
 International Journal of 

Molecular Sciences

Article

Exploration of the Effects of Different Blue LED Light
Intensities on Flavonoid and Lipid Metabolism in Tea
Plants via Transcriptomics and Metabolomics

Pengjie Wang 1, Sirong Chen 1, Mengya Gu 1, Xiaomin Chen 1, Xuejin Chen 1, Jiangfan Yang 1,
Feng Zhao 2,* and Naixing Ye 1,*

1 College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in
Universities of Fujian Province, Fuzhou 350002, China; 2180311002@fafu.edu.cn (P.W.);
3170304008@fafu.edu.cn (S.C.); 1190311005@fafu.edu.cn (M.G.); 1190311002@fafu.edu.cn (X.C.);
1180311002@fafu.edu.cn (X.C.); 000q25003@fafu.edu.cn (J.Y.)

2 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350002, China
* Correspondence: zhaofeng0591@fjtcm.edu.cn (F.Z.); 000q020063@fafu.edu.cn (N.Y.)

Received: 10 June 2020; Accepted: 25 June 2020; Published: 29 June 2020
����������
�������

Abstract: Blue light extensively regulates multiple physiological processes and secondary metabolism
of plants. Although blue light quantity (fluence rate) is important for plant life, few studies have
focused on the effects of different blue light intensity on plant secondary metabolism regulation,
including tea plants. Here, we performed transcriptomic and metabolomic analyses of young
tea shoots (one bud and two leaves) under three levels of supplemental blue light, including
low-intensity blue light (LBL, 50 µmol m–2 s–1), medium-intensity blue light (MBL, 100 µmol m–2 s–1),
and high-intensity blue light (HBL, 200 µmol m–2 s–1). The total number of differentially expressed
genes (DEGs) in LBL, MBL and HBL was 1, 7 and 1097, respectively, indicating that high-intensity blue
light comprehensively affects the transcription of tea plants. These DEGs were primarily annotated to
the pathways of photosynthesis, lipid metabolism and flavonoid synthesis. In addition, the most
abundant transcription factor (TF) families in DEGs were bHLH and MYB, which have been shown to
be widely involved in the regulation of plant flavonoids. The significantly changed metabolites that
we detected contained 15 lipids and 6 flavonoid components. Further weighted gene co-expression
network analysis (WGCNA) indicated that CsMYB (TEA001045) may be a hub gene for the regulation
of lipid and flavonoid metabolism by blue light. Our results may help to establish a foundation for
future research investigating the regulation of woody plants by blue light.

Keywords: Camellia sinensis; blue light; transcriptomics; metabolomics; WGCNA

1. Introduction

Plants are sessile in nature and therefore must respond appropriately to changing environmental
factors to flourish; of these factors, light is one of the most important. Plants perceive light of
different wavelengths through a diverse array of photoreceptors, where phytochromes (PHYA-E)
absorb far red and red light, the receptor UVR8 absorbs UV-B light, and cryptochromes (CRY1-3)
and phototropins (PHOT1-2) absorb blue and UV-A light [1]. Blue light globally regulates multiple
processes in plants and plant cells; these processes include photomorphogenesis, photosynthesis,
chloroplast accumulation, stomatal opening, leaf development and flowering time [2–6]. Furthermore,
some evidence also suggests that blue light is involved in the molecular regulation of secondary
metabolites. For instance, blue light regulates the biosynthesis of functional metabolites, such as
rutin and catechins, in longan embryogenic calli, while HY5, PIF4 and MYC2 are considered key
regulators [7,8]. In citrus, the accumulation of carotenoids and the degradation of chlorophyll occur
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under blue light and lead to deeper and faster coloration of the fruit, and these changes have been
related to the upregulation of some structural genes in pigment metabolism [9–11]. Blue light also
affects the degradation of fatty acids in plant leaves and changes the fatty acid composition of membrane
lipids, and 200 µmol m–2 s–1 blue light can maximize the lipid content of Chlorella [12,13]. These studies
indicate that blue light has the potential to regulate plant growth and secondary metabolism.

