like lateral pressure and may perturb the structure and dy-

namics of bicelle-residing IMPs [54,69,157]. Another disadvantage of conventional bicelles 

is that their size and geometry depend on the total lipid concentration in the solution; 

therefore, any dilution changes the system properties. At high dilutions, bicelle-to-vesicle 

transitions can occur [143], so care must be taken to maintain constant lipid concertation 

throughout the experiment. Attempts were made to overcome this deficiency via kinet-

ically stable bicelles, such as those comprising a mixture of the phospholipid 1,2-dipal-

mitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and a sodium cholate-derived surfac-

tant (SC-C5) at room temperature. These bicelles’ stability results from the high melting 

temperature of DPPC (41 °C) and a very low SC-C5 CMC (<0.5 mM) [158]. 

2.2.2. Applications of Bicelles in Solubilizing and Stabilizing Integral Membrane Proteins 

Typically, IMPs expressed in host membranes are first extracted and solubilized in 

detergents and then reconstituted in bicelles. Two basic protocols exist for reconstituting 

Figure 3. IMPs in bicelles. (A) Bicelle-residing IMP containing multiple transmembrane helices
is shown; the bicelle is composed of a patch of bilayer-forming lipids (e.g., DMPC) stabilized by
short-chain lipid or detergent (e.g., CHAPS). The size of bicelles depends on the molar ratio between
long- and short-chain lipids used in their preparation (Equation (1)). In addition, bicelle size is
affected also upon dilution of the bicellar solution. (B) Two major protocols for incorporation of IMPs
into bicelles are outlined: detergent/detergent micelles are mixed with proteoliposomes (left) or IMP
in detergent micelles are mixed with lipids and bicelle-forming detergent (right). The figure shows
simplified procedures.

Generally, geometric arguments can help to estimate the bicelle’s size using the
molar ratio between long- and short-chain lipids (or detergent); this so-called q value
(Equation (1)) to calculate the radius of the bicelle’s bilayer region (R) directly, in addition
to the bicelle’s topology and size [146–148].
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q =
total molarirty o f long− chain lipid

total molarity o f detergent (short− chain lipid)− CMC o f detergent (short− chain lipid)
(1)

In addition, dynamic light scattering and NMR can also be used to experimen-
tally determine bicelles’ size and morphology in an aqueous buffer at a constant total
lipid/detergent concentration [149,150].

Bicelles with a higher q value are formed from low concentrations of short-chain
lipids/detergents in relation to the concentration of long-chain lipids, and they are typically
larger than the low q-value bicelles. Bicelles with smaller q values (q ≤ 0.6) are more
“detergent-rich” and “lipid-poor”, so the phospholipid environment they provide can
perturb the bicelle-incorporated IMP [146]. However, it is difficult to precisely estimate
bicelle size. For example, bicelles made of DMPC/DHPC had an estimated average size of
20 nm at q = 2 [143], and those made of DMPC/DMPG/DHPC at q = 2.6 had an estimated
average size of 10 nm [149]. This discrepancy can be explained by the limitations of different
methods used to determine bicelles’ size. IMPs have been reconstituted and studied in
both large and small bicelles [146,147].

Due to bicelles’ small size, their suspensions are effectively homogeneous and translu-
cent even after incorporating membrane proteins [151,152]. One major advantage of this
membrane mimetic system is its resemblance to a small fragment of lipid bilayer. In
addition, embedding IMPs in a native-like environment and a simple variation in the
q value can help in the system’s size scalability [153]. Furthermore, native bicelles made of
lysed eukaryotic-cell lipids mixed with DHPC were also prepared to provide diverse lipid
types for specific interactions with proteins [154]. Thus, bicelles outperform detergents in
maintaining membrane proteins’ functional state. In addition, paramagnetic ions can be
added to the lipid mixtures, so the resulting bicelles can align in an external magnetic field,
aiding magnetic resonance studies on IMPs [155,156].

Notably, the presence of detergent-like short-chain lipids and a bilayer size is in-
sufficient to provide membrane-like lateral pressure and may perturb the structure and
dynamics of bicelle-residing IMPs [54,69,157]. Another disadvantage of conventional bi-
celles is that their size and geometry depend on the total lipid concentration in the solution;
therefore, any dilution changes the system properties. At high dilutions, bicelle-to-vesicle
transitions can occur [143], so care must be taken to maintain constant lipid concertation
throughout the experiment. Attempts were made to overcome this deficiency via kinetically
stable bicelles, such as those comprising a mixture of the phospholipid 1,2-dipalmitoyl-sn-
glycero-3-phosphatidylcholine (DPPC) and a sodium cholate-derived surfactant (SC-C5) at
room temperature. These bicelles’ stability results from the high melting temperature of
DPPC (41 ◦C) and a very low SC-C5 CMC (<0.5 mM) [158].

2.2.2. Applications of Bicelles in Solubilizing and Stabilizing Integral Membrane Proteins

Typically, IMPs expressed in host membranes are first extracted and solubilized in
detergents and then reconstituted in bicelles. Two basic protocols exist for reconstituting an
IMP into bicelles: formulating the bicelles via the addition of detergent to proteoliposomes
or integrating a detergent-stabilized IMP into bicelles [159,160] (Figure 3B). In addition,
some studies on synthesized and usually truncated IMPs or on other membrane-associated
protein constructs have used bicelles for direct solubilization. These hydrophobic proteins
and protein constructs are first dissolved in an organic co-solvent, such as chloroform
or TFE, and then mixed with the lipids before being lyophilized and dissolved in an
appropriate buffer to form bicelles [161].

