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Abstract: This study aims to assess the capability of the 1H-NMR profiling of fruits from different
genera in combination with multivariate data analysis to provide feasible information for fruit juices’
authenticity in terms of botanical origin. Nine fruit varieties from four genera were selected for
the experimental plan. The juice obtained from the fruits was characterized using the 1H-NMR
technique, selecting the obtained amino acid profile of fruits as a potential specific fingerprint. Due to
the complex information provided by the NMR spectra, a chemometric approach of the data was
further applied to enable the differentiation of the fruit samples, highlighting thus its suitability as a
discrimination tool for the varietal origin. The advantage of this analytical approach is given by the
relatively simple working procedure, which consists of an easy, fast, and accessible preparation stage
while providing complex information on fruit composition.
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1. Introduction

Fruit juices, obtained by macerating or squeezing fruits, is one of the fastest growing segments
in the beverages industry due to the increasing concerns among consumers for healthy products.
A prevailing factor that influences the metabolic composition and quality of fruits, especially from a
nutritional perspective due to the synergistic combination of antioxidants, phytochemicals, and dietary
fibers, is the environmental growing conditions [1,2]. Each class of fruit juice has a unique chemical
pattern characterized by primary metabolites (such as amino acids, sugars, organic acids), involved in
basic cell functions, and secondary metabolites that are usually fruit-type specific. Considered together,
these components set the main features of fruits, the nutritional value, aroma, taste, and beneficial
effects on health. Therefore, they can be used as potential markers for quality, origin, and authenticity
of fruit and fruit-derived foods [3].

Assessing and confirming the authenticity and quality of fruits and their by-products remains
a challenging issue due to the plant/fruit metabolome complexity that limits the power of a
single analytical tool to gather the entire metabolomics information. Thus, to get a whole
image on both primary and secondary metabolites and other specific origin markers, several
combined techniques should be merged. Alongside the conventional analytical approach using
gas chromatography/mass spectrometry [4,5] and liquid chromatography/mass spectrometry [6,7], that
also assume different extraction procedures, the nuclear magnetic resonance-based metabolomics [8,9]
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and stable isotopes investigation [10], along with chemometrics, are of interest for checking the
conformity of fruit-based products.

The nuclear magnetic resonance (NMR) spectroscopy applied to fruit profiling may represent
a reliable alternative in terms of a non-invasive and powerful method that combines targeted and
untargeted analyses, since it can provide a picture, as complete as possible, of the sample chemical
composition [9,11]. From a global perspective, the metabolomic analysis of 1H-NMR data from
fruit extracts showed its ability in assessing the quality and authenticity of plant-based food [12],
especially in terms of the botanical and geographical origin, comparison between different growing
systems, chemical characterization, and identification of biological active compounds [3]. Also, the
NMR-based metabolomic approach provides information regarding the relationship between the
major metabolites and the sensory characteristics of the fruits. Nevertheless, the effects of genetic
and environmental factors, and the interactive ecosystem in a given place, including soil, climate,
and species, are essential in defining the metabolic profiles of fruits [13,14]. A study on apple juices
originating from the same cultivar but different geographical origin [15] highlighted the different
metabolic profile that distinguished the samples by provenance area, clarifying that the variables
responsible for discrimination were mainly represented by several amino acids. It was shown that
the metabolite content is a fingerprint of the fruit juice, reflecting the fruit’s environmental growing
conditions, such as the seasonal and climatic factors and agricultural practices, providing thus reliable
data to establish the geographic specificity (traceability) of the products [16]. Therewith, given the fact
that the chemical composition of each individual plant is related to the genotype, the varietal origin of
fruits could be defined using their unique metabolic profile.