The tea plant Camellia sinensis (L.) O. Kuntze is an economically important perennial evergreen crop
that is widely cultivated worldwide [14]. Normally, the young shoots of tea plants can be processed into
tea, one of the most popular nonalcoholic beverages in the world. Tea is rich in secondary metabolites,
including flavonoids, caffeine, theanine and volatile compounds, which benefit human health [15,16].
Due to the regulation of various secondary metabolites by light, there have been multiple studies in tea
plants to control the intensity of light by shading to improve or modify the metabolic components of tea
leaves [17–20]. Fu et al. [21] first explored the regulatory effect of single-wavelength blue light (470 nm)
and red light (660 nm) on the formation of volatile compounds in tea plants. Among these types
of light, blue light significantly elevated most endogenous volatiles and activated the expression of
structural genes related to the formation of tea plant volatiles. A recent study showed that employing
high-intensity supplemental blue light for 4 h during the nighttime can induce the expression of MYBs,
CRY2/3, SPAs and HY5, thereby promoting the accumulation of anthocyanins and catechins in tea
leaves [22]. Light quality (wavelength) and quantity (fluence rate) are important to plant life [23,24].
However, to the best of our knowledge, no research to date has investigated the relationship between
different blue light intensities and the secondary metabolism of tea plants.

In recent decades, light emitting diodes (LEDs) have been developed rapidly as alternative
light sources [25]. LEDs have the advantages of light intensity/quality adjustability, energy savings
and durability and have been successfully applied to such crops as cucumber [26], pepper [27],
banana [28], tomato [29] and grape [30]. In this study, we attempted to investigate the effects of
different blue LED light intensities on the gene expression levels and metabolite profiles of tea plant
shoots. Furthermore, we evaluated multiple changes in photosynthesis, flavonoid biosynthesis and
lipid metabolism pathways to elucidate how different blue light intensities affect growth and secondary
metabolism in tea plants.

2. Results

2.1. Overview of the Transcriptional Changes

To reveal the molecular regulation of tea plants under different blue light intensities, we performed
transcriptome sequencing on tea plant shoots (one bud and two leaves) under three blue LED intensities.
As shown in Table 1, a total of 42.90–62.33 million raw reads were obtained, and Q20 and Q30 were
greater than 97% and 93%, respectively, indicating the high throughput and quality of the RNA-Seq
data. After filtering out the low-quality reads, 42.60–61.88 million clean reads were subjected to further
analysis. Among these reads, 91.89–93.26% of clean reads were mapped to the tea plant genome. The
RNA-Seq data sets were deposited in the NCBI SRA database under accession number PRJNA636584.
Subsequently, we evaluated the effects of different blue light intensities on global gene transcript
abundance. Compared with white light (CK), the global gene transcript abundance decreased as the
blue light intensity increased (Figure 1A).

The numbers of differentially expressed genes (DEGs) observed under different blue light
intensities are shown in Figure 1B,C. Interestingly, compared to CK, the total number of DEGs in
low-intensity blue light (LBL, 50 µmol m–2 s–1), medium-intensity blue light (MBL, 100 µmol m–2 s–1)
and high-intensity blue light (HBL, 200 µmol m–2 s–1) was 1, 7 and 1097, respectively, indicating
that the effect of low-intensity blue light on tea plant shoots was highly limited. To validate the
reliability of the RNA-Seq data, 12 DEGs, including 4 randomly selected DEGs, 2 transcription factors,
2 photosynthesis-related DEGs, 2 flavonoid biosynthesis-related DEGs and 2 lipid biosynthesis-related
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DEGs, were selected to detect their expression levels by qRT-PCR. The results showed that the expression
profiles detected by qRT-PCR were positively correlated with the RNA-Seq results (Figure 2).

Table 1. Quality of the transcriptome data of each sample.