2.2.3. Applications of Bicelles in Studies on Integral Membrane Proteins Using Biophysical
and Structural Biology Methods

Small isotropic bicelles have been a highly preferred membrane mimetic platform
in studies of IMP structure and dynamics by solution NMR spectroscopy, since they pro-
vide both a close-to-native lipid environment and fast enough tumbling to average out
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anisotropic effects, yielding good quality NMR spectra [146,160,162]. Still, IMP size is a seri-
ous limitation for solution NMR; and the need to produce isotopically labeled IMPs, given
that their expression levels are typically small, introduces additional difficulty [36,151].
Nevertheless, the structures of several bicelle-reconstituted relatively large IMPs, such
as sensory rhodopsin II [163], EmrE dimer [164], and the transmembrane domain of the
receptor tyrosine kinase ephA1 [165], have been solved using solution NMR. Large bicelles
have been the choice of solid-state NMR studies because they provide a greater bilayer
surface and structural stabilization of the embedded IMPs. Beside the fact that large IMPs
can be incorporated, the orientation of large bicelles in the external magnetic field can be
controlled. Such bicelles can also be spun at the magic angle, enhancing spectral resolution
for the embedded IMPs [151,166,167].

X-ray crystallography has also utilized bicelles to determine the high-resolution struc-
ture of IMPs in their native lipid environment, particularly in cases when detergents
could not stabilize the IMP structure for crystallization [168]. Bicelle–IMP complexes can
be handled similarly to detergent–IMPs and are compatible even with high-throughput
robot-aided crystallization [169]. Thus, after the first successful crystallization of bicelle-
residing bacteriorhodopsin [170], the crystal structures of several other IMPs, such as
β2-adrenergic G-protein coupled receptor-FAB complex [171], rhomboid protease [172],
and VDAC-1 [173] were solved.

Studies using EPR spectroscopy, pulse, and CW with spin labeling have also used
bicelles as a lipid mimetic to study the conformational dynamics of IMPs. Magnetically
aligned bicelles were used to probe the topology and orientation of the second transmem-
brane domain (M2δ) of the acetylcholine receptor using spin labeling and CW EPR [174].
Further, the immersion depth of the spin-labeled M2δ peptide at different positions in
bicelles was determined. Here, CW EPR was used to monitor the decrease in nitroxide spin
label spectrum intensity due to nitroxide radical reduction upon the addition of ascorbic
acid [175]. Pulse EPR distance measurements on spin-labeled McjD membrane transporter
in bicelles revealed functionally relevant conformational transitions [176].

2.3. Nanodiscs in Studies of Integral Membrane Proteins
2.3.1. General Properties of Nanodiscs

Sligar and colleagues were first to illustrate nanodisc technology in 1998 in a study
focused on liver microsomal NADPH-cytochrome reductase enzyme, the CYP450 reduc-
tase [177,178]. The first nanodiscs were proteolipid systems made of lipid bilayer fragments
surrounded by high-density lipoprotein (HDL). Thereafter, the diversity of nanodiscs ex-
panded to include lipid nanostructures held intact by a belt of lipoprotein (membrane
scaffold protein, MSP) [179,180], saposin [181], peptide [182], or copolymer [183]. All
these membrane mimetics are self-assembled, nano-sized, and generally disc-shaped lipid
bilayer structures (Figure 4). A major advantage of the nanodisc technology is the absence
of detergent molecules and the ability to maintain integrity and shape upon dilution. This
overcomes the shortcomings of lipid bicelles and provides a more native-like membrane
environment compared to detergents [184,185]. Other advantages of nanodiscs are good
accessibility of soluble domains in IMPs, sample homogeneity, and isolation of defined
IMP oligomeric states by controlling the size of the nanodisc [186].

Currently, nanodisc systems are classified based mostly on the belt used. The most
common type is MSP nanodiscs made by using the repeat domain of apolipoprotein A1
(ApoA1), the main component of DHL, which is referred to as membrane scaffold protein
(MSP) [177] (Figure 4A). The formation of these nanodiscs requires two copies of the amphi-
pathic α-helical MSP, which wraps up and stabilizes a small disc of lipid bilayer [151,177].
Both copies of MSP are arranged antiparallel to each other [187]. The size of nanodiscs can
be controlled by using one or more MSP repeat regions, which are produced by protein
engineering. For example, MSP1 consists of one repeat of 10 helices and MSP2 consists
of two equivalent repeats each consisting of 10 helices [188,189]. Further modification in
just one repeat, e.g., adding identical helices produced longer than the MSP1 constructs
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MSP1E1, MSP1E2, and MSP1E3, or deletions in MSP1 produced shorter constructs denoted
MSLP1D1 and MSP1D2 [189]. Thus, any variation in the number of these amphipathic
helical repeats results in different nanodisc diameters/sizes. For an empty nanodisc (one
with no IMP incorporated), the type of phospholipid and the MSP construct establish
the number of phospholipids in each particle, typically ~20 to 400 [184,188,189]. Sligar
and colleagues [188,190] suggested the following correlation between the number of lipid
molecules in the nanodiscs (NL) and amino acids in the scaffold protein (M):