With the globalization of the food trade and world food markets, the need of characterizing the
specificity of local products, as well as the constantly increasing consumer demand for high quality
foodstuff, has lead researchers to deepen the application of NMR metabolic profile in quality and
authenticity characterization of food products, as priority areas. Due to its great potential applications
in plant functional genomics, food science, and human nutrition, plant metabolomics becomes an
evolving field and has been successfully applied to fruits [12,17,18]. Therefore, the aim of this work is
to provide a better insight in the amino acids fingerprint of regional horticultural varieties using the
1H-NMR profiling as alternative technique. We intended to emphasize the relationship between the
content of amino acids and the varietal origin of the fruit cultivar by a reliable, rapid, and non-difficult
analytical approach, contributing thus to the portfolio of methods applied for the food traceability
process. 1H-NMR spectra of juices are very rich in information, thus its combination with chemometric
analysis revealed latent patterns in the data, which enabled the classification of the samples in terms of
varietal provenance.

2. Results and Discussion

2.1. General Presentation of the 1H-NMR Spectra of Fruit Juices

In the 1H-NMR spectrum of fruit juices (Figure 1), a number of approximately 80 peaks can be
observed and as expected, the spectra present wide regions with overlapping phenomena, which
makes it difficult to proceed with the peak integration. The typical 1H-NMR spectrum of a juice shows
three defined regions. In the first one, ranging from 0.5 to 3.0 ppm, the region of hydrogen atoms
belonging to organic acids (citric and malic) and amino acids (alanine, valine, and proline) are present.
The second region, between 3.0 and 6.0 ppm, is typical for carbohydrates, with sucrose, α-glucose,
β-glucose, and fructose being the most abundant compounds, wherein hydrogens of anomeric carbons
are clearly separated from the remaining sugar signals [16]. The last region, ranging from 6.0 to 8.5 ppm,
reflect the phenolic metabolites and aromatic protons. Moreover, each juice presents the peak assigned
to the methyl group of ethanol at 1.17 ppm [16,19]. Spectra of pure juice have similar shapes in the
aliphatic region and limited quantitative differences, except for the two peaks at 5.22 and 4.47 ppm
related to sucrose, which are present only in the blackberry juice. The region ranging from 6 to 10 ppm
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is meanwhile more typical; here, aromatic and phenolic compounds are normally present. In this case,
the signals are lower in intensity with respect to the aliphatics.
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Figure 1. 1H-NMR spectrum of four different fruit juices and typical examples of 1H expanded spectral 
region of amino acid region (0.5–3 ppm) of apple juice. 1: Isoleucine; 2: Leucine; 3: Valine; 4: Ethanol; 
5: Threonine; 6: Lactic acid; 7: Alanine; 8: Arginine; 9: Glutaric acid; 10: Acetic acid, 11: Glutamine; 12: 
Pyruvic acid; 13: Succinic acid; 14: Citric acid. 

When the first region is analyzed, the intensity of citric acid signals (dd, 2.87 ppm) reveals that 
this compound far overcomes the other acids present in the juice sample. Moreover, it can be 
observed another signal of particular interest in this region of the spectrum, representing the triplet 
assigned to the CH3 group of the ethanol molecule (t, 1.17 ppm). The presence of this compound is 
generally associated with the unwanted alcoholic fermentation that naturally occurs when preparing 
the fruits for juice making. Even if all the spectra acquisition was performed immediately after the 
fruits juice preparation and pH adjustment, an amount of ethanol is always produced by the 
microorganisms present in the fruit [19]. 

Figure 1 highlights the fact that each individual fruit has a distinct set of primary metabolites, 
such as amino acids, sugars, and organic acids, which are involved in a series of basic functions of 
living cells. Generally, for the assignment of a specific compound in the complex spectra of fruit juice, 
at least one signal of this metabolite has to be resolved from other signals in the spectrum, due to the 
fact that not all metabolites give fingerprinting signals. There are certain situations when due to the 
very low concentration, the signal intensity of a particular compound is overlapped with the signal 
of another metabolite, mainly because the dispersion of the signals in the NMR spectrum is rather 
small, resulting in extensive overlap in the signals in most regions of the spectrum. At the same time, 
some metabolites, even if present in small quantities, have a characteristic signal (for example alanine, 
valine, isoleucine, etc.) and can be easily identified [3]. 