Sample Raw Reads Clean Reads Total Mapped Q20 (%) Q30 (%)

CK-1 55555128 55178152 50992408 (92.41%) 98.37 94.72
CK-2 62332084 61884910 57198092 (92.43%) 98.15 94.13
CK-3 42897998 42595356 39331322 (92.34%) 98.04 93.85
LBL-1 55216836 54854554 50956186 (92.89%) 98.12 94.02
LBL-2 48161620 47741022 43871489 (91.89%) 97.97 93.71
LBL-3 60688032 60256324 55807398 (92.62%) 98.29 94.48
MBL-1 53013332 52623504 48866086 (92.86%) 97.99 93.71
MBL-2 48309310 47996004 44758708 (93.26%) 98.26 94.39
MBL-3 61387750 60995982 56491831 (92.62%) 98.23 94.35
HBL-1 46838196 46520542 43145309 (92.74%) 98.27 94.44
HBL-2 58747398 58408158 54130109 (92.68%) 98.27 94.44
HBL-3 53331584 52950364 49149589 (92.82%) 98.06 93.89
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Figure 1. Global gene expression profiling and differentially expressed genes (DEGs) in tea plant
shoots under different blue light intensities. (A) Density plot of global gene expression in tea plants
under different blue light intensities. (B) Venn diagram of DEGs in tea plants under different blue light
intensities. (C) The number of up- and downregulated DEGs in each comparison.
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Figure 2. Validation and correlation analysis of 12 selected DEGs. The values between two heatmaps
represent the correlation coefficients of qRT-PCR and RNA-seq values from each gene.

2.2. Annotation of DEGs between CK and HBL

Since DEGs are only enriched between CK and HBL, we further analyzed the global metabolic
pathways of the DEGs via iPath3.0 (http://pathways.embl.de) [31]. As shown in Figure 3, most DEGs
were annotated to lipid metabolism, flavonoid metabolism, energy metabolism, carbohydrate
metabolism and amino acid metabolism. Among these DEGs, photosynthesis and sulfur metabolism
in energy metabolism were significantly enriched, indicating that the energy metabolism of tea plant
shoots under high-intensity blue light has a significant response, which may affect the synthesis of
multiple secondary metabolites.

In Gene Ontology (GO) term enrichment analysis, 57 DEGs were enriched in the 10 most
significant GO terms (FDR < 0.05), including beta-glucan metabolic process, carbohydrate catabolic
process, polysaccharide catabolic process, photosynthesis, polysaccharide metabolic process, flavonoid
biosynthetic process, drug catabolic process, neurotransmitter catabolic process, cellular amino acid
catabolic process and carbohydrate metabolic process (Figure 4A and Table S1).

In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, 97 DEGs were
annotated in the 10 most significant pathways (FDR < 0.05), including flavone and flavonol biosynthesis,
carbon fixation in photosynthetic organisms, photosynthesis, glycine, serine and threonine metabolism,
glyoxylate and dicarboxylate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis,
monoterpenoid biosynthesis, flavonoid biosynthesis, ubiquinone and other terpenoid-quinone
biosynthesis and fatty acid biosynthesis (Figure 4B and Table S2).

Overall, many DEGs that showed distinct expression patterns between CK and HBL were related
to photosynthesis and lipid and flavonoid metabolism. Interestingly, the 17 DEGs annotated to
photosynthesis were significantly upregulated in HBL (Figure 5), especially four PsaB genes from
Photosystem I and one F-type ATPase-α gene, which further suggests that high-intensity blue light
regulates energy metabolism in tea plant.

http://pathways.embl.de
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Figure 4. Chord plot of the top 10 Gene Ontology (GO) terms (A) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (B). Chords show a detailed relationship between the log2-fold change
(log2FC) of DEGs (left semicircle) and their enriched GO terms or KEGG pathways (right semicircle).
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Figure 5. DEGs involved in photosynthesis under high intensity blue light in tea plant shoots.
The pathway adapted from KEGG, the green box indicates the background genes of tea plant genome,
and the red line indicates the annotated DEGs. The heatmap was generated from the log2-fold change
(log2FC) mean value calculated from three replicates of RNA-Seq data.