NL·S = (0.423·M− 9.75)2 (2)

where S represents the mean surface area per lipid used to form the nanodisc, measured in Å2.
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Figure 4. IMPs in nanodiscs. (A) IMP-nanodisc complexes of different types are shown. These are discoidal structures
containing a segment of lipid bilayer with incorporated IMP surrounded by a belt of different nature that stabilizes the
nanoparticle. Depending on the belt used, nanodisc can be IMP–MSP nanodisc, IMP–SMALP/Lipodisq®, IMP–Saposin
nanoparticles, and IMP–peptidiscs with and without lipids incorporated. The size of nanodiscs can be controlled by
changing the belt length to accommodate just one monomeric IMP or IMP oligomeric complex. (B) Typically, the detergent
solubilized IMPs are transferred in nanodiscs by mixing IMP in detergent, MSP, detergent-solubilized lipids or mixed
detergent–lipid micelles, incubated and the detergents are removed, in most of the cases by using BioBeads. As a result,
IMP–nanodisc complexes and empty nanodiscs are formed. The empty nanodiscs can be removed further. (C) The IMP–
SMALP/Lipodisq® complexes can be formed by mixing CMA copolymer with liposome- or native membrane-residing
IMPs. This is an advantage of using CMA copolymers, since they do not require the detergent-solubilization of lipid bilayer
prior to IMP reconstitution, and can extract IMPs from the native membranes of expression host.

The prototypical MSP1 construct forms nanodiscs with diameters of about 10 nm and
has an overall molecular mass of approximately 150 kDa [188], but the modified MSP1 and
MSP2 constructs can form smaller or larger nanodiscs with diameters ranging from about
8.4 nm to 17 nm [184,189]. Recently, nanodiscs with covalently linked N and C termini
of newly engineered variants based on ApoA1 were developed, and termed covalently
circularized nanodiscs (cNDs) [191].

Copolymer nanodiscs were introduced by Knowles and colleagues [192], who purified an
IMP in polymer nanodiscs, i.e., Styrene–maleic acid–lipid particles (SMALPs). These nan-
odiscs were termed Lipodisq® and are discoidal structures comprising of a segment of lipid
bilayer surrounded by a polymer belt [193]. This belt is made of a styrene-maleic acid (SMA)
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copolymer formed by the hydrolysis of styrene-maleic anhydride (SMAnh) precursor and
composed of 1:2 or 1:3 ratios of maleic acid to styrene [192]. The main distinction between
MSPs and Lipodisqs is that SMA copolymer can directly cut out patches from the lipid bi-
layer without the use of detergents [192]. The principle of SMA-bound particles is centered
on the interaction of the hydrophobic edge of a planar bilayer membrane with the styrene
phenyl rings of the SMA polymer. This interaction stabilizes the disc-shaped SMALPs [69].
Monodisperse lipid discs with 140 lipid molecules and 10–11-nm diameter are formed with
the help of SMA for the isolation of target membrane protein [194]. Lipodisqs with different
incorporated lipids, e.g., palmitoyl-oleoyl-phosphocholine (POPC) [195] or DMPC [196],
have been prepared and used. A major consideration when working with Lipodisqs is
their pH-dependent stability, as they precipitate at pH values below 6.5 due to maleic acid
moiety protonation, which is a disadvantage when studying IMPs at lower pHs. SMA
polymer chelates divalent cations (e.g., Mg2+ and Ca2+) that are used for signaling assays,
leading to Lipodisqs’ insolubility. To overcome these deficiencies, chemical modifications
of maleimide carboxylates of SMA polymers with positively charged quaternary ammo-
nium compounds (SMA-QA) or ethanolamine have been employed [197,198]. Another
copolymer called DIBMA (di-isobutylene/maleic acid) was also developed—it is less harsh
than SMA, stable in the presence of divalent cations owing to the absence of aromatic
moiety, and does not interfere with far-UV optical spectroscopy [199].

Synthetic peptide-based nanodiscs (also termed “peptidiscs”) are formed by short am-
phipathic peptides aligned in an antiparallel fashion around the hydrophobic rim of a
phospholipid membrane [182,200,201]. Bi-helical peptides displace detergent molecules by
wrapping around the hydrophobic parts of detergent-purified membrane proteins [148,182].
Another example is a peptide derived from the ApoA1, which consists of 18 amino acids
that form a single alpha helix of almost the same length as that of the apolipoprotein A1
helix [200,202,203]. Among the major benefits of peptidiscs is that their size can be adjusted
by a simple variation in the peptide-to-lipid ratio. Also, peptide nanodiscs encapsulate
IMPs irrespective of initial lipid content, so there is no need to consume exogenous lipids to
match the diameter of the scaffold membrane as in the case of MSP nanodiscs. Furthermore,
peptide stoichiometry is self-determined because the size and shape of the integrated IMP
guide the binding of the peptide skeleton [69,204,205]. However, the comparatively high
cost of custom peptide synthesis and its low stability due to their noncovalent assembly
compared to the stability of other types of nanodisc systems are among the cons of the
peptide nanodisc system [69,206].