2.2. Amino Acid Profile: Assignment of the Interest Peaks and Statistical Elaboration 

In particular, for this study, in order to investigate the correlation between amino acids metabolic 
information in fruits of various botanical origins (cherries, sour cherries, plums, apricots, peaches, 
apples, strawberries, raspberries, and blackberries), a number of 10 amino acids were identified, 
namely: Proline (Pro), arginine (Arg), lysine (Lys), asparagine (Asn), aspartate (Asp), glutamate (Glu), 
isoleucine (Iso), alanine (Ala), threonine (Thr), and valine (Val). In this type of NMR based analyses, 
the extraction procedure is probably the most critical step aimed to the quantitative transfer of the 
metabolites from the solid matrix into the solution. Since the sample preparation was based on a 
simplified procedure (maceration, centrifugation, filtration), there is the possibility to achieve a 
partial amino acid extraction, or for certain metabolites the extraction not to be performed at all. The 
obtained NMR peaks provide information regarding the proportion of soluble amino acids (free or 
from the peptide/protein structure) in the matrix and the ratio between them. 

Figure 1. 1H-NMR spectrum of four different fruit juices and typical examples of 1H expanded spectral
region of amino acid region (0.5–3 ppm) of apple juice. 1: Isoleucine; 2: Leucine; 3: Valine; 4: Ethanol;
5: Threonine; 6: Lactic acid; 7: Alanine; 8: Arginine; 9: Glutaric acid; 10: Acetic acid, 11: Glutamine; 12:
Pyruvic acid; 13: Succinic acid; 14: Citric acid.

When the first region is analyzed, the intensity of citric acid signals (dd, 2.87 ppm) reveals that
this compound far overcomes the other acids present in the juice sample. Moreover, it can be observed
another signal of particular interest in this region of the spectrum, representing the triplet assigned
to the CH3 group of the ethanol molecule (t, 1.17 ppm). The presence of this compound is generally
associated with the unwanted alcoholic fermentation that naturally occurs when preparing the fruits
for juice making. Even if all the spectra acquisition was performed immediately after the fruits juice
preparation and pH adjustment, an amount of ethanol is always produced by the microorganisms
present in the fruit [19].

Figure 1 highlights the fact that each individual fruit has a distinct set of primary metabolites,
such as amino acids, sugars, and organic acids, which are involved in a series of basic functions of
living cells. Generally, for the assignment of a specific compound in the complex spectra of fruit juice,
at least one signal of this metabolite has to be resolved from other signals in the spectrum, due to the
fact that not all metabolites give fingerprinting signals. There are certain situations when due to the
very low concentration, the signal intensity of a particular compound is overlapped with the signal
of another metabolite, mainly because the dispersion of the signals in the NMR spectrum is rather
small, resulting in extensive overlap in the signals in most regions of the spectrum. At the same time,
some metabolites, even if present in small quantities, have a characteristic signal (for example alanine,
valine, isoleucine, etc.) and can be easily identified [3].

2.2. Amino Acid Profile: Assignment of the Interest Peaks and Statistical Elaboration

In particular, for this study, in order to investigate the correlation between amino acids metabolic
information in fruits of various botanical origins (cherries, sour cherries, plums, apricots, peaches,
apples, strawberries, raspberries, and blackberries), a number of 10 amino acids were identified,
namely: Proline (Pro), arginine (Arg), lysine (Lys), asparagine (Asn), aspartate (Asp), glutamate (Glu),
isoleucine (Iso), alanine (Ala), threonine (Thr), and valine (Val). In this type of NMR based analyses,
the extraction procedure is probably the most critical step aimed to the quantitative transfer of the
metabolites from the solid matrix into the solution. Since the sample preparation was based on a
simplified procedure (maceration, centrifugation, filtration), there is the possibility to achieve a partial
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amino acid extraction, or for certain metabolites the extraction not to be performed at all. The obtained
NMR peaks provide information regarding the proportion of soluble amino acids (free or from the
peptide/protein structure) in the matrix and the ratio between them.