2.3. Analysis of DEGs Related to Flavonoid Biosynthesis

To further explore the effect of high-intensity blue light on structural genes of flavonoid synthesis,
the transcriptional abundance of 19 DEGs involved in flavonoid biosynthesis was visualized (Figure 6).
The 19 DEGs encode 2 C4H, 2 4CL, 6 CHS, 2 CHI, 1 F3H, 1 DFR, 2 F3’H, 1 FLS and 1 ANS genes.
Notably, all structural DEGs were significantly downregulated in HBL to varying degrees, especially
CHS (TEA018665) and ANS (TEA015762) coding genes, which were downregulated more than 10-fold,
indicating that high-intensity blue light comprehensively inhibited flavonoid metabolism in tea plants.
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Figure 6. DEGs involved in flavonoid biosynthesis under high intensity blue light in tea plant shoots.
The red line indicates the annotated DEGs. The heatmap was generated from the log2-fold change
(log2FC) mean value calculated from three replicates of RNA-Seq data.
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2.4. Analysis of DEGs Related to Lipid Metabolism

In the fatty acid biosynthesis and degradation pathway of lipid metabolism (Figure 7), only one
FabG (TEA003420) was upregulated 4.45-fold in HBL. The other seven structural DEGs, including
1 ACACA, 1 FabF, 2 FabG, 1 FaBI, 1 FATB and 1 ACSL, were generally downregulated in HBL.
Overall, fatty acid synthesis in tea plant shoots was inhibited under high-intensity blue light, since the
transcriptional abundance of most structural DEGs involved in this pathway was significantly reduced.
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In the pathway adapted from KEGG, the green box indicates the background genes of tea plant genome,
and the red line indicates the annotated DEGs. The heatmap was generated from the log2-fold change
(log2FC) mean value calculated from three replicates of RNA-Seq data.

2.5. Analysis of Differentially Expressed Transcription Factors (DETFs)

Transcription factors (TFs) are vital regulatory factors involved in regulating plant growth
and development, while bHLH and MYB TFs have been widely shown to play important roles in
the regulation of plant flavonoid accumulation. In our RNA-seq data, 54 differentially expressed
transcription factors (DETFs) belonging to 16 TF families were identified between CK and HBL
(Figure 8). Among these factors, the most abundant TF families were bHLH (11, 20.37%) and MYB
(8, 14.81%) followed by AP2/ERF (7, 12.96%), MYB-related (5, 9.26%), bZIP (5, 9.26%) and NAC (4,
7.41%). Interestingly, most of the bHLH (10/11, 90.90%) and MYB (6/8, 75.00%) TFs were significantly
downregulated in HBL, which was consistent with the expression trend of related structural DEGs
involved in flavonoid biosynthesis.
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2.6. Metabolite Changes in Response to Different Blue Light Intensities

A total of 48 significantly changed metabolites (SCMs) were identified in tea plant shoots under
different blue light intensities. The number of SCMs upregulated and downregulated in CK versus
LBL, CK versus MBL and CK versus HBL were 1 and 0, 7 and 7 and 24 and 9, respectively (Figure 9A).
To observe the overall SCM pattern, we further visualized the fold change of SCMs in the clustering
heatmap (Figure 9B and Table S3). These SCMs mainly belonged to lipids and lipid-like molecules
and flavonoids and a small amount of carbohydrates and carbohydrate conjugates, nucleotides and
amino acids and their derivatives. Fifteen lipids and lipid-like molecules can be subdivided into
fatty acyls, glycerolipids, glycerophospholipids, prenol lipids, saccharolipids and steroids and steroid
derivatives, 7 of which increased in HBL, including 3-oxo-alpha-ionol 9- [apiosyl- (1- > 6) -glucoside],
dihydroroseoside, PS (18: 0/20: 3 (8Z, 11Z, 14Z)), PG (16: 1 (9Z)/18: 2 (9Z, 12Z)), hydroxyisonobilin,
ichangic acid 17-beta-d-glucopyranoside and 11,13-dihydrotaraxinic acid glucosyl ester, while others,
such as DG (16: 0/21: 0/0: 0), CL (a-13: 0/i-24: 0/18: 2 (9Z, 11Z)/i-21: 0) [rac], LysoPC (18: 1
(11Z)), cucurbitaxanthin B and vaccinoside decreased. Six flavonoid glycosides were significantly
changed under blue light, and the quantity of three flavonoid glycosides was significantly elevated,
including 3’,5,6-trihydroxy-3,4’,7,8-tetramethoxyflavone 3-glucoside, galangin 3- [galactosyl- (1- > 4)
-rhamnoside] and neocarthamin, while the level of quercetin 3- (2-caffeoylsophoroside) 7-glucoside,
quercetin 3- (4 “-acetylrhamnoside) 7-rhamnoside and spinacetin 3- (2 “- feruloylgentiobioside) was
decreased. The metabolite data further showed the effect of blue light on lipid and flavonoid metabolism
in tea plants, and as the intensity of blue light increased, the changes in metabolites intensified, which
was consistent with the gene expression changes observed by RNA-Seq.
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2.7. Coexpression Network Analysis