Saposin nanoparticles are protein-stabilized lipid structures utilizing Saposin lipoprotein
variants [207]. Salipro®, a Saposin A (SapA) disc, is the most suitable approach for IMP
studies, since it can tolerate a wide range of lipid-to-Saposin ratios [208]. Salipro nanodiscs
are composed of two or more SapA proteins that are joined together and assembled
in V shapes around a small lipid disc, which makes them relatively flexible/tunable to
accommodate different sizes of IMPs [181,209].

2.3.2. Applications of Nanodiscs in Integral Membrane Protein Solubilization
and Stabilization

Typically, detergent-solubilized IMPs are reconstituted into nanodiscs of different
types, starting either from a whole solubilized membrane or after purification. Currently,
the most widely used procedure is to transfer the purified detergent-solubilized IMP
into nanodiscs—This is done by mixing the IMP, lipid and scaffold protein or polymer;
thereafter, the detergent is removed using BioBeads and the nanodiscs with or without
incorporated IMP are formed [190] (Figure 4B). Optimization to determine the optimum
scaffold protein, polymer, or peptide, as well as lipid concentration to accommodate each
particular IMP in its native oligomeric state, must be performed [186,210]. Procedures for
the direct transfer of IMPs from the membrane into nanodiscs with minimal involvement of
detergent have been utilized [211]. Lipodisqs have also been used to purify IMPs in native
host membranes without any detergent, preserving the IMPs’ native state intolerance to
detergents and preferences for particular lipids or lipid bilayers [53,212,213]. Furthermore,
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some advantageous technologies for cell-free expression of IMPs utilize direct incorporation
and folding of the synthesized proteins into nanodiscs, which also benefits from the
opportunity to tune the nanodiscs’ lipid composition [214–216].

2.3.3. Applications of Nanodiscs in Functional Studies of Integral Membrane Proteins

As discussed above, one significant advantage of nanodiscs is that the soluble do-
mains of IMPs reconstituted in them are well accessible. Therefore, binding of ligands,
e.g., substrates, inhibitors, etc., and protein partners—all relevant to the IMP function—can
easily be studied in a native-like environment. Thus, fluorescence correlation spectroscopy
was used to assay fluorescently labeled IMPs’ binding interactions via an autocorrela-
tion function, which depends on the diffusion coefficients of the bound vs. unbound
species [217,218]. Scintillation proximity assay was used to assess radio–ligand binding to
membrane transporters residing in nanodiscs, overcoming the protein activity reduction
caused by detergents [219]. An assay measuring ATP hydrolysis by MsbA transporter in
nanodiscs demonstrated the importance of MsbA–lipid interactions by varying the nan-
odisc lipid composition [220]. It was also found that nanodiscs facilitate the identification
of monoclonal antibodies targeting multi-pass IMPs, which is important for antibody-based
pharmaceutical developments [221].

2.3.4. Applications of Nanodiscs in Studies of Integral Membrane Proteins Using
Biophysical and Structural Biology Methods

Since their initial development, nanodiscs have been widely used in studies of IMPs’
structure and conformational dynamics due to their suitability to a variety of techniques
and methods. As yet, crystallization of IMPs in nanodiscs for X-ray structure determination
has proven a difficult task. However, crystallization of IMPs can be assisted by transferring
them from nanodiscs/Lipodisqs to lipidic cubic phases (LCPs); high quality crystals
of bacteriorhodopsin and rhodopsin crystals were obtained and the structures of these
proteins solved at and below 2 Å resolution [17,221].

On the other hand, EM has greatly benefited from nanodiscs, and the first EM studies
were on negatively stained nanodisc-IMPs, such as the dimeric bc1 complex and reac-
tion centers from antenna-free membranes [222,223]. However, the structural resolution
achieved was insufficient. Further technical developments in single-particle cryoEM
have since made it possible to determine the high-resolution structure of IMPs in native
lipid environments, capturing multiple functional protein conformations and oligomeric
states [224,225]. Still, only proteins with sufficient molecular weight, typically about or
above 150 kDa, can be visualized by the available advanced EM approaches and data
processing. Thus, the structure of the ca. 320 kDa trimeric bacterial multidrug efflux trans-
porter AcrB was resolved at a resolution of 3.2 Å in Lipodisqs, uncovering a well-organized
lipid-bilayer structure associated with the protein transmembrane domain [226]. Also, the
structure of nanodisc-embedded full-length glycine receptor at 3 to 3.5 Å resolution was re-
solved in the ligand-free, glycine-bound, and allosteric modulator-bound states, providing
a comprehensive map of the functionally relevant conformational isomerizations [227]. Cry-
oEM on SthK, a prokaryotic cyclic nucleotide-gated channel, also yielded high-resolution
structures of channel apo, cAMP-bound, and cGMP-bound states in nanodiscs [228]. Re-
markably, the structures of small IMPs were also resolved by EM in nanodiscs [229]. How-
ever, in these studies engineering of fusion protein or antibody/antigen-binding fragment
(Fab) was utilized to increase the protein size and stability and succeed in the structure
determination. For instance, the structure of 49 kDa P. falciparum CQ-resistance transporter
PfCRT in complex with Fab was resolved at 3.2 Å resolution [230]. Consequently, nanodisc
technology greatly improved the likelihood of understanding the structure of functionally
relevant IMP conformations and visualizing essential protein–lipid interactions.