A heat map was built (Figure 2), which also included the amino acid composition of fruit juice
samples according to their specific peaks in the 1H-NMR spectrum, to better observe the existing
differences in content between the ten important metabolites, for each fruit variety. It was remarked
that almost all the identified amino acids had significant differences (p < 0.05) among the fruit juice
varieties; only glutamate presented no significant difference. This could be due to the fact that the
α-amino group allows assimilation and dissimilation of ammonia and is the building block of all other
amino acids. In fruits, amino acids like arginine and proline are synthesized from glutamate and
amongst the total free amino acids in ripened fruit, glutamate represents approximately 55% of the
relative molar concentration, making it the main free amino acid, therefore it is not a fruit botanical
origin specific marker. The heat map was also created to visualize the content composition in different
fruits variety: Red, blue, and yellow areas indicate high, low, and moderate levels of metabolite
composition, respectively. Apricots, strawberries, and cherries had the same relative contents: High
Pro and Arg, moderate Lys, Asp, and Asn, and low content of the others.
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order to observe additional correlations. The obtained values were between +1 and −1, where the 
numerical value indicates the correlation strength, and “+” or “−” indicates the positive or negative 
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Figure 2. Heat map and amino acid composition of fruit juice samples according to their specific amino
acid peaks in the 1H-NMR spectrum, as % of total NMR signals (values in the same row of Group 1 that
are followed by different letters (a–d) differ significantly (p < 0.05)). Statistical analysis was one-way
ANOVA with pairwise post hoc comparisons by the method of Tukey’s test.

A correlation analysis between the amino acid composition and botanical origin, based on the
Pearson correlation coefficient was also used (Table 1). For this statistical approach, the fruit varieties
were classified as individual species, but also according to their genus from which they belong, in order
to observe additional correlations. The obtained values were between +1 and −1, where the numerical
value indicates the correlation strength, and “+” or “−” indicates the positive or negative correlation.
The variables correlated with Prunus and Malus genus were Pro and Arg, with all the correlation
coefficients being > 0.45, whereas those positive correlated with Fragaria genus were Thr and Val,
while for the Rubus genus a great correlation was with Ala [20]. Contents of particular amino acids are
different for different juices, so they can be used as potential authenticity markers. For example, an
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increase content of Pro in raspberries or blackberries juice could indicate the additional presence of
other fruit juices. Arg was the most abundant amino acid, on average, with the highest proportion
being 4.45% of total NMR signals in the cherries juice samples, and the lowest proportion being 1.67%
of total NMR signals in apple juice samples. While the proportions of amino acids observed in a juice
sample from a given variety may be influenced by growing season [21,22], crop load [23], geographical
origin, and other factors [16], our data provide insight as to the extent of variation for each amino
acid, and the ranges of relative presence of amino acids that could be expected in different types of
fruit juices.

Table 1. Correlation analysis for amino acids profile and botanical origin.