To further identify modules related to flavonoid and lipid metabolism, the significantly changed
flavonoids and lipids were combined with RNA-seq data to construct a coexpression network
(Figure 10A). Seven modules (labeled in different colors) were identified in the dendrogram, where the
gray module represents genes that were not assigned to specific modules. Remarkably, the red module
showed a significant correlation with the accumulation pattern of flavonoids and lipids (r > 0.6 or
r < −0.6, p < 0.05) (Figure 10B and Table S4). Among these genes, 83 genes of the red module were
negatively related to spinacetin 3- (2”- feruloylgentiobioside) and highly correlated with eleven lipids.
Based on the eigengene connectivity (KME) values in the coexpression network, the top 50 node genes
in the red module were selected to generate the coexpression subnetwork (Figure 10C). Among these
genes, the hub gene CsMYB (TEA001045) had the highest KME value and was most strongly associated
with other node genes. Additionally, the structural gene chalcone synthase (CsCHS, TEA018665)
involved in flavonoid synthesis and the alcohol dehydrogenase (CsADH, TEA029314) gene involved in
fatty acid degradation were located on the periphery of the network. The MYB TF family has been
shown to play a vital role in plant flavonoid metabolism. These results indicate that this CsMYB
member (TEA018665) may be involved in regulating flavonoids and lipid metabolism under different
blue light intensities in tea plants.
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Figure 10. Coexpression network analysis. (A) Hierarchical cluster tree showing seven modules
obtained by weighted gene co-expression network analysis (WGCNA). The gray modules represent
genes that are not divided into specific modules. Each branch in the tree points to a gene. (B) Matrix
of module-metabolite associations. The data of gene expression profiles under different blue light
intensities and the change patterns of flavonoids and lipids in SCMs were combined to perform WGCNA
analysis. The number of genes per module is shown in the left box. Correlation coefficients and
p-values between modules and metabolites are shown at the row-column intersection. (C) Coexpression
subnetwork analysis of red modules related to flavonoids and lipid accumulation. The top 50 nodes
of the red module were selected to construct the network. The hub gene is shown in blue, and genes
involved in flavonoid and lipid metabolism are shown in green.

3. Discussion

To date, many studies have focused on how different wavelengths of light affect several
morphological processes in plants, including multiomic analysis on Arabidopsis [32], strawberry [33],
lettuce [34] and tea plants [22]. Nonetheless, a comprehensive investigation of which metabolic
pathways respond to different blue light intensities in plants, especially tea plants, has not been
conducted. Thus, we aimed to elucidate the transcriptional and metabolic changes and key processes
elicited in tea plant shoots in response to different intensities of blue LED light and help to elucidate
which intensity of blue light can better regulate the growth and secondary metabolism of tea plants
under cultivation conditions.

Previous studies have found that higher blue light intensity can significantly affect the accumulation
of plant metabolites, such as carotenoids and lipids [9,13]. Our study clearly showed that the effect of
supplementing 200 µmol m–2 s–1 blue LED light (HBL) on the growth and metabolism of tea plants
was considerably stronger than that of supplementing 100 µmol m–2 s–1 (MBL) and 50 µmol m–2 s–1

(LBL): the number of differential genes and metabolites in tea plant shoots was significantly different
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under three blue LED light intensities (Figures 1C and 9A). These results imply that by appropriately
increasing the intensity of blue light irradiation, the transcript reprogramming and metabolic flux
redirection of tea plants can be improved to regulate the contents of tea plants.