Nanodiscs have been particularly useful in studies of IMPs using NMR spectroscopy
as well. Solution NMR has benefited from the fast tumbling of the nanodisc–IMP complex
providing correlation times in the nanosecond range [34]. Still, the limitation of IMP
size persists. Careful optimization of several parameters must be performed to obtain
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homogeneous samples with desired size: the scaffold protein/copolymer-to-lipid molar
ratio; lipid composition, to provide hydrophobic match to the transmembrane part of IMP
and/or specific interactions; and optimizations of nanodisc-to-IMP molar ratios [148,231].
This is true to an extent for all other structural biology techniques utilizing nanodiscs.
Also, for solution NMR, reduced-size nanodiscs of 60–120 kDa with faster tumbling are
more appropriate to obtain good NMR data quality [38,184]. Solid-state NMR studies have
been conducted on complexes oriented in external magnetic field nanodisc/Lipodisq–IMP
without magic angle spinning and on isotropic nanodisc/Lipodisq–IMP complexes with
magic angle spinning [232]. Such studies open the opportunity to elucidate the high-
resolution structure and conformational dynamics of IMPs in native-like environments.
Nanodiscs have been useful in NMR applied to GPCRs and other physiologically and
biomedically important IMPs [233,234].

EPR spectroscopy studies of spin-labeled IMPs’ structure–function relationships and
conformational dynamics have also utilized nanodiscs as a membrane-mimetic platform [30,123].
Thus, double electron–electron resonance distance (DEER) measurements were conducted
on a nanodisc-incorporated LmrP eukaryotic multidrug transporter [235]. In this study, the
lipid makeup of the nanodiscs greatly affected the functional conformational state of the
transporter. Lipodisq nanoparticles were used to assess the conformational dynamics of the
human KCNQ1 voltage sensing domain [236]: The powerful combination of CW EPR and
DEER confirmed the stabilization effect of the Lipodisqs on protein structure. In this study,
the superior DEER data quality compared to liposomes highlighted the high potential of
these membrane mimetics in studies of IMPs. The Aer primary energy sensor for motility
in E. coli was also reconstituted in nanodiscs and studied by EPR [237]; although the DEER
distances between the protein’s native Flavin radicals were very similar in detergent (DDM)
and nanodisc environments, the observed protein activity was indeed higher in nanodiscs.

Nanodiscs were used in studies of IMPs by fluorescence-based techniques: internal re-
flection fluorescence microscopy (TIRFM), fluorescence correlation spectroscopy (FCS), and
FRET were all applied to nanodisc-reconstituted cytochrome P450 3A4 and possible mech-
anisms for protein allosteric regulation were proposed [238,239]. Lipodisq-reconstituted
KirBac1.1 potassium channels were studied by using smFRET to probe the structural
changes that occur in this multimeric channel upon activation and inhibition [240]. IMPs
in native nanodiscs, i.e., copolymer-solubilized native membranes, have also been studied
using FRET [241].

2.4. Liposomes in Studies of Integral Membrane Proteins
2.4.1. General Properties of Liposomes

Liposomes were introduced in 1961 by Bangham et al. [242] They are nano- and
micro-sized vesicles that can have just one (unilamellar) or multiple (multilamellar) lipid
bilayers [243,244] (Figure 5A). Unilamellar vesicles can range in size from 20 nm to more
than 1 µM, and depending on their size are classified as small (20–100 nm), large (larger
than 100 nm), or giant (larger than 1 µM), with the latter vesicles being closer to the size
of a cell. Multilamellar vesicles have multilayer morphology and are greater than 500 nm
in diameter. The inside lumen and the space between the lipid bilayers of the unilamellar
and multilamellar vesicles are filled with water-based solution, and liposomes present
a good artificial mimetic of a cell. Liposomes can be prepared from synthetic bilayer-
forming phospholipids, but native membrane-extracted lipids have also been used [245].
Further, the physical and chemical properties of the lipid bilayer in liposomes can be
tuned by varying the types and concentrations of lipids, and the amount of cholesterol
added [246]. Generally, extrusion through polycarbonate filters can be used to prepare
large unilamellar vesicles (LUVs) with a diameter of about 100–500 nm. Low-power bath
sonication of lipid suspensions spontaneously forms small unilamellar vesicles (SUVs)
with a diameter of about 20–50 nm. Hydrated phospholipids can be used to prepare
giant unilamellar vesicles (GUVs) with a diameter greater than 500 nm by applying low-
frequency electric fields. Other methods to produce liposomes include freeze-thawing
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and detergent extraction; hydration of lipid powders or films resulting inthe spontaneous
formation of multilamellar vesicles (MLVs) with an overall size between 1 and 10 µm, as
well [151,247–249]. Based on their properties that closely mimic biological membranes,
liposomes have been extensively used in drug delivery due to their nontoxic nature and
ability to encapsulate both hydrophilic and hydrophobic compounds [243,246,250,251].
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Figure 5. IMPs in liposomes. (A) Unilamellar and multilamellar vesicles are shown. These are
continuous lipid bilayer structures with incorporated inside water-based solution, so the environment
inside and outside of liposomes can be controlled. Typically, the unilamellar liposomes have just one
lipid bilayer, whereas multilamellar vesicles have multi-bilayer onion-like structure with solution-
filled compartments between the bilayers. (B) Typically, the IMPs are reconstituted in liposomes
from detergent-solubilized form, which are mixed with detergent-solubilized lipids in the form of
mixed detergent-lipid micelles. After some period of incubation to ensure IMP–lipid interactions,
the detergent(s) are removed and the proteoliposomes, which usually have close to unilamellar
morphology are formed. (C) The substrate uptake assay can be carried on liposome-reconstituted
membrane transporters or channels: The uptake of radioactively (3H)-labeled substrate in the
liposome can be quantified reporting on the IMP activity (upper panel) or the uptake of ions (cations)
can be quantified by the changes in the fluorescence intensity of the liposome-incorporated dye,
which is sensitive to the presence of substrate (lower panel).