Variables Pro Arg Lys Asn Asp Glu Iso Ala Thr Val

Genus

Prunus 0.455 0.596 −0.220 −0.239 −0.436 −0.083 −0.116 −0.363 −0.470 −0.422

Fragaria −0.147 −0.360 0.347 0.199 0.324 0.181 0.275 −0.034 0.616 0.631

Malus −0.576 −0.503 −0.272 −0.019 −0.099 −0.147 −0.177 −0.180 −0.109 −0.110

Rubus 0.001 −0.063 0.224 0.168 0.400 0.076 0.061 0.706 0.182 0.100

2.3. Botanical Origin Discrimination

Fruit juices are natural products with a very complex matrix, so it is rather difficult to reach
a conclusion by analyzing the data of all classes of compounds. Although previous tests showed
that each sample had different free amino acid profile, chemometric approaches, such as principal
component analysis (PCA) and linear discriminant analysis (LDA), can highlight additional differences
and relationships. Thus, in order to realize a chemometric analysis, the content of 10 amino acids
from 64 fruit juice samples (cherries, sour cherries, plums, apricots, peaches, apples, strawberries,
raspberries, and blackberries) previously determined by 1H-NMR were imported into XLSTAT software
for data mining. To evaluate the presence of latent variables correlating the single metabolites in
the fruit juice samples for their botanical origin discrimination, PCA was applied to the intensity
of 10 1H resonances, representing the identified amino acids. This multivariate statistical technique
achieves data reduction by a linear combination of the original variables, highlighting the variance
within the original dataset, and retaining most of the relevant information of the variables in the new
first components. The total four principal components extracted, whose eigenvalues exceeded 1, can
explain 79.79% of the total variance, with the first and principal components (PC1 and PC2) accounting
for 37.10% and 19.40%, respectively. Because PC1 and PC2 are significant and can explain as much as
56.50% of the total variance, this indicates that PC1 and PC2 are informative and could be applied
with respect to clustering samples in two-dimensional space. To identity the relationship between
the amino acid profile and the type of fruit, a biplot was performed (Figure 3). The first principal
component (PC1) was strongly associated with the contents of Lys, Asp, Asn, Ala, Thr, and Val, the
second principal component (PC2) was mainly associated with Pro and Arg, while the other amino
acids (Glu and Iso) were associated with PC3 and PC4.
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Figure 3. Scatter diagrams of a principal component analysis (PCA) based on the loading points of PC1
and PC2, including the fruit juice sample distribution map.

The application of PCA revealed some compositional similarities and helped to explore the overall
variability in the population of samples, observing some defined and discriminated clusters of samples,
such as apricots, blackberries, peach, cherries, apples, and raspberries. A relationship between the
quantified amino acids and some fruit juices was also observed (Figure 3). Apricot and blackberry
juices are mainly associated with Arg and Pro, strawberry and raspberry juices presented a strong
positive correlation with Lys, Asp, Asn, Ala, Thr, and Val, while cherries juice presented a negative
correlation with PC1 amino acids loadings, as well as is the case of apple juice with PC2 loadings.

Based on the obtained statistical results, it can be ascertained that the amino acid profile of different
types of fruit juices could provide valuable information regarding botanical origin. However, PCA is
an unsupervised chemometric method that ignores class labels and does not represent a perfect or
definitive technique that is able to determine the botanical origin of a fruit juice sample based only on
its amino acids data. In this regard, to investigate the suitability of this approach for the classification
of fruit juices samples according to their botanical origin, LDA was performed with the whole dataset
(Figure 4).
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LDA is a supervised multivariate statistical method used to identify the respective type of a
sample according to various values, under a defined classification system [24]. Five discriminant
functions were obtained by LDA, and all functions were demonstrated to be significant for correct
classification. The first function accounted 52.11% of the total variance, with Wilks’ Lambda = 0.0006,
X2 = 399.948, df = 80, and sig. = 0.000, while the second function accounted for 21.19% of the total
variance, with Wilks’ Lambda = 0.006, X2 = 270.057, df = 63, and sig. = 0.000.

The first quadrant mainly includes cherries and sour cherries; apricot and peach fruit juices are
mostly distributed in the second quadrant; apples and plums in the third; and strawberry, blackberry,
and raspberry fruit juices in the fourth quadrant. A possible explanation for this separation may be
related to a mixing of multiple sources of variation such as the different harvest season (e.g., rainfall,
temperature means) as well as the genus of the plant from which the fruits originate. It can be observed
that most of the “superfruit” juices, produced from fruits that have exceptional nutritional quality, such
as various types of berries (e.g., strawberries, blackberries, and raspberries), have a relatively similar
distribution in the scatter plot. Function 1, which provides the main separation between the botanical
origins of fruit juices, was primarily correlated with Lys, Thr, and Val while the second function was
correlated with Pro, Asn, Asp, and Iso. The variables selected by the discriminant analysis as the most
powerful for differentiation were, in this order, Lys, Asp, Ala, and Iso.