Blue light is the major energy source for plant photosynthesis and can be recognized by
photoreceptors that regulate plant development [35]. In cucumber leaves, blue light is essential
to maintain the activity of photosystems II and I and improve the photosynthetic electron transfer
ability [36]. Notably, our results showed that the 17 DEGs annotated to photosynthesis were significantly
upregulated in HBL, especially five of them (four PsaB members from Photosystem I and one F-type
ATPase-α) that were upregulated more than 10-fold (Figure 5), which indicated the positive regulatory
effect of high-intensity blue light on the energy metabolism of tea plants.

Lipids are one of the important subcellular components and play an essential role in plant
development and signal transduction [37,38]. In addition, lipids greatly affect the flavor and aroma
of brewed tea [39]. Therefore, research on the regulation of lipid biosynthesis in tea plants is
of considerable interest. In this study, we found that 8 DEGs were enriched in the fatty acid
metabolism pathway, although only FabG (TEA003420) was upregulated. Correspondingly, the largest
number of differential metabolites belong to lipids and lipid-like molecules, including fatty acyls,
glycerolipids, glycerophospholipids, prenol lipids, saccharolipids, steroids and steroid derivatives.
These results indicate the stimulating effect of blue light on lipid biosynthesis, achieved by influencing
related molecular pathways in tea plants. Similarly, Lakshmanan et al. [32] reported that Arabidopsis
thaliana increased the flux of metabolic pathways, such as fatty acid biosynthesis, the Calvin cycle,
the tricarboxylic acid cycle and glycolysis after blue light treatment, thereby enhancing the biosynthesis
of lipids. Moreover, 200 µmol m–2 s–1 blue light can also regulate the maximum lipid content of
Chlorella [13]. Interestingly, lipids are also closely related to plant photosynthesis. Lipids not only
maintain the function of chloroplasts, which are the site of photosynthesis in higher plants but also
directly participate in the mechanism of photosynthesis [40]. Our research revealed that high-intensity
blue light can lead to the coexpression of genes in photosynthesis and lipid metabolism pathways and
further regulate the synthesis of related metabolites.

Flavonoids are essential secondary metabolites in tea plants and are closely related to the quality
of tea [41]. In addition, flavonoids have high antioxidant activity, which is potentially beneficial
to human health [42]. Previous research has shown that whether blue light affects the synthesis of
flavonoids depends on plant species [43]. Among these species, blue light can effectively improve the
flavonoid production of arugula (Eruca saliva) but has no effect on bloody dock (Rumex sanguineus)
and basil (Ocimunt basilicurn) [43]. In longan embryogenic calli, blue light selectively regulates the
flux of flavonoid components, which inhibits the synthesis of rutin but promotes the accumulation of
epicatechin [7]. Our results indicated that 19 structural genes involved in flavonoid synthesis were
markedly downregulated in HBL. However, these genes have no significant changes in LBL and
MBL, indicating that high-intensity blue light completely inhibits the molecular pathway of flavonoid
synthesis. Meanwhile, we found that the most abundant TF families in DEGs were bHLH and MYB,
which have been shown to be widely involved in the regulation of plant flavonoids [44,45]. We also
observed that most bHLH (10/11) and MYB (6/8) TFs were coordinately downregulated in HBL with
structural DEGs for flavonoid synthesis. Previous studies have elucidated a consistent regulatory
mechanism in tea plants. For instance, CsbHLH (TEA003964) acts as a potential repressor to negatively
regulate the expression of downstream flavonoid synthesis genes in tea plants [46]. CsMYB5a and
CsMYB5e were also demonstrated to be involved in the biosynthesis regulation of multiple flavonoid
components [47]. Based on WGCNA analysis, we further identified that CsMYB (TEA001045) may
be a hub gene involved in the negative regulation of flavonoid and lipid metabolism by blue light
(Figure 10), possibly by affecting structural node genes, such as CsCHS (TEA018665) and CsADH
(TEA029314).
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4. Materials and Methods