Liposomes are also a great platform to reconstitute and study membrane proteins [248,252,253].
To this end, liposomes offer several unique advantages compared to other membrane
mimetic systems. To begin with, multicomponent systems such as lipid, protein, and
substrate complexes can be reconstituted in the liposomes because of the large size of
this system [254]. Furthermore, liposomes sustain membrane potential because their
hydrophobic bilayer introduces compartments in the aqueous phase, just like the native
cells. In addition, liposomes represent a continuous membrane because they are not
constrained by a solubilizing scaffold structure. This stands in contrast to other membrane
mimetics, which only approximate a membrane bilayer. The diffusion behavior and native
lateral pressure of phospholipids and proteins can be studied because of the continuous
nature of liposome membranes [255]. All of these properties and the broad range of
possible lipid compositions make these membrane mimetics an important tool to study
IMPs’ conformational dynamics, substrate relocation across the membrane, folding, etc.
at the molecular level [28,29,132,256–258]. In addition to liposomes, vesicles with similar
properties termed “polymersomes”, which are made of amphiphilic polymers, have also
been utilized in studies of biological processes at the membrane, or in drug delivery [259].
However, despite their high potential as membrane mimetics, the current applications
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of these membrane mimetics in IMPs structure-function studies are fewer compared to
phospholipid liposomes, and therefore, their detailed description is beyond the scope of
this review.

2.4.2. Reconstitution of Integral Membrane Proteins in Liposomes

Typically, IMPs are transferred in liposomes from a detergent-solubilized state (Figure 5B).
First, the desired lipids or lipid mixtures are transferred into a glass vial and dissolved in
organic solvent. Then, the solvent is evaporated under a stream of nitrogen or argon gas
and then under vacuum to remove the organic solvent completely; the preferred buffer
for downstream experiments is added to the dry lipid film, and the lipids are hydrated for
approximately 1 h at room temperature or 4 ◦C. depending on the lipid polycarbon chain
saturation and temperature stability, vortexing or sonication can be applied as well. After
complete lipid hydration, multilamellar vesicles are formed. Next, aliquots of the lipid sus-
pension are taken in amounts needed to produce the desired final lipid-to-protein molar or
w/w ratios and solubilized in mild detergent, e.g., Triton x-100. The detergent-solubilized
IMP is mixed with the detergent-solubilized lipids and incubated for approximately 1 h
at room temperature or a different temperature, if required. Finally, the detergents are
removed to form proteoliposomes [28,29,132,249]. In the last step, the detergent can be
removed by either dialysis or by using BioBeads. Also, further freeze–thawing, extrusion,
or mild sonication can be performed to obtain more homogeneous and unilamellar proteoli-
posomes. It must be noted that the described method for IMP reconstitution in liposomes
is rather challenging and requires optimization for each particular IMP. Currently, the
most widely used method to obtain GUVs is electroformation [260]. This method has
been utilized to incorporate IMPs as well—for example, the reconstitution of sarcoplasmic
reticulum Ca2+-ATPase and H+ pump bacteriorhodopsin GUVs preserved these proteins’
activity [261]. Recently, a method to reconstitute an IMP into liposomes using native lipid
binding without detergent solubilization was illustrated [248]. To do so, cytochrome c
oxidase (CytcO) was first solubilized and purified in SMA nanodiscs (Lipodisqs) and then
the protein–nanodisc complexes were fused with preformed liposomes, a methodology
previously used for IMP delivery and integration into planar lipid membranes [262].

2.4.3. Applications of Liposomes in Functional Studies of Integral Membrane Proteins

As noted above, proteoliposomes (IMP–liposome complexes) are similar to isolated
cells to a certain extent: distinct environments of compounds, ions, or pH can be created
inside and outside of liposomes, and in addition transmembrane potential can be gener-
ated [263–267]. This is a great advantage for the design and implementation of in vitro
functional assays of IMPs. Typically, in these assays, the IMP liposomes, also known as unil-
amellar vesicles, are filled with the desired buffer, with or without IMP ligands, and aliquots
of these proteoliposomes are then transferred to a bath buffer with significantly greater
volume than that inside of the liposome. Thus, the reconstituted IMPs sense the difference
between the buffers inside and outside the liposome. Such experimental setups are used, for
example, to quantify the uptake of substrates by membrane transporters or channels, if the
bath buffer contains a labeled substrate, e.g., radioactively labeled substrate [28,268,269],
or the proteoliposomes are prefilled with a fluorescent dye whose intensity depends on
the presence of substrate [270–272] (Figure 5C). In such experiments, the uptake of radioac-
tive 86Rb into liposomes was utilized to measure the activity of channels reconstituted in
these liposomes [268]. Radioactively labeled substrates (typically 3H-labeled, but other
radioactive atoms can be used as well) have been widely used in liposome-based functional
studies of membrane transporters, e.g., Na+-dependent dicarboxylate transporter [273]
and Na+-dependent aspartate transporter GltPh [274]. A fluorescence-based method using
Magnesium Green, a Mg2+-sensitive dye, was used to evaluate ATP/ADP exchange via
mitochondrial adenine nucleotide translocase [271]. In a similar assay, either Ca2+- or Na+-
sensitive fluorescent probes entrapped in liposomes containing connexin 26 hemichannels
were used to demonstrate for the first time the translocation of Ca2+ by the connexin chan-
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nel [270]. Inhibitors of IMPs have also been tested in liposome-based assays [263]. Using
different lipid mixtures to prepare liposomes was also exploited to study specific IMP–lipid
interactions. Thus, the activity of mammalian glucose transporter depends upon anionic
(phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol)
and conical phospholipids (phosphatidylethanolamine and diacylglycerol) [265].