The results of the LDA are superior, and according to the confusion matrix for the estimation
sample, a 93.75% was reached (one sample of blackberry juice was classified as sour cherry juice, one
sour cherry juice was classified as apple juice, and two strawberry juices were appointed in other
categories—Table 2).

Table 2. Confusion matrix for the fruit variety estimation.

From\To Apple Apricot Blackberry Cherry Peach Plum Raspberry Sour Cherry Strawberry Total % Correct

Apple 6 0 0 0 0 0 0 0 0 6 100%

Apricot 0 6 0 0 0 0 0 0 0 6 100%

Blackberry 0 0 3 0 0 0 0 1 0 4 75%

Cherry 0 0 0 15 0 0 0 0 0 15 100%

Peach 0 0 0 0 5 0 0 0 0 5 100%

Plum 0 0 0 0 0 9 0 0 0 9 100%

Raspberry 0 0 0 0 0 0 4 0 0 4 100%

Sour cherry 1 0 0 0 0 0 0 7 0 8 87.5%

Strawberry 0 1 0 0 0 1 0 0 5 7 71.43%

Total 7 7 3 15 5 10 4 8 5 64 93.75%

3. Materials and Methods

3.1. Fruit Juice Samples

The study was conducted on 64 fruit juices samples from Rosaceae family, including nine different
varieties from four genera (Table 3), namely: Cherries (Prunus avium), sour cherries (Prunus cerasus),
plums (Prunus domestica), apricots (Prunus armeniaca), peaches (Prunus persica), apples (Malus domestica),
strawberries (Fragaria sp.), raspberries (Rubus idaeus), and blackberries (Rubus fruticosus), grown in 3
different geographical regions from Romania (Oltenia–Valcea county, Dobrogea–Constanta county, and
Moldova–Vrancea county, situated in the South-West Oltenia region, South-East, and East of Romania,
respectively). The fruits were harvested at commercial maturity and the collected fruit samples were
cooled and transported to the laboratory, assuring the maintenance of the cold chain. Subsequently,
fruits were washed with water, kept frozen, and stored at −20 ◦C in a freezer.
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Table 3. Description of fruit samples collection.

Fruit Variety Fruit Genus
Fruit

Species
Harvest
Period

Region of Provenance

Valcea County Constanta County Vrancea County

Apricots

Prunus

P. armeniaca August 2 2 2

Cherries P. avium June 5 5 5

Peach P. persica August 2 2 1

Plums P. domestica August 3 3 3

Sour cherries P. cerasus June 3 2 3

Raspberries
Rubus

R. idaeus August 1 2 1

Blackberries R. fruticosus August 2 1 1

Strawberries Fragaria Fragaria sp. June 3 2 2

Apples Malus M. domestica August 2 2 2

3.2. Sample Preparation for NMR Analysis

Approximately 50 g of macerated fruits were centrifuged (12,000× g, 20 min) and filtered through a
45 µm disposable filters, yielding about 10 mL of juice. All juice samples were pH-adjusted to 2.65± 0.02
using 5 N HCl and 5 N NaOH solutions. A volume of 700 µL from each sample was mixed with 70 µL of
D2O (as a field frequency lock signal) containing 0.2% w/w of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid,
sodium salt (TMSP as an internal standard), and sodium azide (0.013% w/w) to suppress microorganism
activity, and was transferred to a 5-mm NMR tube. Before the analysis, no additional treatment was
necessary. All the fruit juice samples were analyzed in two replications. All chemical reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.3. NMR Analysis