4.1. Tea Plant Materials and Blue Light Treatments

One-year-old potted tea plants (Camellia sinensis cv. ‘Fujian Shuixian’) (Approved by the China
Crop Variety Approval Committee in 1985, No. GS 13009-1985) cultivated in the Fujian Agriculture
and Forestry University tea plant germplasm collection garden (Fuzhou, China) were selected as the
materials. The tea plants were transferred to four controlled incubators for 30 days with a white LED
light at an intensity of 100 µmol m–2 s–1 during the 12-h photoperiod. The temperature and humidity
were controlled at 25 ± 3 ◦C and 75 ± 3 %, respectively. Subsequently, as shown in Figure 11, the tea
plants in the other three incubators were exposed to white light during the daytime and provided three
complementary blue LED lights (450 nm) of different light intensities, including 50 µmol m–2 s–1 (LBL),
100 µmol m–2 s–1 (MBL) and 200 µmol m–2 s–1 (HBL). After 14 days, the young shoots (one bud and
two leaves) of each treatment were collected for transcriptome and metabolome analyses, and three
biological replicates were performed.
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4.2. RNA-Seq Processing and Data Analysis

Total RNA was extracted from the samples using an RNAprep Pure Plant Kit (DP441, TIANGEN,
Beijing, China) according the manufacturer’s instructions, and genomic DNA was removed using
DNase I. The high-quality RNA samples were used to construct a sequencing library and sequenced
using an Illumina Novaseq 6000 (2×150-bp read length). The raw paired end reads were trimmed
and quality-controlled by SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.
com/najoshi/sickle) with default parameters. Then, clean reads were separately aligned to the tea
plant genome [16] using TopHat 2.1.1 [48]. The expression level of each transcript was calculated
according to the transcripts per million reads (TPM) method. RSEM (http://deweylab.biostat.wisc.edu/

rsem/) [49] and EdgeR package (http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html) [50]
were utilized for quantitative gene abundance and differential expression analysis, respectively.
Genes with FDR ≤ 0.05 and fold change ≥ 2 were considered to be differentially expressed genes
(DEGs). Furthermore, iPath3.0 (http://pathways.embl.de) [31] was used to visualize and analyze the
metabolic pathways of DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed by Goatools (https://github.com/tanghaibao/Goatools)
and KOBAS 2.1.1 (http://kobas.cbi.pku.edu.cn/download.php) [51]. To visualize the transcriptional
abundance of DEGs, heatmaps were generated using TBtools [52], and chord plots were generated
using the free online platform of Majorbio Cloud Platform (www.majorbio.com).
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4.3. Gene Expression Analysis by Quantitative Real-time PCR (qRT-PCR)

cDNA synthesis and qRT-PCR tests were performed to verify the reliability of the RNA-Seq data
according to previous methods [53]. CsGAPDH (GE651107) was used as a reference control, and the
primers of validated genes were designed using Primer3Plus (http://www.bioinformatics.nl/cgi-bin/

primer3plus/primer3plus.cgi). The primer information is listed in Table S5. All samples were analyzed
in three biological replicates. The relative expression level was calculated using the 2−44Ct method [54].

4.4. Metabolite Profiling Analysis

The 100-mg tea plant samples were accurately weighed, and the metabolites were extracted using
a 400 µL methanol:water (4:1, v/v) solution. The mixture was settled at −20 ◦C and processed by a
high-throughput tissue crusher Wonbio-96c (Wanbo Biotechnology, Shanghai, China) at 50 Hz for
6 min, then vortexed for 30 s and ultrasonicated at 5 ◦C for 30 min. The samples were placed at −20 ◦C
for 30 min to precipitate proteins. After centrifugation at 13,000 rpm for 15 min at 4 ◦C, the supernatant
was carefully transferred to sample vials. The quality control (QC) samples were prepared by mixing
equal volumes of all samples to monitor the accuracy and stability of the method.