2.4.4. Applications of Liposomes in Studies of Integral Membrane Proteins Using
Biophysical and Structural Biology Methods

Due to their complexity, attempting to determine the high-resolution structure of
IMPs in proteoliposomes is usually not a researcher’s first choice. Still, liposomes have
been used to crystallize IMPs incorporated in the bilayer, and the obtained 2D crystals
were analyzed by EM [258,275]. Although using EM to characterize the structure of
IMPs from 2D crystals formed in flattened liposomes is a difficult task due to varying
liposome morphology and other factors, success was achieved. Electron cryotomography,
subtomogram averaging, and electron crystallographic image processing were successfully
applied to analyze the structure of bovine F1Fo ATP synthase in 2D membrane crystals [276].
Another advancement in determining the structure of IMPs using 2D crystallization of
liposomes is to generate buffer gradient from the inside to the outside of the liposome,
which activates the IMP. Then, the 2D crystals are quickly frozen under liposome gradient
conditions and snapshots of active protein are taken. This technique has contributed to the
detailed characterization of IMP functional conformations in lipid bilayers [258].

Conformational dynamics underlying IMPs’ function in liposomes have been exten-
sively studied using EPR spectroscopy [27–30,32,119,132]. This technique can be applied
to IMPs in both unilamellar and multilamellar vesicles and is not restricted based on
the size of proteins in the liposome. In many cases, EPR studies were conducted on the
same proteins in detergent and in liposome, revealing distinct membrane-mimetic de-
pendent conformational behavior. Using DEER spectroscopy for the GltPh transporter,
Georgieva et al. [28] found that although the subunits in this homotrimeric protein occupy
the outward- and inward-facing conformations independently, the population of protomers
in an outward-facing state increases for proteins in liposomes. Also, the lipid bilayer affects
the assembly of the M2 proton channel from influenza A virus as deduced from DEER
modulation depth measurements on spin-labeled M2 transmembrane domain in MLVs
compared to detergent (β-DDM)—the dissociation constant (Kd) of M2 tetramer is signifi-
cantly smaller than that in detergent, therefore the lipid bilayer environment facilitates M2
functional channel formation [29,132]. These studies are extremely important in elucidating
the role of lipid bilayers in sculpting and stabilizing the functional states of IMPs.

Single-molecule fluorescence spectroscopy and microscopy have also been used to
study conformations of IMPs in liposomes. This technique was used to successfully assess
the dimerization of fluorescently labeled IMPs [277,278] and the conformational dynamics
of membrane transporters in real time [137,279].

2.5. Other Membrane Mimetics in Studies of Integral Membrane Proteins
2.5.1. Amphipols

The concept of amphipols—amphipathic polymers that can solubilize and stabilize
IMPs in their native state without the need for detergent—emerged in 1994. Amphipols’
mechanism was validated in a study of four IMPs: bacteriorhodopsin, a bacterial photosyn-
thetic reaction center, cytochrome b6f, and matrix porin [280]. Amphipols were developed
to facilitate studies of membrane proteins in an aqueous environment by providing en-
hanced protein stability compared to that of detergent [281,282]. Functionalized amphipols
can be used to trap membrane proteins after purification in detergent, during cell-free
synthesis, or during folding [281]. Because of their mild nature, amphipols provide an
excellent environment for refolding denatured IMPs, like those produced as inclusion
bodies [283]. The stability of IMP–amphipol complexes upon dilution in an aqueous
environment is another advantage of these membrane mimetics. Thus, amphipols have
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been used in numerous IMP studies to monitor the binding of ligands and/or determine
structures [280,284]. Still, they have some disadvantages. Their solubility can be affected
by changes in pH and the addition of multivalent cations, which neutralize their intrinsic
negative charge and lead to low solubility [284,285].