All the measurements were performed on a Bruker Avance III 400 NMR spectrometer (Bruker
France SAS, Wissembourg, France) operating at 9.4 T, equipped with a 5 mm BBO probe, observing 1H
at 400 MHz and automatic tuning-matching (ATM). A time delay of 5 min was set between sample
injection and pre-acquisition calibrations to ensure complete temperature equilibration. Experiments
were run at 300 K in automation mode after loading individual samples on a Bruker Automatic Sample
Changer, interfaced with the software Icon NMR (Bruker). The suppression of H2O signals was carried
out by using noesygppr-1d (Bruker standard pulses sequence), applying continuous waves during the
relaxation delay (2.0 s) with a mixing time of 10.5 µs. The 1H-NMR spectrum was measured over a
spectral width of 6402 Hz, with 32,768 data points, acquisition time of 2.559 s, and 8 scans. All spectra
were processed (line broadening, Fourier transform, phase correction, and baseline adjustment), by
using the standard routines of the Bruker software TopSpin version 3.2. The resulting spectra were
aligned using the TMSP signal as reference and the results were represented by the intensity of the
peaks produced by the amino acid groups in the spectral regions 0–3.4 ppm and 5.5–10 ppm, as a
percentage of the total signals produced by the organic groups in the sample. This normalization was
performed in order to compare the samples, which show different concentrations of compounds related
to the water content. The obtained signals were correlated for all samples by aligning the values for
the same identified peak. Peaks assignment was performed by means of literature data [3,18,25–32].

3.4. Software and Data Pre-Processing

Appropriate multivariate statistical tools were applied to extract meaningful information from
such a large data set, and usually big efforts are made to give a biological interpretation of the results.
Because of the existence of different factors (e.g., botanical and geographical origin,) that could affect
the fruit composition, the principal component analysis (PCA) and linear discriminant analysis (LDA)
was applied to the 1H-NMR data in order to evaluate the variables capable of characterizing the fruit
juices origin. In this context, we made a data matrix in which the rows represent the different fruit juice
samples analyzed and the columns correspond to the 1H-NMR data [33]. These data were processed
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by LDA which is a powerful technique for pattern recognition that attempts to explain the variance
of a large set of inter-correlated variables. LDA transforms the original data in a set of “scores” for
each sample, measured by discriminant component axes. Scattering diagrams of the scores of the first
principal components used provides an excellent view and sometimes gathering together to show
similar evidence, separating different types of samples or samples with different values of this selection.
Cross-validation was applied to determine the optimal number of variables required to obtain robust
models. All the mathematical and statistical processing of data were performed using commercial
software packages as Microsoft Excel 2013 (Microsoft, Redmond, WA, USA) and XLSTAT Addinsoft
2014.5.03 version (Addinsoft Inc., Long Island, NY, USA).

4. Conclusions

This study used a 1H-NMR-based metabolomics approach coupled with multivariate statistical
analysis to demonstrate the powerfulness of this technique in differencing the botanical origin of fruit
juices based on its amino acid profile. Relative amino acid profiles differ among different fruit juice
samples depending on the fruit variety, and the observed deviations have the potential to support
their quality and authenticity/botanic origin assessment. Non-targeted NMR amino acid metabolomic
fingerprinting proved to be the most suitable methodology to obtain “high-throughput” spectroscopic
data on a wide range of compounds with a high analytical precision. In this study, several amino acids
were identified in nine different fruit juices from four genera, and their relative amounts have permitted
a comprehensive view of the investigated varieties, allowing the amino acid metabolite profiles to be
mapped as completely as possible. Those compounds playing key roles in the observed physiological
variation or specific bioassays were then identified using statistical analyses (e.g., principal component
and/or linear discriminant analysis). Our results showed that this information could be applied for a
rapid classification of fruits based on their varietal origin and to further develop and build a model
capable of detecting adulterations of fruit juices.
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