Metabolites were profiled using a UPLC-Triple-TOF-MS-based platform, and chromatographic
separation was performed on an ExionLCTM AD system (AB Sciex, Los Angeles, CA, USA) equipped
with an ACQUITY UPLC BEH C18 column (1.7 µm, 100 mm × 2.1 mm, Waters, Milford, MA, USA).
Phase A was water with 0.1% formic acid (v/v), and phase B was 0.1% formic acid in acetonitrile:
isopropanol (1:1, v/v). The sample injection volume was 20 µL, and the flow rate was set to 0.4 mL/min
with a column temperature of 40 ◦C. The solvent gradient was as follows: from 0 to 3 min, 95% A:
5% B to 80% A: 20% B; from 3 to 9 min, 80% A: 0% B to 5% A: 95% B; from 9 to 13 min, 5% A: 95% B
to 5% A: 95% B; from 13 to 13.1 min, 5% A: 95% B to 95% A: 5% B, from 13.1 to 16 min, 95% A: 5%
B to 95% A: 5% B. MS analysis was performed using a quadrupole-time-of-flight mass spectrometer
(Triple TOFTM5600+, AB Sciex, Los Angeles, CA, USA) equipped with an electrospray ionization (ESI)
source operating in positive mode and negative mode. The optimal parameters were set as follows:
source temperature, 500 ◦C; curtain gas, 30 psi; both ion sources GS1 and GS2, 50 psi; ion-spray
voltage floating, -4000 V in negative mode and 5000 V in positive mode; declustering potential (DP),
80 V; collision energy (CE), 20–60 V rolling for MS/MS. Data acquisition was performed with the
data-dependent acquisition (DDA) mode with an m/z range between 50–1000.

Raw data were imported into Progenesis QI 2.3 (Nonlinear Dynamics, Waters, MA, USA) for
peak detection and alignment. The preprocessing results contained the m/z values, RT, and peak
intensity. Mass spectra of these metabolic features were identified by using accurate mass, MS/MS
fragment spectra and isotope ratio differences with searches in internal databases and public databases.
The variable importance of the projection (VIP) score generated from orthogonal partial least squares
discriminate analysis (OPLS-DA) was used to determine the best differentiated metabolites between CK
and treatments. Metabolites with VIP ≥ 1.0 and p-value ≤ 0.05 were defined as significantly changed
metabolites (SCMs). Multivariate statistical analysis was performed using R package ropls version
1.6.2 (http://bioconductor.org/packages/release/bioc/html/ropls.html).

4.5. Coexpression Analysis

The gene coexpression network was constructed using the R package WGCNA [55] to identify
modules of highly correlated genes and metabolites based on the filtering data (mean expression
level ≥ 1, coefficient of variation ≥ 0.1). After filtering, the abundance of 13,010 genes and 22
metabolites was used to build a signed coexpression network by calculating Pearson’s correlations.
The soft-thresholding power of the correlation network was set at 9, and the minimum module size
was equal to 30. The core coexpression modules were visualized using Cytoscape 3.4.0 [56].

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://bioconductor.org/packages/release/bioc/html/ropls.html
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5. Conclusions

Our study compared the effects of three levels of blue light intensity on the transcripts and
metabolites of tea plants and found that high-intensity blue light (HBL) can significantly affect the
secondary metabolism of tea plants. By mining the transcriptome data, it was found that the blue
light-responsive genes were related to photosynthesis, lipid metabolism and flavonoid synthesis,
which is consistent with the annotation of the significantly changed metabolites. In addition, based
on the annotation of transcription factors and WGCNA analysis, we further identified that CsMYB
(TEA001045) may be the hub gene regulating the effects of blue light on lipid and flavonoid metabolism.
These results may provide a reference for future research investigating the regulation of woody plants
by blue light.

Supplementary Materials: The following can be found at http://www.mdpi.com/1422-0067/21/13/4606/s1. Table S1.
The top 10 GO terms and enriched DEGs between CK and HBL. Table S2. The top 10 KEGG pathways and
enriched DEGs between CK and HBL. Table S3. Significantly changed metabolites in different treatments. Table S4.
The genes and their module from WGCNA. Table S5. The primers for qRT-PCR.
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TF Transcription factor
LEDs Light emitting diodes
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