2.5.2. Lipid Cubic Phases

Lipidic cubic phase (LCP) is a liquid crystalline phase that forms spontaneously
upon mixing of lipids and water under specific conditions [286,287]. It was introduced
as membrane mimetic in 1996 for crystallization of IMPs [18]. Since then, numerous
IMP structures that had been difficult or even impossible to crystalize in other mimetic
environments were solved in LPC [19,288]. The first structure of GPCR as a fusion construct
with T4 lysozyme was solved in LPC by Kobilka et al. [289] LCP can be described as
highly curved continuous lipid bilayer made of monoacylglycerol (MAG) lipids, which is
surrounded by water-based mesophase. Thus, the whole system forms continuous highly
curved channels, in which IMPs are incorporated. Generally, LCPs maintain the IMPs
functional conformations and activity. For crystallization in LCPs, the detergent-solubilized
IMP is mixed with the LCP-forming lipid, to which specific lipids can be added as well.
The addition of precipitant to this system affects the LCP in terms of phases transition and
separation, so some of these phases become enriched in IMP leading to nucleation and 3D
crystals growth. In addition to crystallography, functional assays have been performed
on LPC-reconstituted IMPs as well [290]. Due to space limitations, we do not provide
further details of this highly advantageous for X-ray crystallography and protein structure
determination. More details can be found in specialized reviews elsewhere [286,291].

3. Conclusions

Due to the important roles of IMPs in cells’ and organisms’ normal physiology as well
as in diseases, there is a need to comprehensively understand the functional mechanisms
of these proteins at the molecular level. To this end, in vitro studies on isolated proteins
using diverse biochemical and biophysical approaches provide invaluable information.
However, studies of IMPs are challenging due to these proteins’ hydrophobic nature,
low expression levels in heterologous hosts, and low stability when transferred out of
the native membrane to a membrane-mimetic platform. To overcome these challenges,
progress has been made in multiple directions. We summarized the developments of lipid
membrane mimetics in functional and structural studies of IMPs over the past several
decades. Indeed, the diversity of these systems grew significantly, and the widely ranging
lipid membrane-mimetic platforms now available provide high solubility, stability, more or
less lipid-bilayer environments, and other specific properties that are utilized in studies
featuring NMR, X-ray crystallography, EM, EPR, fluorescence spectroscopy assays, ligand
binding and translocation assays, etc. This has resulted in the continuous expansion of
knowledge about IMPs. In Table 1, we provide concise information about the most-widely
used membrane mimetics to study IMPs, selected applicable techniques, along with some
of their advantages and disadvantages.

The fast development of lipid membrane mimetics and the great expansion of their
diversity also provides a great promise for the successful future research to uncover the
mechanisms of IMPs, which, to date, have been difficult to stabilize and study. Besides,
combining the information from studies of IMPs in different membrane mimetics and by
different techniques will help to more completely understand the structure and function of
these proteins and avoid possible biases due to the selection of membrane environment.
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Table 1. Summary of most widely used lipid membrane mimetics in functional and structural studies of IMPs.

System/Type Applicable Techniques to
Study IMPs Advantages Disadvantages

Detergent micelles
Ionic detergents

Zwitterionic detergents
Non-ionic detergents

X-ray crystallography
Single-particle cryoEM

Solution NMR
EPR spectroscopy

Fluorescence spectroscopy
smFRET

Isothermal titration calorimetry
(ITC) for ligand binding/protein

interactions
Functional assays

Easy handling
Starting point for

downstream applications
Availability of large variety

of detergents

Propensity of IMP
denaturation
Chances of

non-physiological IMP
conformations due to

mismatched ‘IMP-micelle’
hydrophobic thicknesses

CMC of the detergent must
be considered

Bicelles

Solution NMR
Solid-state NMR

X-ray crystallography
EPR spectroscopy

Easy preparation
Homogeneous and

translucent suspensions
Provide true lipid

environment
physiological conditions

Diverse types of lipids can
be incorporated to match

Bicelles of different sizes can
be prepared

Total lipid concentration can
affect size and geometry

of bicelle
Risk of IMP perturbation in

case of insufficient
bilayer size

Nanodisc
MSP nanodiscs

SMALP/Lipodisq®

Synthetic peptide-based
nanodiscs

Saposin nanoparticles

Single particle cryoEM
Solution NMR

Fluorescence spectroscopy and
microscopy

smFRET
EPR spectroscopy

ITC for ligand binding/protein
interactions

Functional assays

Maintain integrity and
shape even upon dilution

Easy accessibility of soluble
domains in IMPs Possibility

of size adjustment to
accommodate a monomeric
IMP or larger IMP complex

Optimization of assembly
conditions can be time

consuming Not suitable for
large MP oligomers

Dynamics of lipids affected
by protein ‘belt’ Limited

size range

Liposomes
Small unilamellar vesicles

(SUVs)
Large unilamellar vesicles

(LUVs)
Giant unilamellar vesicles

(GUVs)
Multilamellar vesicles (MLVs)

Electron crystallography
Solid-state NMR

EPR spectroscopy
smFRET

Functional
assays/substrate uptake

Electrophysiology

Large size can accommodate
large and

multicomponent systems
Represent continuous

membrane providing closer
to native environment

for IMPs
Diffusion behavior similar

to native phospholipid
membrane

Broad range of possible
lipid compositions

The orientation of IMP is
often non-native

Expensive compared to the
traditional systems

Low solubility

Amphipols Single-particle cryoEM
Solid-state NMR

Assist IMPs study in
aqueous environment

Stability of IMP-amphipol
complex stable on dilution

Provides better IMP stability
compared to micelle
Facilitate refolding of

denatured IMPs

Commercially evaluability
of only one amphipol type

Too difficult to maintain the
IMP-amphipol complex
sometimes Multivalent

cations- and
pH-dependent solubility

Lipidic cubic phase X-ray crystallography
Functional studies

More native-like
environment for IMPs

facilitating
their crystallization

Relatively expensive
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